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Abstract

In this paper a novel method called Height From Motion (HFM)
is developed to estimate the motion and structure under planar motion.
By using this method both translational and rotational motion (three
degrees of freedom) can be treated in a unified manner. Based on
HFM spondence problem b easy to deal with, es-
pecially under translational motion. Experiments of real scene image
sequences and the error analysis (theoretically and experimentally)
have shown the efficiency and rob of the method

thod.
corresp

Introduction

A large body of work on the theory of extracting mo-
tion and structure of objects has been presented in the field
of computer vision. However, as we want to apply them in
practice, such as navigation of mobile robot based on mo-
tion analysis we would be very disappointed to find out
that most of the methods can not be used with confidence.
It is obvious that we have to seek alternating method to
meet the challenge for practical use.

1t is well known that if motion is constrained more or
less, such as pure translational motion ’ or motion
with tracking fixation point , the estimation of motion
and structure parameters can be easier and more robust.
However, another kind of constrained motion, planar mo-
tion, is more general than either situations. As navigation
of mobile robot is concerned, method only applicable to
translational motion can not deal with moving objects in
the environment and rotational egomotion. And method
with fixation point tracking needs sophisticated control
mechanism.

We have developed a novel method called Height
From Motion (HFM) under planar motion . This
method can deal with both egomotion and object motion,
and treat translational and rotational motion in a unified
manner. In this paper this method is developed further, in-
cluding feature correspondence and error analysis. Theo-
retical analysis and experimental results have shown that
this method is efficient and robust.

Detecting Height from Planar Motion

Coordinate Systems and Basic Equations

In our motion—vison model there are three coordinate
systems: the camera centered coordinate system (CCC), the
image coordinate system and the robot centered coordinate
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Fig.1. Coordinate Systems of HFM method
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system (RCC) (Fig.1). The camera is mounted on the top
of 2 mobile robot with a tilt angle a looking down. The lo-
cation of origin of CCC with respect to RCC is (0,H.0),
and the relationship of (X,Y,Z) in CCC and (x,y,2) in RCC

for one space point can be expressed as follows:
X=x
Y =z sina+ (y — H) cosa
Z =z cosa—(y — H) sina

Based on geometry of pinhole model the image coordinates
of a point in space can be expressed as

M

u=f,X/2Z, v=fY/Z 2

where f, and f, are used to account for the different
scalar factorsinuand v respectively.
From equations (1) and (2) the x and z coordinates of

a point in RCC can be calculated as function of y as fol-
lows:

z=G(H—y), x=Ku)H-y) 3)
where

Glvi=(f, cosa+v sina)/ (f, sine—v cosa) @)

Klu,vl= @/ f XG[V] cosa+ sina) =u K[} ()
Now that G[v] and K[y} will be used frequently in our
algorithm, and they can be calculated in advance, we will

used two look—up tables (LUTs) to facilitate on—line calcu-
lation.

Unified Height From Motion (HFM) Algorithm
In this subsection the HFM algorithm will be derived
under arbitrary (planar) motion. Now that there are three




parameters to be determined (one is the rotation angle 8
about y axis, the other two are the translational compo-
nents T and T), therefore more than one point is
needed to estimate all of them. Suppose that the
coordinates of a surface point P , in the scene change from

(x f’ ,y(lﬂ,z(,')) to (x ;” ,y(zn ,z(zo) with respect to RCC due to

the rotational and translational motion, then we have
®
yf) = y(," =h
x;l) +T = x(,”cosﬁ - z(lﬂsinﬂ ©®
z;” +T, = x?sinﬁ + z(locosﬂ
where (i) denotes the ith point and will be used in the fol-
lowing equations. From equations (3) and (6) we also have

{Kf’ +T,/H-h")=K cosp— G sinp @
G'(zo +T_/ (H—hw) =K(:)sinﬂ + G:')caslf
where K , and G, (7=1,2) are used instead of K[u Y ,]
and G[v ,] (= 1,2) respectively.
If two point pairs (i=1,2) are given, after some tedious
manipulations we get

A sinf+ B cosf=C 8)

where ,
p =K§”K:2) —-K(,')K;) + G(;)G(f) _ G?)G;z)
B= K?’Gg’ + K® G‘f’ _ G(ln Kclz) _ G?’ K;z) ©)

2
1) m @ {) v 1
G(1 (O] ) m K?)

C=K,G; +KG> -6 k? - 6"

After B is estimated by using (8) and (9), we can also ob-
tained from equation (7) that

H-h")/ H-r")=1C /121" /7® (10)

xc zc

where  {Txe=HK cosp—G sinf—K,)

11
T, =H(G|cosﬁ+Klsinﬁ—Gz) (n

Equation (10) indicates that the relative heights of the fea-
ture points can be obtained without giving the exact mo-
tion parameters.

