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Abstract—This paper presents the results of integrating omnidi-
rectional view image analysis and a set of adaptive backpropaga-
tion networks to understand the outdoor road scene by a mobile
robot. Both the road orientations used for robot heading and
the road categories used for robot localization are determined by
the integrated system, the road understanding neural networks
(RUNN). Classification is performed before orientation estimation
so that the system can deal with road images with different
types effectively and efficiently. An omni-view image (OVI) sensor
captures images with 360 degree view around the robot in real-
time. The rotation-invariant image features are extracted by a
series of image transformations, and serve as the inputs of a
road classification network (RCN). Each road category has its
own road orientation network (RON), and the classification result
(the road category) activates the corresponding RON to estimate
the road orientation of the input image. Several design issues,
including the network model, the selection of input data, the num-
ber of the hidden units, and learning problems are studied. The
internal representations of the networks are carefully analyzed.
Experimental results with real scene images show that the method
is fast and robust.

Index Terms—Neural network, omnidirectional vision, road
image understanding, rotation invariance, visual navigation.

I. INTRODUCTION

A N AUTONOMOUS mobile robot (vehicle) should have
three basic functions in order to move safely in an

outdoor road environment: road following, obstacle avoidance,
and landmark recognition. All of them need the comprehensive
understanding of the natural road scene. In this paper, we deal
with the first and part of the last issues in an integrated manner.
A robot moves along the road and makes decisions when it
reaches some predefined points. It should obtain two kinds of
information from the visual sensors: the robot heading (or the
road orientation) and its location (in terms of road categories,
e.g., straight road, intersection or T-junction). The tasks can be
regarded as road classification and orientation identification.

Two problems prevent the existing vision algorithms and
systems from being successfully used in this real-world appli-
cation. First, most previous vision systems of mobile robots
can only view objects in front of them due to the narrow
view angle of the commonly used TV cameras. As a result,
robots may go astray or collide against objects from the
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side or behind. Second, most of the vision algorithms for
outdoor road understanding only work well in predefined
environments. However, whenever the environment changes,
they may perform improperly.

To solve the first problem, several researchers have studied
the omnidirectional vision system. Elkins and Hall [1] used a
fish eye lens for the visual navigation of an outdoor mobile
robot. The mobile robot located itself by referring to the
known targets in the environment. Yagiet al. [2] applied a
conic mirror to acquire omnidirectional image for the indoor
mobile robot, and vertical edges were used to detect obstacles
while the robot carried out a constant linear motion on flat
floor. Hong et al. [3] used a spherical mirror to capture the
omnidirectional images and studied the image-based homing
problem in the indoor environment. The one-dimensional
(1-D) horizon circle of the omnidirectional image captured
at a location was matched with those of a series of predefined
“homing” locations and guided the robot to reach the nearest
“home.” Stein and Medioni [4] used a rotating camera to
acquire the 360-degree panoramic images in the terrain. The
omnidirectional curves of the horizon were used to find “drop
off” location of the robot. Most of the above approaches
share the same characteristics that specific features in the
omnidirectional images are used to solve the given problems
in predefined environments. Omnidirectional image methods
applied to the outdoor road scenes need further investigation.

Artificial neural networks (ANN’s) are a reasonable solution
for the second problem due to the following two reasons.
First, for the real-world problem of road understanding, there
are various aspects that should be taken into consideration,
such as the weather, the light, static and dynamic objects
on the road, noise, and so on. Therefore, it is difficult for
a vision algorithm designed by a human programmer to
include all kinds of varieties. Moreover, the need of giving
thresholds for feature extraction and parameter estimation
often bothers the researchers and engineers in the image
analysis of real-world problems. Neural networks, in contrast
with being programmed, capture knowledge and skills by
training. Second, there are enough data to train the ANN’s.
While the robot moves along the road, image sequences are
captured at the rate of 25 (or 30) frames/s. For certain road
segment with similar surroundings (e.g., straight paved road
with trees and bushes on both sides), plenty of representative
sample images with similar characteristics can be obtained.

ANN architectures for early vision, especially motion per-
ception, have been proposed based on physiological as well
as psychological evidences [5], [6]. In the well-known au-
tonomous land vehicle in a neural net (ALVINN) project, a
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full-sized self-driving van equipped with video cameras and
four onboard workstations has been developed and built at
CMU [7], which employ the ANN in real world application.
ALVINN is a fully connected three-layered backpropagation
network, whose input is 32 32 subsampled road image from
a video camera and whose output is the vehicle heading (one
out of 45) required to make the van stay on the road. Nine
hidden units are used in the system and the output is updated
15 times/s. The ALVINN network is trained using a unique “on
the fly” procedure. A road image is processed as the vehicle is
driven by a person down a highway. Vehicle headings, while
steered by the human driver, provide the feedback necessary
for training. Although the ALVINN has successfully driven
the Navlab vehicle on various types of the road in various
weather conditions, the system is still not perfect. The images
taken at different viewing directions by a commonly used
TV camera are quite different from each other due to the
perspective projection and quite different viewing zones, so the
network will be complicated for complex scene. In their recent
work, Jochem and Pomerleau [8], [9] proposed the so-called
virtual camera method to handle the lane transition problem of
highway driving. The basic idea is to find the suitable image
subregion and to transform it as if it was captured by a virtual
camera from the desired viewing point. As a result the input
requirements of the ALVINN are satisfied. Problem may also
arise when the vehicle head for directions that are not included
in the training range, or when the road scenes vary drastically
during the long driving.

