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ABSTRACT 

In this paper we present the results of training and testing backpropagation networks for the outdoor road scene 
understanding. Both the road orientations used for vehicle heading and the road categories used for vehicle 
localization are determined by the integrated system. The main features of the work are as follows. (1) The 
comprehensive image analysis techniques are combined with the adaptive neural networks. (2) An omni-view 
image sensor is used to extract image samples. The rotation-invariance image features are obtained for the 
classification network, and the results are used to select the orientation-estimation networks. (3) The internal 
representation, especially the number of the hidden units, is analyzed. Experimental results with real scene images 
are given. 

1. Introduction 
Image analysis and pattern recognition have been application areas of a ~ i c i a l  neural networks 
(ANNs) since early days. ANN architectures for early vision, especially motion perception, have been proposed 
based on physiological as well as psychological evidences [1,2]. In a much larger project, a full-sized self-driving 
van named A L W ”  (Autonomous Land Vehicle In a Neural Net) equiped with video camera “eyes” and an 
onboard “brain” made from four workstations has been developed and built at CMU[3]. Recently neural nets have 
found potential applications in visual telecommunications[4]. 

An autonomous vehicle should have three basic functions when it moves safely in an outdoor road environment: 
road following, obstacie avoidance and self-localization. The ANN is a reasonable choice for these real world 
problems since it can learn efficiently and there are enough image data to constrain the model. Our work shares the 
similar goals with the ALVINN of CMU. However, there are three distinguish features of our approach: (1) The 
system estimates not only the headings of the vehicle but also its locations along the route. (2) Omni-directional 
view image and more global sensing data is used. In this way the system will not be troubled by the limited view 
angle of the camera which has brought lot of problems in the past work of road following. Moreover, rotation- 
invariance and rotation-dependence features are separated which greatly simplifies the heading decision and 
vehicle localization. (3) We use the pre-processed image data as the inputs of the network. As the result the number 
of the input variables is reduced. 
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2. Rotation-Invariance Images 
2.1 Omni-view image sensor 
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I (1) The vehicle heads forward (2). The vehicle rotates 

Fig. 1. Omni-view image sensor Fig. 2. (a) Omni-view images, (b). polar transform (c) orientation histogram 
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TO capture the omni-directional views of the environment, various imaging methods have been explored, including 
rotating camera, fish-eye lens, and conic mirror. We adopt a conic projection image sensor similar to the one 
described in [ 5 ] .  However we apply it to the outdoor natural scene environment. A prototype of the omni-view 
image (OW) sensor is shown in Fig. 1. A conic mirror (with a vertex angle 6=55") and a TV camera ( with a 
viewing angle /3 = 20" ) are fixed together by vertical thin bars. The OW sensor mounted on the top of the vehicle 
and the vertical axis of the sensor aligns with the rotating axis of the vehicle. The image taken by the OW sensor 
is a 360" view image rainging from about 5 meters to 20 meters on the ground around the vehicle,(Fig. 2 4 .  

Although the resolution of the OVIs is relatively low, the 360" view iniage has some distinctive advantages when 
it is used in the road scene understanding: (1) The vehicle cannot miss the road. (2) The image: is of rotation 
invariance in the sense tlhat the structure of the image is not changed if the vehicle rotates around the optical axis of 
the camera, no matter wlhat kinds of 3D structures of the environment are. (3) The vehicle can use not only the road 
information in front of itself but also the information behind and beside it. (4) The low resolution siensor image is 
suitable for the qualitative recognition (classification) of road categories. Since the lateral offsets of the vehcle on 
the road do not make great changes in the omni-view image, and the image appearances remain similar if the 
vehicle moves within the same road segment(category). 

2.2 Image transformation 

The omni-view image is preprocessed by a pipline image processing machine named PIPE ,hosted[ by a PC 486. 
Suppose the origin of the OVI coordinate system xoy is in the center of the image where the conic vertex is 
projected, we transform ithe Cartesian coordinate (x,y) into a polar coordinate (r,f3) (Fig. 2b): 

r = J x 2  +-y2 , 6 = tan-'(y/x) (1) 

where r is the radius and 0 is the orientation angle(0 - 271). For a 256x 256 original sensor image, the resolution of 
the angle in the polar image is about 1 degree. The polar transformatiion can be carried out at the: frame rate by 
PIPE. 