If the height of one point can be estimated by other
method or with a priori knowledge (e.g. some points on the
ground can be identified from images), then the
translational components can be estimated as

T,=T,(1-h/H), T,=T,(—h/H) (12)

On the other hand, given the translationat parameters, we
have

h=HQ-T,/T,) (13)

or h=H(1-T /T ) (14)

After 8 has been obtained for point P ,» its coordinates
can be easily obtained from equations (3).

If there exists only translational motion (ie. =0), it is
unnecessary to calculate f using 2 paris of points. In this
case equations (10) to (14) also holds true and equation
(11) can be reduced as

T, =HK,-K,), T, =HG, -G, as)

Feature Correspondence under Constrained Motion

It is well known that feature correspondence is a se-
vere problem to be solved so that the algorithm can be used
in practice. In this section we will show that using HFM
method the complexity of correspondence problem will be
reduced significantly, especially when only translational
motion is concerned.

Let (u(ln,v(:))and(u ;o,v(;)) be the corresponding image

points for point P, in two frames while translational mo-
tion (T _,T_) is taken place. Without loss of generality, we
assume that T is not zero. From equations (12) and (15)
we can easily obtained that

&K/ G -6N)=T /T, =c 16)
where ¢ is a constant dependent on the motion direction
and independent of each feature point. It can be seen from
equation (16) that if the pictures, captured while the robot
moving, are transformed into a KG—space where (KX,G)
value is used for each feature point, a parallel image flow
field will appear instead of a expansion field usually seen
(see Fig. 3a and 3b). Obviously the direction of the parallel

field can be determined without difficulty and the matching
of each pair of feature points in two pictures can be solved
by using parallel motion field constraint just as epipolar
constraint used in stereo technique.

If there exist both translational and rotational motion,
there will be two variable to be solved, one is the rotational
angle B, and the other is the direction parameter c.

Several methods, e.g. Hough Transform, can be used
to calculate the parameter set (¢ and f), and other con-
straints such as edges attached to each feature point can be
used to reduce the complexity of matching.

Performance and Error Analysis

In this section we will discuss some issues about the
performance of this method. At first the results of a prelim-
inary experiment are described, and then the error analysis
is given.

We have been doing experiments with a Hero—2000
mobile robot on which a 16 mm CCD camera is mounted.
512x 512 8 grey level images are processed by Imagebox
image system with an IBM PC/ AT as host computer.
First the optical system is calibrated roughly based on
equations (3). The calculated values of the parameters are:

«=29.63 °, H=1450.30mm,
fu=950.21 pixels, fv=1266.94 pixels,




After the calibration procedure two LUTs G[v] and K[v]
can be obtained with v varies from —255 to +255 (pixels).

Height from Egomotion of the Robot

While the robot moving a distance of about 300 mm,
two frames are taken as shown in Fig. 2a and Fig. 2b. Then
the edges and corners are extracted from these two frames
(Fig. 2c and 2d). All the selected corners for correspon-
dence are connected to some edges or ground marks. Based
on parallel motion field constraint, Hough Transform is
used to match the corner point. Fig. 3a and Fig. 3b shows
the corresponded corner points and optical flow field in
(u,v) and (K,G) values respectively. After that the Unified
HFM method is used to estimate f using all these pairs,
and the computed “translational parameters’ (
T, and T ) are calculated for each point. Then those

Fig.2. Original image pairs and their features

(a) first frame; (b) second frame; (c),(d) edges and cormers for
frame land 2.

points which have minimum T, and T (especially T
in this experiment, which also approximately equals to
300 mm) are identified as ground points (5 in this experi-
ment), and the real translational parameters (T, and T ,)
are obtained from these points using equation (12). The
motion parameters are = —1.19°,T = 25.19mm and
T, =269.72mm, which coincide with the real motion quite
well.

Fig.3. Feature correspondence and HFM calculations
(a) image flow field expressed in (u,v); (b) that in (K,G) ;(c) 3D
structures of objects; (d) 2D maps of robot and objects.
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Finally the coordinates of each of the points in RCC
can be obtained based on equations (14) and (3). Fig. 3¢
shows the projections of calculated 3D coordinates in RCC
of frame 1, with the height of each corner point labeled in
the image. Fig. 3d is the 2D map (top view) which indicates
the motion of the robot (represented by a circle) and the
positions of detected obstacles.

Error analysis

At the mention of error analysis, there are two main
factors that affect the performance of this method. One is
the error caused by feature point locating error, the other is
the calibration error. For simplicity we mainly deal with
the case of translational motion.