Recently we have proposed a method in which omnidirec-
tional imagery and the neural networks are combined in order
to reach a better solution for the aforementioned problems [10],
[11]. The omnidirectional images provide rotation-invariant
features to the neural networks, while the neural networks
provide an adaptive way for image classification and identifi-
cation. Our work, sharing the similar goals with the CMU’s
ALVINN, possess four distinctive features.

1) The system estimates not only the headings of the robot
but also (at the first stage) the road types along the route.

2) Omnidirectional view image is used. In this way the
system will not be troubled by the limited view angle of
the camera that has brought lot of problems in the past
works of road following.

3) Rotation-invariant features are extracted from rotation-
dependence omnidirectional images by a series of image
transformations. No image segmentation and explicit
feature extraction are needed.

4) Since we use the preprocessed image data as the inputs
of the network, the number of the input variables is
reduced and the networks are concise. The separation
of the process of the road classification and the heading
decision also greatly reduces the computation complex-
ity.

II. OMNI-VIEW IMAGING SENSOR

To capture the omnidirectional view (omni-view) image
of the environment, various imaging methods have been
explored, including fish eye lens [1], conic mirror [2], spherical
mirror [3], and rotating camera [4]. The time-consuming omni-
view imaging by using a rotating camera prevents it from

(a)

(b)

(c)

Fig. 1. OVI sensor. (a) Side view (supports not shown). (b) Top view (with
supports shown) (c) Image coordinates.

applying to real-time problem. In order to obtain in real-time
the omni-view of the road and objects around the mobile robot,
the rest of the methods may be used. A fish eye lens yields
a wide semispherical view around the camera. However the
image of roads and objects near the robot locates along the
circular image boundary with poor image resolution. Imagery
taken by a spherical mirror provide a similar omnidirectional
view of the environment as by a conic mirror, but a large part
of the image is occupied by the robot itself and the image
along the radius axis is not purely perspective projection but
includes a quadratic distortion. So we adopt and modify the
conic projection sensor system COPIS proposed by Yagiet al.
[2], aiming to deal with the situation of the outdoor road scene.

The geometry and configurations of the omni-view image
(OVI) sensor are shown in Fig. 1. A conic mirror (with a
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(a) (b)

Fig. 2. Prototype of the OVI sensor. (a) Side view (b) Back view.

(a)

(b) (c)

Fig. 3. OVI’s. (a) 512� 512 OVI image of a square scene (lower-left is a
car, right is a truck and upper-right is a person). (b), (c) 256� 256 images
captured when the robot just entered the T-junction and was in center of the
T-junction.

vertex angle 55 ) is fixed on the roof of the robot
by two very thin sheet metal supports whose thickness is 1
mm. The intersection line of the sheets coincides with the
vertical axis of the conic mirror. A planar mirror is placed
beneath the conic mirror with a tilt angle The camera is
mounted horizontally on the roof of the robot. The optical axis
of the camera, the vertical axis of the conic mirror, and the
normal of the planar mirror lie in the same vertical plane. The
distance between the conic mirror and the roof of the robot
must be large enough to avoid the occlusion of the field of
view by the robot. The position of the planar mirror and the
camera should be carefully adjusted to ensure the coincidence
of the optical axis of the “virtual camera” inside the planar
mirror and the vertical axis of the conic mirror. We use a
planar mirror and a horizontally placed camera instead of
a camera pointing upward for sake of easy installation and

(a)

(b) (c)

Fig. 4. Ground projections of images in Fig. 3. The robot is located in the
center of the white disc in each image.

adjustments, and the protection of the camera lens. Moreover,
the OVI after two mirror reflections gives an un-inverse view
of the scene, as opposite to the mirror image by the COPIS
system. The transparent tube used in the COPIS is replaced
by two thin sheet metal supports of the conic mirror because
we have found that the commonly available transparent tube
is not completely transparent, and the reflection by the tube
troubles image analysis, which is more severe in the outdoor
environment. The diameter of the conic mirror is 110 mm and
the nearest edge of each thin sheet is 100 mm far away from
the conic vertical axis, so each sheet occupies less than 0.6
out of the 360-’s field of view. Fig. 2 shows a prototype of
the OVI sensor used in our experiments. The camera is placed
on a titled plane (about 15) instead of a horizontal plane in
order to avoid the occlusion of the field of view by the large-
size camcorder used in our experiment. The tilt angle of the
planar mirror increases to about 60correspondingly.

