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Abstract 
In this paper we present a new framework for 

detection of dynamic obstacles in tire unstructured out- 
door road environment by purposively irttegmting bino- 
cular color image sequence. In our system, color image 
segmentation, stereo obstacle detection, visual egomo- 
tion estirnation,and moving object analysis, are all 
built-in task-oriented modules and hence are eficient 
and robust. Most of these functions can be perfomied 
in realtime. They are activated and integrated adap- 
tively in the manner of neural parallel distributed 
processing(PDP). Experimental results are given to 
validate our philosophy of so-called purposive vision , 
retinal mapping , adaptive integration and parallel dis- 
tributed processing. 

1. Introduction 
Computer vision and image understanding have 

been a research field of intensive studies. Yet in spite 
of the availability of complex image analysis systetns 
and very powerful processing capability, it is doubtful 
whether anyone would claim that the problems of 
image analysis had been nearly solved 'here are even 
suggestions that the work in machine vision has to 
some extent failed [I]. Biological vision systems have 
been studied extensively both from the neurophysical 
and psychological viewpoints for a long time, and pur- 
posive , active and selective functions of the biological 
vision systems have been emphasized [2] . Currently 
purposive and active vision strategy is considered to be 
a promising direction for machine vision applications 
[3]. The critical point is that the method for machine 
vision should be developed and scheduled in a task- 
directed manner, so that an efficient 'and effective sys- 
tem can be built to meet the basic requirement of the 
underlying tasks. 

Stereo, motion and color are the most important 
cues lor human perception and it is believed that 
human perception behaves as a parallel distributed pro- 
cessing in the sense that these cues work parallelly and 

cooperatively[4,5]. We argue that by using and com- 
bining these cues purposively and adaptively, we can 
make a machine understand its environment incremen- 
tally. In this paper we try to solve some difficult prob- 
lems for the visual navigation of a mobile robot niov- 
ing in an unstructured and the-varying outdoor road 
environment, where detection of static obstacles and 
moving objects on the road is vital for the visual navi- 
gation. There are at least three contributions made in 
this paper. First, the purposive vision strategy is 
emphasized so that any task is processed at the most 
relevant level of precision. Second, a PDP neural model 
is used to organize and integrate different aspects of 
visual cues. 'Ihird, a novel image mapping, gaze 
transformation, which is suggested by the neural retinal 
mapping of biological vision system , is presented to 
deal with shape recovery and depth pemption prob- 
lems in the roadway environment. We have imple- 
mented the above ideas in an experimental visual navi- 
gation system . 

2. Purposive visual modules 
In this section three visual modules are described: 

stereo Obstacle-Detector, color Road-Segmenter and 
correlation-based Egomotion-Estimator. Bach module is 
purposively designed to solve a particular problem in 
the visual navigation. 

2.1. Stereo Obstacle-Detector 
Correspondence problem is one of the main obs- 

tacles for stereo methods in 3D recovery. However, if 
we use stereo methods in a purposive and qualitative 
manner for robot navigation, the underlying tasks can 
be fulfilled satisfactorily. Bawd this idea, we have 
designed a novel algorithm for realtime obstacle detec- 
tion whose efficiency is guaranteed by the realtime 
gaze tramformation of the stereo pair. 

(1). Gaze transformation and gaze images : We, 
human, tum our head and eyes to gaze at the points of 
our interest, which is called "eye movement" and focus 
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of attention. Similarly, when we rotate the camera so 
that its optical axis aims directly at a specific plane, 
e.g. Uie ground surface where the robot moves, it will 
facilitate the visual process relative to the plane. Here 
we use the term "gaze transformation" to imply that the 
attention i.. focused on the specific plane. It i s  believed 
that gaze transformation is one of the important retinal 
mapping of human vision. Suppose the camera coordi- 
nates (X,,Y,,Z,) is transformed to the gaze coordinates 
(XR,YR,ZR) by a software gaze transformation (Fig. I), 
which is represented by a rotation matrix R=(rijbr3 , 
then the Ga7x Image Coordinates (k,g) can be 
expressed by the original image coordinates ( U  ,v ) as 

where f is the focal length of the camera with 

(u,v)=cf X J Z ,  ,f Y,/z,) 