The 2D polar image I(r, 0) is transformed to a 1D orientation histogram u(f3) by using a projection transformation 
along a given orientation 8: 

u(6)  = El(!"@) 
r 

In this paper the rotation-independence image data is obtained by using the Fourier transform of the original data, 
other than determining the road orientation in the preprocessing stage ;as in the paper [6], which may bring errors 
to the samples. The orientation of the road is estimated hereafter. The projection transfonnation is also 
implemented by the PPI: at the frame rate. 

2.3 Rotation invariance: and dependency 

First the orientation histogram u(8) is sampled and then normalized as U = {u(n), n=O, ..., N-1) so that the mean is 
zero , and the standard deviation is 1. The normalized procedure eliminates or reduces the influence of any 
illumination changes whLen taking images at different times. If rotation angle of the vehicle is 

where4 E [- 2 7 r , O ] ,  then the resulted orientation histogram v(n) is a circular shift of u(n) by no , denoted as 

where u(n) is the orientation histogram when the vehicle heads for the front road. The Fourier transfixm of u(n) is 
v(n) = u(n -no) (4) 

1 N - l  
a (k )  = - C u(n)exp(-- J 2 * ) ,  k=O, ..., N-I  

N n=o N 

so the Fourier transform of v(n) can be expressed as 
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j2mm,k 
N 

b(k) = a(k)exp(-- ),k = OJ, .,. . N -  

By representing a(k) and b(k) in amplitude-phase forms 

we have the following results: 

(9) 

(10) 

e J W k  = eJ(Pk+kb)  

v k  = 2 m k  + p k  +k$ , k=l, ..., N-1 

where mk is a integer which indicates 2nmk additive ambiguous in the kth phase value. Equation (8) says that the 
Fourier amplitudes are invariant to the rotation of the omni-view images. Therefore they are appropriate features 
for road scene classifications. Equations (9) and (IO) give the basic relation to estimate the orientation difference 
between two omni-view images. For real scene images, the equality can not keep strictly, so the orientation 
difference should be estimated by searching the minimum value of the following distance 

for each +=+(no), no=O,I, ..., N-I. The computing complex of this procedure is Ow2). Here we give an alternative 
approach which has only 0 0  time complex. From equation (9) we can obtain 

"..' 2 
(12) eJb = e l ( A V k - A P k )  k = 1 _ _  

where A v k  = v k + l  - v k ,  Apk = p)k+l - p k  . The final orientation vector can be estimated as 

with the weight function 

In the above equations, the final orientation vector is the average of (N2-1) orientation estimates. If the errors of 
these estimates are independent random noises with zero mean and variance 0, the variance of the average error 
reduces to o/(N/2-1). Moreover, each orientation vector is weighted by the corresponding Fourier amplitude and 
divided by the amplitude difference. The reason for thts operation is that the stability of the phase shift is 
proportional to the absolute amplitude and inversely proportional to the amplitude difference of the two sequences. 
This method is used in the data collection for the networks since the behavior of the vehicle can be controlled in the 
training stage. In the real operations, the orientation is estimated using the neural networks. 

3. The Architecture 
The basic model for Road Understanding Neural Networks(RUNN) is a adaptive combination of a image 
processing module (IPM) and several fully connected two- or three-layered backpropagation networks --- a single 
Road Classification Network (RCN), a Road Orientation Network (RON) for each road category . The inputs of the 
RCN are P (<=N) rotation-invariance image data (e.g. Fourier amplitudes), and the outputs are M road categories. 
The inputs of each RON are Q (<=N) rotation-dependence image data (e.g. Fourier phases), and the outputs are L 
road orientations. The data representation of the inputs and the number of hidden units for each network is decided 
by the experiments of training and testing. 
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The RCN and RONs are built up using Nworks tool[7], while the IPM is composed of a PC486 and the pipeline 
image processing system PIPE (Fig. 3). The processing of the R U “  is as follows. (1). The omni-view image is 
captured and transformed by the IPM and the rotation-invariance Fiourier amplitude A = {a, ,k = 0, ..., N - 1) and 

rotation-dependence Fourier phases ’€’ = ( tyk , k = 0 ,..., N - 1) are obtained. (2).The rotation-invariance data A is 
used to decide the road category by the RCN. (3).The road category estimation is used to select thie correct RON, 
and the rotation-dependence data ‘f’ or the original orientation histogiram U is feed into the RON to estimate the 
road orientation. 