The image taken by our OVI sensor represents a 360view
of the scene around the robot, ranging from about 5–30 m
on the ground. The omnidirectional image taken by a conic
mirror is equivalent to the image taken by a tilted line scan
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(a) (b)

(c) (d)

Fig. 5. Images of a paved straight road. The robot (a) headed forward, (b) rotated for an angle, (c) moved to the roadside, and (d) rotated again.
The width of the road is about 5 m.

camera rotating around a vertical axis, while its optical center
is moving along a circle around the same axis [12]. Fig. 3
shows three OVI’s of different scenes: one is captured in
the center of a square, the second is near the entry of a T-
junction, and the last is in the center of the T, respectively.
As the prototype OVI sensor is not accurately adjusted and
the conic mirror is not perfect, the sheet supports project two
thin gray lines [see Fig. 3(a)] and there are some geometric
distortions around the boundaries of the images. Fig. 4 shows
the corresponding ground projections of the OVI images in
Fig. 3. The ground projection is approximately equivalent to
the image taken by a down-looking camera high above the
robot [12]. The parallelism of the road has not been completely
recovered due to the errors stemmed from coarse system
adjustments and a rough calibration procedure.

Although the resolution of the OVI’s is relatively low
compared with images of a commonly used TV camera, the
360 view image has some distinct advantages when it is used
in the road scene understanding:

1) It covers all the information in the scene around the
robot. As a result, the robot never misses the road.

2) The image is of rotation invariance in the sense that
the structure of the image and the field of view are not
changed at all if the robot rotates around the optical axis
of the camera, no matter what kinds of three-dimensional
(3-D) structures of the environment are.

3) The low-resolution sensing image is quite fit for the
qualitative recognition (classification) of road categories.
A small amount of lateral offsets of the robot on the
road with moderate width, for example, do not bring
great changes in the OVI. Appearances in the image
remain similar if the robot moves within the same road
segment (same category) surrounded by similar scenes.
As an example, images with different rotation and lateral
offsets for a paved straight road are shown in Fig. 5.

III. ROTATION-INVARIANT FEATURES

A. Polar Transform and Projection Transform

Suppose the origin of the OVI coordinate system is in
the center of the image where the conic vertex is projected, we
transform the Cartesian coordinate image into a polar
coordinate image [Fig. 1(c)]

(1)

where is the radius and is the orientation angle
Ideally, for a 256 256 original sensor image, the resolution
of the angle in the polar image is about 1, so the dimension of
corresponding polar image is 128360

Since the center of the OVI is not in the image
center in our actual system, and the near-center zone is too
blurry to be useful, the effective range of radius is from
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(a)

(b)

(c)

(d)

Fig. 6. OVI transformations. (a)–(d) shows the polar transform images
(upper row) and the smoothed orientational projections (lower row) for the
corresponding images in Fig. 5, respectively. The orientational projections
have been smoothed for the sake of peak finding. The arrows between the
images of the upper and lower rows indicate the estimated center of the
roads, while the number beside them are the corresponding orientation angles
in degrees.

30–100. Fig. 6 shows the polar images of the OVI’s shown
in Fig. 5.

The two-dimensional (2-D) polar image is trans-
formed to a 1-D orientational projection by accumulating
(projecting) the image along radius(Fig. 6) as

(2)

In this paper, we use the Fourier transform of the original
projection to extract the rotation-independent features, instead
of determining the road orientation in the preprocessing stage

as we did in [10], which may bring errors to the samples.
The orientation of the road will be estimated after the road
category has been correctly classified.

B. Road Orientation for Data Collecting

In order to prepare the samples for training and testing
the BP networks, we should know the ground truth of the
road categories and orientations of each image at first. The
former can be easily provided by human operators since the
image sequence for a certain road category lasts for a long
time period. The later, however, should be estimated by the
computer automatically due to that road orientations change
from frame to frame (see Section V). We use a simple three-
step peak finding and tracking algorithm [12] to determine
the road orientations if the roads show intuitive peaks in the
orientational projection The polar image, orientational
projection, and the estimated road orientation for each OVI
in Fig. 5 are shown in Fig. 6. Estimated angles between the
roads in front of and behind the robot are 186, 189 , 198 , and
208 for the four images, respectively. Even if the peak finding
and tracking method is tolerant of the geometric distortions of
the images, it should be pointed out that the method partially
relies on the peak finding procedure. For some road categories,
the method may be not successful (refer to Fig. 12). So other
techniques need to be investigated.

C. Rotation-Invariant and -Dependent Features

Suppose that the orientational projection is sampled
to discrete orientations, and then normalized into

with zero mean and unity standard
deviation. The normalized procedure eliminates or at least
reduces the influence of any illumination changes of images
that are captured at different times. If rotation angle of the
robot is

(3)

where then the new orientational projection
will be the circular shift of by and can be denoted as

(4)

where is the orientational projection when the robot
heads for the front road (refer to Figs. 5 and 6). The Fourier
transform of is

(5)

and the Fourier transform of can be expressed as

(6)

By representing and in amplitude-phase forms

(7)
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(a)

(b)

(c)

(d)

Fig. 7. Each of (a)–(d) shows the normalized projection(N = 360; upper
left), the first 30 Fourier amplitudes (upper right), the first 30 Fourier phases
(lower right) and the ACF’s (lower left) of the corresponding polar images in
Fig. 6. The ACF’s are rotation-invariant, which is clearly shown in (a) and
(b). Since there are large geometric distortions between projection in (d) and
the others, the ACF’s are not identical.