(k,g) = (X8/ZR , Y8/Z8 ,  = ( X / Z  , P/Z) 

and 

(2) 

Using equation (1) the gaze image can be 
obtained without actually rotating the camera. In the 
application of the mobile robot navigation, we reproject 
the original image into the gaze image plane which is 
parallel to the road surface the robot moves on. It is 
obvious form (2) that the shapes of the figures on the 
ground plane remain unchanged in the gaze image, and 
there have more interesting properties which are very 
useful in motion analysis [6]. In this paper we use the 
gaze image to detect the obstacle on the road. 

(2). Stereo obstacle detection algorithm : We fix a 
pair of color cameras (in parallel or in fixation) on 
either side of the mobile robot, with the same height H 
relative to the ground (Fig. 2). Both pictures taken by 
the binocular cameras are transformed into two gaze 
images respectively, which are parallel to the ground 
plane with the baseline b, along the X &xes of both 
gaze coordinates. One camera is defined as the main 
camera and the 3D coordinates o l  the objects are 
expressed in the gaze coordinates (X, Y, Z) of  this 
camera with XY plane parallel to the ground surface 
'and Y 'axis aim at the forward direction of the [nobile 
robot. A offset d,=b,/H is added to the gaze image of 
second camera so that every point on the road surface 
will have the same coordinates in both gaze image 
theoretically. In practice , we assume that the iniage 
preprocessing stages are sufficient to eliminate any 

problems of photometric varhnce arising from stereo 
projections. This means if the figure which appears in 
both gaze images is really on the ground, little 
difference of intensity can be detected from the 
corresponding regions, otherwise, significant difference 
may appear in the regions corresponding to obstacles 
high up above the ground. 

Based on the difference detection , the question " 
AE there any obstacles" can be a~iswerrtl rapidly by 
calculating the Sum of Absolute Difference (SAD) of 
the binocular gaze images. The Stereo Difference 
Image (SDI) can be considered as a map of free path 
measurement. Based on this map the robot can move 
on the region where the SDI values are low and should 
avoid those regions where the SDI values are high for 
collision-free motion. The stereo obstacle detection 
algorithm needs no feature extraction and comspon- 
dence . And it has no restriction to the shape and tex- 
ture of the object and the background. So it is robust 
and efficient for any kind of environment, both indoors 
and outdoors. The Obstacle-Detector has been imple- 
mented in PIPE image system hosted by a PC286 [6] . 
"lie processing time is less than 0. 2 seconds. 

2.2. HSI color-based Road-Segmenter 
Color image segmentation is one of the oldest 

and most important problems in image understanding 
and computer vision, but general method for image 
segmentation leads to few successful applications. By 
analyzing a large number of road iniages on campus, 
we noticed that HSI (Hue, Saturation and Intensity) 
system is a better base of feature space than RGB sys- 
tem commonly used. The image of road areas has 
higher intensity and lower saturation, but that of the 
adjacent no-road areas and objects on the pavement is 
usually on the contrw. By the analysis of K-L 
transformation in HSI space for many road images, we 
found that S = I+h is a proper discriminant function 
for most of the pictures with h to be determined adap- 
tively. The Road-Segmentor can be implemented in 
less than 0. 1 s in PIPE image system, and the detail of 
the algorithm can be found in Lin & Chenr71. 