Point Location Error Analysis Suppose a image
point (u,v) is extracted with error (du, dv). By differenti-
ating equation (4) with respect to v we have

1,

dG=—""T33
(f,sina — vcosa)

dv a”n

which indicates that the larger the v coordinate is, the larg-
er the absolute etrors of G[v] and z are, respective to the
same amount of pixel locating error.

On the relation of precision of height estimation with
respect to point locating error, we can find from equation
(14) that

h_q_ T, 1

# =" HGh 1-6b,D a8
d

dh/ H = H(@dGly,]—dGly, D/ T,, 19

which indicates that errors of G values of each feature
point affect the precision of height estimate.

From equation (17) and (19) we can see that high pre-
cision is expected near the observer (the robot) and in order
to gain high performance the moving distance of the robot
should be as large as possible. For the parameter set we
use, the errors of z for the nearest and farthest visible
ground points are 3.0 mm and 10.5mm, with respect to 1
pixel locating error in v.

For the above experiment, random noise of 0~ 1
pixels is added to each image point in frame 1 and frame 2.
We use (du, dv) (pixels) as the pixel locating errors,
dB(degrees) the error of angle 8, 4T _,dT )(mm)the error
of translational vector (T _,T ), (dx,dy,dz)(mm) as
the error of 3D coordinate vector (x,y,z) in RCC and
D-size (mm) representing the error of distance
(size) between two adjacent points of the objects. The aver-
age errors, errors of a nearby point P, (u=75.27,
v=—287, x=187.99, y=189.62, z=1733.13) and a far
point P, (u=-130.67, v=218.40, x=-388.88,
y=7510.45, z=2132.32) are given in Table 1.




Table 1 . Experimental results for random pixel error
( |n| means n is a absolute value )

Table 2 . Experimental results for system error

Cases dudv d dT, 4T, dx dy dz D-size Cascs da dg dT, dT, dx dy dz  D-size

Average error | 0.520.50 (-0.24 7.16 1.80 ]2.24| |11.58| [23.52] 16.96] Average error| 1.00 | —0.52 12.62 -11.18 | |4.16] -25.81 —50.21 |9.50|

Point P, —0.370.87 ~ 7~ 7 132 349 -262 -267 Point P, 1.00 ~ ~ —1.54 -28.35 -39.06 —0.06

Point Py, 0.67-0.40 ~ 7~ 7 ~181 -10.19 25.73 758 Point Py, 100 |~ .~ 1.64 -37.92 -37.29 21.14
Conclusions

System Error Analysis The camera parameters
would be inaccurate due to the calibrating errors. If the tilt

angle a has a small error- —da(i.e. the actual angle « = q
+ da), and the optical system exists a small pan angle dg
and a small swing angle dy, then the relation between CCC
and RCC becomes

X 1 dy —dp 0][1 0 0 0 x
Y —dy 1 de O 0 cosa sina O y—
- (20)
z df —de 1 0 0 —sina cosx 0 z
1 0 0 0o 1]Jlo o 0o 1 1

If dB and dux can be negligible, then we have from (20) that

X=x
{ Y = (y — H)(cosa — sina da) + z(sina + cosa da)
— (y — H)(cosa da + sina) — z(sina doa — cose)

Hence from equation (2) and (21) we have

@n

Z=G'[V(H—h)

where

-l s
Combining equation (22) with equation (4) we have

4G _ Gh]l—-G'D] _ (Gv1+1/ Glv])de @3)

Glv] Gv] 1+ Gvlda

From equation (23) it can be seen that if da <0 and

|dal increases, then dG < 0 and the estimated G[v] is

{G’Iv] and deceases (It should be noticed that G[v]>0),

hence the position of a point in space will be estimated
lower and nearer than it really is.

Experiment was done with tilt angle changes slightly
(from 29.63 ° to 30.63 ° ). Table 2 show the results the
above experiment (da is the error measurement of tilt angle
a), which agree with the theoretical analysis. From Table 2
we can find that the y and z coordinate value decrease
when tilt angle increases, but the estimate of the distance
between two point is quite robust.
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In this paper we has developed further our method cal-
led Height From Motion (HFM). Though some constraint
is imposed on motion to force each moving point to lie on
a plane, it is still very general in real applications. Under
this constraint, motion and structure of objects can be de-
termined without difficulty. We emphasize that using
HFM method, the complexity of correspondence problem
can be reduced. Experiments of real scene images and error
analysis have demonstrated the efficiency and robustness
of the algorithm. This method would be useful in mobile
robot navigation, such as environment building by vision,
obstacle detection, navigation in a complicated environ-
ment, moving targets detection and tracking, and etc., Re-
cently, several correspondenceless algorithms based on the
similar principles have been investigated and developed in
our lab ¥, We will further exploit the advantages of this
method to build a practical vision system used in our lab.
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