we have the following results:

(8)

(9)

(10)

where is an integer that indicates additive am-
biguous in the th phase value. Equation (8) says that the
Fourier amplitudes are invariant to the rotation of the OVI’s.
Therefore, they are appropriate features for road scene clas-
sifications. Equations (9) and (10) give the basic relation to
estimate the orientation difference between two OVI’s. For
real scene images, the equality can not hold exactly. Analysis
and experimental results show that the Fourier phases are very
sensitive to the noises, especially to the geometrical distortion
of the orientational projections. Fig. 7 shows the normalized
projection the first 30 Fourier amplitudes, and
phases of the polar images in Fig. 6. It can be seen that
the Fourier amplitudes are similar for the four images, but
the phases are not stable, especially when the corresponding
amplitudes are small.

(a)

(b)

(c)

Fig. 8. Orientation differences by using the CCF in the Fourier domain. (a)
CCF between projections (a) and (b) in Fig. 7. (b) CCF between projections
(a) and (c) in Fig. 7. (c) CCF between projections (c) and (d) in Fig. 7. The
vertical lines and the number besides them indicate the position(n0) where
maximum CCF take place (The axis is zero to�360 from right to left).

D. Road Orientation Difference for Data Collecting

Actually, the orientation difference could be estimated by
searching the minimum value of the following distance:

(11)

for each The
computing complex of this procedure is This is
equivalent to find the maximum value of the circular cross-
correlation function (CCF)

(12)

which is also computation. Since we have obtained
the Fourier transform of and we hope to use them
for the estimation of orientation difference. The correlation
theorem states that the (circular) correlation of two real signal
sequence and is equal to the inverse discrete Fourier
transform (DFT) of the product of conjugation of DFT
and DFT i.e.,

(13)

The alternative approach has only -time com-
plexity. The advantage of the global correlation method is that
no feature extraction is needed, so the correlation method is
more robust to noise and more general in different cases.
Fig. 8 shows the experimental results. Compared with the
estimations in Fig. 6, the results from the CCF method are
the average of the orientation difference between the front
roads and the orientation difference between the back roads in
the two images. Therefore, the CCF method, together with the
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peak finding and tracking method, is used in the data collection
and training for the networks since the behavior of the robot
can be controlled in the training stage, and the man-machine
interaction can be involved. In real operations, the orientation
is estimated using the neural networks.

E. Another Rotation-Invariant Feature

From (12) and (13) we can obtained another rotation-
invariant sequence, the auto-correlation function (ACF) of

modulo

(14)

The ACF of is equal to the inverse Fourier transform of
the energy spectrum of

(15)

Fig. 7 also shows the ACF’s estimated by the inverse
Fourier transforms of the energy spectrums of the projections.
Compared with the Fourier amplitudes, the similarity of ACF’s
is more intuitive (refer also to Fig. 13). So the ACF can serve
as another rotation-invariant input for road classification.

IV. SYSTEM ARCHITECTURE

In order to successfully work with real-world problems,
we must deal with some design issues, including the network
model, network size, activation function, learning parameters,
and selection of training samples. We will address these issues
in this and the following sections, bearing in mind that we
face the problems in the outdoor road scene, namely the road
classification and orientation estimation.

A. RUNN Architecture

It is commonly accepted that the backpropagation learning
procedure has become the most popular method to train
multilayer feed-forward networks [13], and the so called back-
propagation (BP) networks have been widely used in character
recognition, speech recognition, vehicular control and many
more cases of applications [7], [10], [13], [14]. There are
two main schemes for using ANN’s in a pattern classification
system [15]. The first one employs an explicit feature extractor
(not necessarily a neural network). The extracted features
are passed to the input stage of the multilayer BP network.
The scheme is very flexible in incorporating a large variety
of features. However explicit features, e.g., the boundary of
the road, have proved to be very difficult to extract in the
outdoor road scene. The other scheme does not explicitly
extract features from the raw data. The feature extraction
implicitly takes place within the hidden layers of the ANN.
A nice property of this scheme is that feature extraction
and classification are integrated and trained simultaneously
to produce optimal classification results. However, it is not
clear whether the types of features that can be extracted by
this integrated architecture are the most effective for the given

pattern classification problem. Moreover, this scheme requires
a much larger network than the first one. A typical example
of the second scheme for visual navigation is the ALVINN
[7]–[9].

We take an alternative approach from the two typical
schemes. The basic model for road understanding neural
networks (RUNN) is an adaptive combination of an image
processing module (IPM) and several fully connected BP
networks—a single three-layer road classification network
(RCN), one two-layer road orientation network (RON) for each
road category. Fig. 9(a) shows the system architecture. Raw
image data is preprocessed by the IPM before feeding into
the neural nets. However, no image segmentation and explicit
feature extraction are needed. A composed macro-network,
composed of several basic BP networks, is constructed to solve
both the road classification and orientation estimation.