The Road-Segmentor is so designed that not only 
the pavement o f  the road can be separated from neigh- 
boring area, but also objects on the pavement cm be 
detected without confusing with shadows, t'mnac 
patches, and so on. However it should be noticed that 
Road-Segmentor algorithm refers to no 3D perspective, 
or it has no "height" sense for the objects. 
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2.3. Correlation-based Egomotion-Estimator 
After obstacles(objects on the road) have been 

detected, the robot should decide whether each object is 
static or dynamic, and estimate the velocity and direc- 
tion of the object’s motion in order to avoid collision 
with this object. First of all the egomotion parameters 
of the mobile robot should be known at prior or 
estimated by visual motion. Egomotion parameters cam 
be obtained from the optical encoders of the robot but 
it may be inaccurate due to the slipping and skipping of 
the robot. Therefore, a correlation-based visual method 
is designed for egomotion estimation. 

We use correlation of two successive original 
images to calculate the parameters of egomotion. By 
assuming that the ground, where the robot is running, is 
planar, the robot is restricted to a planar motion. There 
may be different motion ( Tx,Ty,€I ) between these two 
images while the robot is moving. By setting different 
values of ( Tx,T,,,c) ) incrementally and calculating the 
correlation, the one with maximal correlation value is 
selected as the best matching, and its corresponding ( 
T,,T,,e ) as the estimated motion. With motion com- 
pensation, the two images will coincide rather well in 
the ground area, vhile there are differences in pixels of 
the heighted area. To improve the reliability of this 
estiniation, we introduce weighted function to depress 
the noisy effect of heighted areas. The 
Egomotion-Estimator is a modified version of the 
Weighted Correlation algorithm[8]. 

chronously beginning at the capture of two color 
images. The difference image (SDI) of 
Obstacle-Detector module is used as the negative 
weights for the correlation process of 
Egomotion-Estimator module in order to reduce the 
negative effect of large and near obstacles(heighted 
areas) to the egomotion estimation. The road region of 
the current view is predicted by fusion the last road 
description results and the egomotion parameters fkom 
Egomotion-Estimator . This knowledge is used to guide 
the selection of Region Of lnteresting (ROI) in SDI 
map . S A D  value is calculated in the ROI and is used 
to decide whether there are obvious obstacles on the 
road. If the answer is “no“ , then the Region-Fusion 
module and Motion-Analysis module do not activated, 
and the road description is made by simply fusing data 
from Road-Segmentor and Egomotion-Estimator 
modules. Otherwise the Region-Fusion module is 
activated to extract and fuse those regions on Color 
Segmented Images (CSI) and stereo difference image 
(SDI), which would be possible obstacles on the road. 
Region-based 3D estimation procedure is used to 
roughly estimate the pose and size of the obstacle by 
using the corresponding regions in the binocular gaze 
images. If the distance between robot and the object is 
less than the safe distance , then action must be taken 
to avoid collision. Otherwise, Motion-Andysis module 
is activated to estimate the motion of the object using 
the knowledge of 3D estimation from Region-Fusion 
module and the egomotion estimation from 

However , the algorithm may offer inaccurate Egomotion-Estimator module. Finally, the results of 
motion estimation if the heighted areas are overwhelm- Road-Segmentor, Region-Fusion module, 
ing, e.g., obstacles are large and near the robot.‘ There- Motion-Analysis module and Egomotion-Estimator are 
fore, we use the difference image of Obstacle-Detector integrated to make up the road description. 
module as the negative weight for the correlation pro- 
cess so that the higher the SDI value, the less important 3.2. Region-Fusion module 
the corresponding pixels for the egomotion estimation. 
The correlations under different motion settings are 
processed parallelly in PIPE system, therefore, the 
modified Egomotion-Estimator offers good motion esti- 
mation in every 3/60 second. The algorithms of 
Egomotion-Estimator and Obstacle-Detector are pro- 
cessed in parallel and pixel level integration of them is 
realized in realtime. 

- 
The fusion of data from Road-Segmenter and 

Obstacle-Detector modules can eliminate the ground 
patches from candidates of obstacle regions and derive 
3D estimation of heighted area. It is noticed that stereo 
and color are different kind of data source and they are 
basically complementary and cooperative, so we prefer 
to use qualitative integration of stereo and color to deal 
with the uncertainty problem. 