Advantages of the separation of the road classification and orientation estimations are intuitive. First, As the 
rotation invariance datal are used as the input of the RCN instead of the original image, the distinctiveness of the 
input units is increased, and therefore the complexity of the network is reduced. If the Fourier amplitude A is used 
as the input of the RCN, the number of the input units can be reduced (P<=N/2). Second, since a separate RON is 
used to estimate the road orientation for each road category and the classification result is used to select the right 
RON, the efficiency of the network will improved. 

C l 8 S S ( 0 - M v r - l )  orientat ion 

road boundary 

vehicle trajectory 

b * ow [clF]..m 

I m a g e  t r ans fo rm ation ? YRJ s ? “II” ‘‘Ty- 
Fig 3. The Architecture of RUNN Fig. 4. Collecting the Data 

The basic model of the processing elements(PEs) are basically determined by the summation fimction and the 
transfer function. The summation function is 

Ii = c w i i x j  +p 
j 

where i is the current PE, j is a PE that i is connected to, x, is the output of PE j, w,, is the weight of the 
connection of i and j, and p is the bias value. The transfer function is the hyperbolic tangent (Tad%), whose range 
is from -1 to +l. 

4. Collecting the Data 
4.1. Collecting the data for the RUNN 

The data for the R U “  is collected while the vehicle is moving on {he road. In the current implementation, the 
vehicle moved along the route around the Main Building at the campus of Tsinghua University. The omni-view 
image sequences are recorded by a video camera record. At the laboratory, the image sequences are played back 
and processed by the PIPE machine and the PC486 to determine the road orientation and then extract the rotation- 
invariance and rotation-dependence features along the road. 

At the beginning of each category of road segment, the vehicle heads for the front road (i.e. the road orientation 
angle is 0), and the desired outputs of the RCN, representing the road categories, are given by human supervisor. 
For the current experiments, each orientation histogram has 32 elements (N=32) and the road images are classified 
as 6 categories (M=6). They are the paved straight road surrounded by bushes and trees (denoted as ‘‘II”), three 
road junction(“T), intersection(“+”), dirt road surrounded by grass and trees(“D”), paved curved road passing 
through the garden in front of the building(“) and the square in front the Main Building(“S”). In order to cover 
most of the situations, the vehicle moves on the road along a zigzag trajectory rather than a straight one, so that 
images are captured when the vehicle heads for different possible directions and locates on the road with different 
lateral offsets (Fig. 4). The orientation difference is calculated for the successive image frames within the same 
road category using equations (13). The absolute road orientation i.s obtained by accumulating the orientation 
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differences. In order to cover most of the cases, the sampled orientation histogram is shifted by software to simulate 
dif€erent road orientations. Both the inputs to the network as well as the desired outputs are mapped into numbers. 
Fig. 5 shows one typical sample for each of the six categories. 

Categoly 
Original 
Selected 

(1) paved straight road (“11”) 

1 1  T + D  C S Total ....................... 3..........4............5..........6..........7...........!0........~.2.......!6.......... 

C 53634 51137 86752 73906 65581 75280 71064 8692350939 
1073 371 182 557 441 175 2799 
930 312 160 445 374 148 2342 

(2) T (“T”) 

lraining 
Testing 

(3) Intersection (,‘+”) 

133 133 133 134 133 133 799 e 0.30 0.25 0.20 0.20 0.15 0.15 0.12 0.10 0.14 
797 179 26 311 241 15 1569 

(4) Dirt road(“D”) ( 5 )  Curved road (“C”) 

Fig 5. The sample images of the six road categories 

(6) Square (“S”) 

4.2. Selecting and dividing the data 

As part of collecting and preparing the data, it is important to make sure that examples selected for training the 
network do not have any dubious data fields (e.g. outliners). To this end, we calculate the mean Fourier amplitude 
(FA) vector of each category, and the distance between any FA vector of this category and the mean is used to 
judge whether it is a “good’ example. For best results, the selection of training and testing set is based on the 
following rules: (1) The data is evenly divided among the various categories. (2) It is reasonably representative of 
the entire universe. (3) It is best to make the testing and training sets completely separate. The actual selection and 
division are listed in Table 1. 