B. Configurations of RCN’s and RON’s

We adopt the convention that a standard-layer BP net-
work consists of an input layer, (-2) hidden layers and an
output layer of units successively connected in a feedforward
fashion. The RCN is a fully connected three-layer BP network
[Fig. 9(b)]. The inputs of the RCN are rotation-
invariant image data (i.e., Fourier amplitudes or ACF), and
the outputs are road categories. The net can be viewed
as a nonlinear input-output mapping. The connection between
the input and the hidden layers extract special features of input
patterns and the connections between the hidden and the output
layers recognize specific road categories. Therefore, the hidden
units may represent different kinds of features and the number
of units in this layer will be decided by an experiment-based
approach. A bias unit is connected to the hidden layer and the
output layer, respectively.

Each RON is a two-layer BP network without any hidden
layer [Fig. 9(c)]. Its function is virtually a correlation opera-
tion, and details of this design will be explained in Section VI.
The inputs of each RON are rotation-dependence
image data (i.e., the original orientational projection), and the
outputs are road orientations.

The basic model of the neuron unit, or the processing
element (PE) for all the networks, is shown in Fig. 9(d). The
summation function is

(16)

where stands for the current PE,stands for a PE that is
connected to, is the output of PE is the weight of the
connection of and and is the bias value. The transfer
function of each input unit is linear and that of each hidden
or output unit is the hyperbolic tangent [TanH, see Fig. 9(e)]

(17)

where gain is called the steepness factor. The TanH is quite
similar to the sigmoid transfer function. However, its range is

1 to 1, as opposed to the sigmoid range of 0–1. Because
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(a) (b)

(c) (d) (e)

Fig. 9. Architecture of the RUNN. (a) The system is composed of an OVI sensor, an IPM, an RCN, and a set of RON’s, i.e.,R1; R2; � � � ; RL: (b) RCN
for road recognition. (c) RON for road orientation. (d) The model of PE. (e) Transfer function TanH.

the output of the transfer function is used as a multiplier in the
weight update equations, a range of 0–1 could lead to a bias
to learning higher desired output (approaching 1). The TanH
gives equal weight to low- and high-end values.

C. Installation and Execution

The RCN and RON’s are set up using the Nworks tool
[15], which provides a variety of ANN architectures and the
flexibility of parameter controls. The IPM’s hardware is a
pipeline image processing machine named PIPE [16], hosted
by a PC 486 with a Nworks environment. The UserIO interface
(written in C) of the Nworks connects the image processing
module (PIPE) and the neural network environment, working
in parallel. Our PIPE system includes a video stage, an input
stage, three modular processing stages (MPS’s), an iconic-to-
symbolic mapping stage (ISMAP) and a output stage. Each
of the MPS’s includes several frame buffers, two real time
convolution processors, ALU’s, and most important, a two-
valued function (TVF) LUT that greatly facilitated the image
geometrical transformations. The polar transformation can be

carried out in an MPS at the video field rate (60 fields/s). The
projection transformation is implemented in the ISMAP at the
frame rate. The 1-D Fourier transform is carried out by the
PC486.

The RUNN works in the following three steps.

1) The OVI is captured and transformed by the IPM.
The orientational projection U and rotation-invariant
Fourier amplitudes are obtained. For comparison, the
auto-correlation function (ACF) sequence is also calcu-
lated using the inverse Fourier transform of the energy
spectrum.

2) The rotation-invariant data (A or ACF) is used to decide
the road category by the RCN.

3) The road category estimation is used to activate the
correct RON, and the rotation-dependent data (i.e., the
original orientational projection U) is fed into that se-
lected RON to estimate the road orientation.

There are two advantages of the separation of road classifi-
cation and orientation estimation. First, since rotation-invariant
data are used as the input of the RCN instead of the original
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image, the distinctiveness of the input units is increased, and
therefore the complexity of the network is reduced. If the
Fourier amplitude A is used as the input of the RCN, the
number of the input units can be reduced to
Second, since a separate RON is used to estimate the road
orientation for each road category, and the classification result
is used to select the corresponding RON, the efficiency of the
networks will be improved.

V. DATA COLLECTION FOR TRAINING AND TESTING

The data for the RUNN are collected while the robot is
moving on the road. In our experiments, the robot moves
along the route around the main building at the campus of
Tsinghua University. The OVI sequences are recorded by a
video camcorder, and then are played back for processing by
the RUNN system.

A. Collecting the Data for the RUNN

At the beginning of data collecting for each category of road
segment in a camera shot, the robot heads for the front road
(i.e., the road orientation angle is zero), and the desired output
of the RCN, representing the road category, is assigned by a
human supervisor. The peak finding and tracking algorithm
(Section III) with human interaction verifies the orientation of
the first frame for each shot. For the current experiments, the
input data of the RCN are subsampled elements of
the orientational projection. The road images are classified as
six categories paved straight road surrounded by
bushes and trees (denoted as “”), T road junction (denoted as
“T”), intersection (denoted as “”), earthy road surrounded
by grass and trees (denoted as “D”), narrow curved road
passing through the garden in front of the building (denoted
as “C”) and the square in front the main building (denoted
as “S”). In order to cover most of the situations, the robot
zigzags on the road so that captured images can cover most
possible directions and various lateral offsets (refer to Fig. 10).
For preparing data to train and test the RON, the orientation
difference is calculated for the successive image frames within
the same road category by find the maximum value of the
CCF in (13). The absolute road orientation is obtained by
accumulating the orientation differences and is modified by
the peak-finding and tracking method. In order to cover most
of the rotation (orientation) cases, the sampled orientational
projection is shifted by software to simulate all the different
road orientations. Both the inputs to the network as well as
the desired outputs are mapped into numbers. Fig. 11 shows
one typical sample image for each of the six categories.
Figs. 12 and 13 show the corresponding polar images, projec-
tions, Fourier amplitudes and phases, and the autocorrelation
functions of the images in Fig. 11.