3. Purposive fusion strategy 

3.1. System overview 
(1). Fusion of SDI map and CSI map : First, a binary 
map is created by thresholding, eroding and dilating the 
color segmented image (CSI) and stereo difference 
image (SDI). Then, a region extraction and grouping 

so that the no-road region set { C,  I i=l, * . . ,m ) and 
possible obstacle region set { Si lj=l, . . . ,n ) are 

The diagram of the purposive integation frame- 
work of stereo, an motion are shown in Fig. 3. It process is employed on the binary CSI and SDI maps is based on the PDP neural network model[l]. 

The basic visual modules , i. e. Road-Segmenror, 
Obstacle-Detector and Egomotion-&timator work syn- 

1918 



obtained. Connected or nearby streaks or points are 
grouped into one region and is described by (P, A. M, 
T, W) , where P is the contour of the region, A is the 
area, M is the centroid, T is color description for CSI 
region 'and SAD value for SDI region. W is the weight 
representing the importance of the region, which is cal- 
culated from A, M and T. The region set ( C, I and ( 
Si ) are sorting respectively in a descend order of W. 

Each region Ci with its weight greater than a cer- 
tain value is checked by integrating with regions in set 
( Si ). The fused regions are classified as ground 
regions which should be eliminated, the obstacle 
regions which have been verified and are ready for 3D 
estimation, and the suspect regions which need further 
verification by focusing the attention on the suspect 
area in the color gaze images. Each verified obstacle 
region in obstacle set ( 0, ) is generated from the 
matched regions in ( Ci) and ( Si ). 

(2). Region-based 3D estimation : For the obstacle 
region set ( U ,  } of Ieft CSI image, we try to find the 
correspondence in the obstacle region set ( 0, ) of 
right CSI image using their region descriptions, eg. area 
centroid and the matched regions in ( Sk ) .  The typical 
situation is that corresponding regions are matched to 
(approximately) same SDI region(s). 

Position and size of the obstacle are estimated by 
calculating the 3D coordinates (xiyi,hi) of comspond- 
ing contour points (k l ;g l i )  in ( 01 ) and (kz; ,gZ;)  in ( 
c,. ): 

I t j  =(k 1; -kz )H /(d, +(k 1 j -kz )) 

xi =k 1 j (H-hj ) 1 Yi=gli(H-hi) 

(3) 

where d, is the offset relative to baseline b, ( ie. 
dk=bx/H), H is the height of the cameras , and hi is 
the height of point (xi yi ,zi =H -hi ). 

The 3D estimates are modified using the height 
and pose constraints: the visible surface of the obstacle 
on the road is often the front surface, so the height of 
an ob-ject is increasing from bottom to up , and the 
coordinate in Y axis do not scatter very much. 

3.3. Motion-Analysis module 
For each object detected, its motion should be 

estimated using image sequences in order to avoid col- 
lision with the robot. The 3D coordinates ( (r ,  !, .hi) I of 
the object rue obtained from Region-Fusion module, 
and the egomotion parameters (T,.T,,.8) are contuiu- 
ously given by Egomotion-Estimator module. Next 

view of the main camera is planned aclaptively by con- 
sidering the 3D estimation of pose and size of object 
and the motion of the robot, so that the main part of 
the object can be in the sight of main camera . Active 
sensing planning is realized by controlling and monitor- 
ing the motion of the robot and select the instant of 
image capture. By assuming that the object is static, the 
projection of object in next view can be estimated as 

(ki',g*) = (X , * / (H  -l?:),yi'/(H-h;)) (4) 

where 

(,q',y;.h:)=(xi cosO+yi sine+T, ,-xi sinO+yicosWTY ,hi)  

In the gaze image of next view, attention is 
focused near the estimated region ( Q,*=<ki',g,*) 1, and 
color segmentation is done in this particular region with 
the known color properties of the object from the last 
view. The observation of the object in the next view 
can be expressed as (Qi=(ki,gi)). The motion parame- 
ters of the object can be estimated using approximate 
translation motion ( M , M , ) :  

where (ki ,g, ) and (k;,g;) are the corresponding features 
of the observed and the estimated, such as centroids, 
portion of the contoun and etc. 