5. Training and Testing 
The back-propagation learning strategy is used to training the network. In our implementation, the normalized 
cumulative delta learning rule was used for the RUNN. Examples in the training set were presented to the network 
randomly during the training to avoid the “learn one thing but forget others” problem. During the training and 
testing process, we studied the following four issues: (1) the suitable representation of input data, (2) the number 
of the hidden units, (3) the internal representation of the networks; and (4) the learning problem, for example, the 
epoch s i a ,  the coriverging speed, etc. . 

5.1. Road classification 

First the rotation invariance Fourier amplitudes are used to train the RCN. In this case the RCN has P=N/2=16 
inputs (a,, ..., aI6) and 6 outputs. Experiments indicated that 16 or 32 is the proper size of the update epoch. The 
number of the hidden units ( h ) is decided by experiments in order to find the minimum number and best number 
for the problem. Table 2 shows the training results for different number of hidden units. “C” is the number of 
training iterations when the network becomes stable. The RMS errors “e” are also listed in the table. 
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Each realization of the RCN was tested using the training set, testing set and the original raw data set. When the 
value of one (e.g. kth) of the six network outputs Y=(y,, ... , y6) is greater than 0.5 and the otheir five values are 
less than 0.5, then the input road image is classified as kth category. Table 3 lists the correct recognition rate(%) 
for the three data sets under every realization of the RCN. 

The training and testing process indicates that 4 is the minimum number of the hidden units for proper 
classification. Comparing with the learning process of the networks using rotation independent orientation 
histogram as inputs[6] , the network RCN converges much slower and the recognition rate is slightly lower. The 
reason may be that the Fourier amplitudes lose the phase information of the orientation histogram and the Fourier 
transform compacts the: energy in the first several terms. However the rotation-invariance of the Fourier amplitude 
vector makes it a good choice for the input of the RCN. 

origm 

6 7 10 12 16 category 
epochsize 
train 100. 99.9 100. 83.9 96.2 89.4 

83.5 86.5 91.6 88.9 92.5 91.6 92.9 94.4 94.2 test 99.0 100. 100. 83.1 95.7 86.7 

96.7 96.6 97.6 98.5 98.5 

77.2 79.5 86.1 84.1 85.9 85.3 87.6 89.0 88.6 original I 96.8 98.1 87.9 70.4 90.8 76.5 

5.2. Road orientation estimation 

After the road category is determined , the corresponding RON is activated for this category. We compare the 
results of the network using original orientation histogram U and the Fourier phases as inputs. The outputs of 
the RON are L(=32 ) sampled orientations. The 3 layered RONs with vary number of hidden units do not converge 
when the input is the original phase data. So we use the original orientation histogram U as the inputs of the RCN. 
Experiments indicate that the RONs with no hidden units perform best for all the road categories. Table 4 shows 
the orientation estimation accuracy, measured by percentage of errorless orientation estimation for each road 
category. The epoch size of learning process , which is different for each road category, is also presented in Table 
4. Analysis of the RONs reveals that the operations of the 2 layered orientation networks are quite similar to 
correlation functions. The estimation accuracy decreases when the input data become noisy for a certain category 
(e.g. “D”). This is just the reason of classifying the roads before orientation estimations. The orientation estimation 
could be improved by using the orientation difference of the temporal sequences ( eqn(l3)). 

6. Conclusion and Discussion 

In this paper we present the results of training and testing the backpropagation network for the outdoor road scene 
understanding. Both the road orientations used for vehicle heading and the road categories used for vehicle 
localization are determ.ined by the integrated system. Experiments wlth real scene images are proimising. Here we 
list some of our furtheir works briefly. (1). More comprehensive image, e.g. 2D image patterns, would be used to 
recognize more complex road scene. ( 2). It is straight forward to apply spatio-temporal pattern recognition (SPR) 
network for recognizing image sequence of outdoor road scene. Since the same road category will last for a period 
of time, SPR network ishould not be sensitive to the occasional image events and could give a robust recognition. 
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