B. Selecting and Dividing the Data

It is important to make sure that examples selected for
training the network do not have any dubious data fields (e.g.,
outliers). To this end, we calculate the mean Fourier amplitude
vector of all the samples within one category, and the distance
between any Fourier amplitude vector of each sample and the

Fig. 10. Collecting the data for training and testing.

TABLE I
SELECTING AND DIVIDING THE DATA FOR THE RCN

mean is used to judge whether it is a “good” example. Good
examples are chosen from the original raw data set and then are
divided into the training set and the testing set. For best results,
the selection of training set is based on the following rules:
i) every category has roughly same amount of examples; ii)
the training set is reasonably representative of each category;
iii) it is best to make the testing and training sets completely
separate. The actual selection and division results are listed in
Table I. The numbers listed in the table are the numbers of
real images captured by the OVI sensor, and for the training
and testing of the RCN. For the training and testing of the
RON’s, each sample has as many asrotated versions.

C. Scaling the Data

The inputs are already in number forms. The desired outputs
are set to either 0 or 1 (e.g., the output vector is “1, 0, 0, 0,
0, 0” for category “ ”). Since we use the TanH as transfer
function, we will need to scale these values between1 to 1.
Fortunately, a so-called minmax table mechanism is provided
by the Nworks tool. This preprocessing facility computes the
lows and highs of each data field corresponding to each input
unit (in the training set or both the training and testing sets)
and stores in the minmax table. The Nworks then computes the
proper scale and offset for each data field. Real-world values
are then scaled to network range (1 to 1) for presenting
to the network. Whenever a scaled result is produced, it is
descaled to real-world units.

VI. CONSTRUCTION OF THERUNN

We construct the RUNN during the training and testing
process using real image data, and study the following four
issues:

1) the suitable representation of input data;
2) the number of the hidden units;
3) the internal representation of the networks;
4) the learning problem, for example, the epoch size, the

converging speed, etc.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11. Sample images of the six road categories (a) Paved straight road (“k”). (b) T-junction (“T”). (c) Intersection (“+”). (d) Earthy road (“D”).
(e) Curved road (“C”). (f) Square (“S”).

A. Learning Rule and Schedules

The BP learning strategy is used to training the network with
M output units. The error in the output layer is computed as the
difference between the desired output
and the actual output This error

transformed (scaled) by the derivative of the transfer
function TanH, is backpropagated to thepriori layer where
it is accumulated. This backpropagated and transformed error
becomes the error term of thatpriori layer. The process of BP
continues until the first layer is reached.

In our implementation, the normalized cumulative delta
learning rule [16] is used for the RUNN. Cumulative gener-

alize delta rule attempts to alleviate the problem of structured
presentation of the training set. The basic idea is to accumulate
the weight changes over several training presentations and
make the application all at once. The update equations are

at each iteration

(18)

where is the learning coefficient (step size), is the
momentum factor, is the error vector
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Polar images and projections. Each of (a)–(e) and (f) shows the polar transform image (upper row) and the smoothed orientational projection
(lower row) for the corresponding image in Fig. 12. The arrows between the upper and lower images indicate the center of the roads. Notice that some
results of the peak-finding algorithm are not correct for images in (e) and (f).

(as described above), is the inputs to
the th PE in the current layer, is
the initial weight vector for the th PE in that layer, and

is the updated weight vector,
is the accumulated weight changes for the

th PE and is the auxiliary weight field
that is used as momentum term. Lcnt is the count of learned
samples and AUX1 (epoch size) is the accumulation period.
The RMS error (RMSE) is the stopping criterion for training
and is defined as

RMSE (19)

One of the problems with the cumulative delta rule is that
the learning coefficient depends on the epoch size AUX1.
As the size AUX1 increases, should get smaller, otherwise
the accumulated weight changes will become too large and
cause the learning to diverge. Normalized cumulative delta
rule gets around this problem by dividing the accumulated
delta weight by the square root of the epoch size before being
applied. Moreover, examples in the training set were presented
to the network randomly during the training to avoid the “learn
one thing but forget others” problem.

During the learning process, different schedules are used for
adjusting the learning rates (parametersand for the in-

TABLE II
LEARNING SCHEDULE

put, hidden and output layers, respectively (see Table II). Point
fields, e.g., the intervals between transition points increase
exponentially, and the coefficient ratio (e.g., 0.5) defines an
exponential decay of the and for the hidden and output
layer, which is sampled at subsequent transition points (e.g.,

The coefficients for the input
layer are not changed with the learning iterations.