4. Experimental results 
All the visual modules have been implemented in 

the PIPE, a multiple pipelined image processing sys- 
tem. The realtime execution of most procedures guaran- 
tees the purposive and adaptive integration of different 
visual modules. Fig. 4 to Fig. 8 show an example of 
one detection phase. Original binocular color images 
are shown in Fig. 4(a) and (b), and their color seg- 
mented images (CSIs) created by the Road-Segmentor 
in (c) and (d), where a man and some shadows were 
classified i l ~  non-road regions. 

Fig. 5 (a) and (b) show the corresponding binocu- 
lar gaze images in which the parallelism of the road 
edges ,and the shapes of the ground figures (e.g., sha- 
dows ) were recovered. The stereo difference image 
(SDI) produced by stereo Obstacle-Detector is shown 
in Fig. S(c), and the S A D  value calculated inside the 
road region shows that there exist obvious obstacles on 
the road. Fig. S(d) shows the possible obstacle regions 
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(Sj ) extracted from SDI map. 
The results of region fusion and 3D estimation is 

shown in Fig. 6. Fusion of regions in two CSIs and the 
SDI produces a pair of corresponding obstacle regions 
which is represented in the gaze image plane in Fig. 
6(a) and (b) respectively. 3D estimation is obtained by 
matching the left and right contours of the region pair 
(Fig. 6(c)). The initial heights of the points in the left 
and right edges are shown in dash lines in Fig. 6(d), 
where the horizontal axis represents g coordinates 
which is from up to bottom in gaze image, and vettical 
axis the heights of the obstacle poinp. It cm be seen 
that the height values are not accurate due to the noise 
of region extraction. Statistics of the y coordinates 
shows that they do no scatter too much ( y 4 .  75 m, py 
=O. 15 m). Using this constraint the heights of two 
edges are modified to be smoothly decreasing top-down 
(shown in the bond lines in Fig. 6(d)). The height of 
visible part of the man is about 1. 65 in and it is 
located around (x= -0. 15m to 0. 10 m, y = 4. 75 m ). 

The motion parameters were calculated continu- 
ously by the Egomotion-Estimator while the robot was 
moving forward. The next view for Motion-Analysis 
module is planned adaptively according to the 3D esti- 
mation of the object (man) and the egomotion parame- 
ters. The image sequence between current views and 
next view is shown in Fig. 7. The egomotion between 
this time interval is shown in Fig. 8 (a), in which the 
accumulate egomotion is (T, = 0. 351 m, Ty = 2. 183 
m, 0=4' ). If we assume that the object (a man in this 
example) is static, then its projection in the next view 
is shown in black contour in Fig, 8(c). But comparing 
the actual region and the estimated one of the man in 
the next view (Fig. 8(d)), the approximate motion is 
estimated as translation (M, =O.486m ,My =1.55 lm ), 
showing that the man went away fiom the robot. 

5. Summary and discussion 
In this paper, an active fusion framework is 

presented for the visual detection of dynamic obstacles 
in unstructured outdoor road environment. Purposive 
visual modules, which avoid the difficult problems of 
traditional vision methods and aim at the particular 
problems, are proved to be efficient and effective. 
Adaptive integration and cooperation of different visual 
modules shows advantages to fulfill difficult tasks with 
low computation cost. Experimental results have been 
given to demonstrate the robustness and effectiveness 
of the methods. 

In spite of the advantage of the gaze transforma- 
t ip  and gaze image, the resolution of the gaze image 
is reduced . We are planning to modify the reprojection 

process so that the visual operations are employed to 
the original image of main camera and the rectification 
image of the second one. The difference measurement 
in the current Obstacle-Detector module is intensity of 
the images. Further wok is to be done to use color 
information as the difference measurements in order to 
cope with the color segmentation. Further work will 
also include road description and free path planning . 
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