B. Road Classification

First the rotation-invariant Fourier amplitudes are used
to train the RCN. In this case the RCN has 16 inputs
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(a) (b)

(c) (d)

(e) (f)

Fig. 13. Normalized projection(N = 360; upper left), first 30 Fourier amplitudes (upper right), first 30 Fourier phases (lower right), and ACF (lower
left) of the corresponding polar image of each category in Fig. 12. Notice the differences of Fourier amplitudes and ACF curves among the six categories,
and the similarities among the sampled images of the same category in Fig. 7.

TABLE III
LEARNING PROCESS OF THERCN

TABLE IV
RECOGNITION RATES OF THE RCN USING FOURIER

AMPLITUDES WITH VARIOUS NUMBER OF HIDDEN UNITS

and 6 outputs. Experiments indicated that 16 or
32 is the proper size of the update epoch AUX1. If the epoch
is too small (e.g., 8), noise in the data set seems to confuse the
network and the network may oscillate; on the other hand, if
the epoch size is too large (e.g., 64), proper adjustments may
be ignored and the network may not converge. The number of
the hidden units, is decided by a systematic experimental
analysis in order to find the minimum number for the proper
classification and best number for the problem. Table III
shows the training results for different number of hidden units

–16). “C” is the number of training iterations at which
the network becomes stable. The RMS errors “e” are also
listed in the table.

Each realization of the RCN was tested by using the training
set, testing set, and the original raw data set, which may
include noisy data. If the value of one (e.g.,th) of the six
network outputs is greater than 0.5 and the

TABLE V
RECOGNITION RATES OF THE RCN USING ACF

other five values are less than 0.5, then the input road image
is thought of being correctly classified and is assigned toth
category. Table IV lists the correct recognition rate (%) for the
three data sets under every realization of the RCN.

The training and testing process indicates that four is the
minimum number of the hidden units for proper classification,
and 12 is the best number. Comparing with the learning
process of the networks using rotation-independent orienta-
tional projection as inputs in [10], the network RCN converges
much slower and the recognition rate is slightly lower, and
more hidden units are needed for the best classification. The
reason may be that the Fourier amplitudes lose the phase
information of the orientational projection and the Fourier
transform compacts the energy in the first several terms so
that weights between the input and the hidden units are
not balanced. However, the rotation-invariance and fewer
components of the Fourier amplitude vector makes itself a
good choice for the input of the RCN.

We also try to use the ACF, which is calculated as the
inverse Fourier transform of the energy spectrum of the
orientational projection and is still rotation-invariant, as the
inputs of the RCN. Although this transform does not add
or lose any information, experiments indicate that this kind
of data representation may be more distinctive for the BP
network (refer to Fig. 13). The testing results using ACF
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TABLE VI
RECOGNITION RATES AND ERRORS OF THETWO-LAYERED RONS WITH INPUT U

show improvements in convergence speed (half the iteration
number as using FA) and recognition rate while the number
of hidden units is fewer (Table V). Analysis of the weight
patterns shows that the connections between the input and
the hidden layers extract more distinctive features from this
kind of input patterns, which are more suitable for road
classifications. However the improvements of the RCN with
input ACF require more computation power for inverse Fourier
transform and processing more input units.

C. Road Orientation Estimation

After the road category is determined, the corresponding
RON for this category is activated. We compare the results
of the networks using original orientational projectionand
the Fourier phases as inputs, and having different number
of units in the single hidden layers. The outputs of the RON
are discrete orientations. The three-layer RON’s
with different number of hidden units (from zero to 16) do not
converge when the input is the phase data. The reason might
be that the phase data is sensitive to noise and has additive
ambiguous. So we use the original orientational projection
as the inputs of the RCN. Experiments using zero to 16 hidden
units in a single hidden layer show that the RON’s with no
hidden units (i.e., two-layer BP network) perform best for all
the road categories. More detailed analysis will be given in the
next section. Table VI shows the correct orientation estimation
rate, measured by percentage of errorless estimation, and the
average orientation error of the rest in percentage

for each road category. The epoch size of learning
process for each road category is also presented in Table VI.
The estimation accuracy decreases and the epoch size should
be large when the input data become noisy and scattered
for a certain category (e.g., “D”). It also indicates that this
category should be further divided into several subcategories.
The robustness of orientation estimation could be improved by
integrating the RON result with the information of the orien-
tation difference of the temporal sequences calculated by (13).

D. Internal Representation

A standard -layer feed-forward networks consists of an
input layer, -2) hidden layers, and an output layer of units
successively connected in a feed-forward fashion with no
connections between units in the same layer and no feed-
back connections between layers. The classical single-layer
perceptron (two-layer BP network in our context), given two
classes of patterns, attempts to find a linear decision boundary
separating the two classes. If the two sets of patterns are

Fig. 14. Output of the hidden units(+: around 1.0; – –: around�1:0;+:
around 0.5 ;�: around�0:5; c: category; h: no. of the hidden unit).

linearly separable, the perceptron algorithm is guaranteed to
find a separating hyperplane in a finite number of steps. It is
commonly accepted that a single layer perceptron is inadequate
for situations with multiple classes and nonlinear separating
boundaries. Hence, the multilayer perceptron network (MLP)
was proposed. The MLP net can be viewed as a nonlinear
input-output mapping, and the learning process can be seen as
fitting a function to the given data set.

A neural network is widely regarded as a black box that
reveals little about its predictions. However, analysis of the
road classification network RCN with 32 input units and six
hidden units reveals some properties of the internal represen-
tation, especially the role of the hidden units. We developed
the concept in [6] to define the receptive fields of hidden units
as the distribution the connection weights from all the input
units to each hidden units and the integrating fields as the
distribution of the connection weights from all the hidden units
to each of the output units. Roughly speaking, each hidden unit
extracts some kind of features from the input units through
the corresponding receptive field, and the integrating fields
integrate several features to conclude the final recognition. It
is difficult to describe the mechanism clearly and needs further
study. Recent works [18], [19] show that rules can be extracted
from ANN’s. In our experiments we found that the most of
the outputs of the hidden units are saturated (nearor near

1; see Fig. 14). Since we use TanH as the transfer function,
it means that some kinds of features are detected (1) or not
detected ( 1). The unstable outputs (with absolute values less
than 0.5) of the hidden units means that the network is not
certain about those features.

Experiments also show that some of the input units are
not very important so that pruning them does not affect the
recognition results very much. Similarly, some of the hidden
units (features), for example the second hidden unit, are not
vital for road classification. We found that the RCN, virtually
a distributed processing system, still works in case of the
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disability or the injury of some parts of the system. The
physical meaning of the disability of the input units may be
the partial occlusion of the scene by other objects, the partial
changes of the environments, or the injury of the “eyes.”
Similarly, the disability of the hidden units means the injury
of some part of the “brain.” The disability of more important
inputs and/or hidden units (e.g., the third one) have more
negative effects to the performance of the network, but effects
are only obvious to some of the categories (e.g., “S”) .

Analysis of the RON’s weights reveals that the operations of
the two-layered orientation networks are virtually correlation
functions. The -dimension weight vector between input
units and the th output unit is nearly a circular-shift version
of the representative vector of the input for the given class of
the RON. The weight vector corresponding to each output unit
is compared with the input vector. The best match indicates
the correct orientation of the input vector. In other words, the
circular-shifted version of the orientational projection for a
given road class are almost linear separable.

The reason we use RON’s to estimate the road orientation
instead of direct correlation is that the neural networks can
learn the best templates (the representative vector) from the
training examples.

E. Practical Considerations

ANN’s are essentially massive parallel computing systems
consisting of an extremely large number of simple processors
with many interconnections. State-of-the-art computer tech-
nology such as VLSI and optics has made this possible. The
computation requirements of road scene understanding using
the RUNN in the current available serial computer consist of
the following four steps.

1) Polar transformation and projection in the PIPE.The
time complexity is where is the radius
dimension and is the orientation dimension of the
polar OVI. These two geometrical transformations can
be realized in the PIPE in real-time whenand are
80 and 360, respectively.

2) 1-D Fourier transform in PC.The computation com-
plexity is using 1-D fast Fourier transform
where is the number of the orientations. This takes
about 1.0 s in PC system (CPU 486/66M Hz) when

and takes less than 0.1 s when
3) Road classification using the RCN.The time complexity

is where and are the number of
units in the input layer, hidden layer and output layer
of the RCN, respectively. This number is 424 when

and and it takes about 0.1
s from the input to the output by using Nworks.

4) Road orientation estimation using the RON.The time
complexity is where N is both the number of
units in the input layer and output layer of the RON.
This number is 1024 when and it takes about
0.2 s from the input to the output by using Nworks.

In the current experiments of the RUNN training and
testing, the orientational projection is resampled from 360
to 32 since the software Nworks running on a PC486 is

much slow with large number of PE’s in the training process.
Correspondingly, the number of the outputs of the RON,
the estimated orientations, is sampled to 32 in our principle
experimental study. It means the angle resolution is about 11
for the 360 view, which can not meet the practical scene
requirements. This problem could be solved by using the N
360 inputs of original orientational projection to the RON’s.
Experiments with 360-sampled orientational projections shows
that the orientation difference given by the CCF method is the
average of the orientation difference between the front roads
and the orientation difference between the back roads in the
two images (Fig. 8). It means that acceptable results can be
produced by the correlation approach. Since the RON acts as
a correlation operation, the trained RON with high angular
resolution should be better than the fixed CCF method.

Since the energy of Fourier spectrum compacts to the first
few items, so the number of the inputs of the RCN, is
much smaller than Experiments show that is
enough to represent each category whenis 360 (refer to
Fig. 13), so the scale of the RCN does not increase withif
we used Fourier amplitudes for road classification. Even if the
ACF is used, the number of the input data is since ACF
is symmetric about However if we expect 1 angular
resolution for the orientation estimation, the number of both
input and output units, and should be 360. It means there
are (about 130 K if connections and weights
for each of the RON’s. In the initial stage of the operation or
the recovery stage when the robot has missed the road, the
system should search for all the 360 directions. Fortunately,
in the normal conditions of continuous road following, the
system only needs to search for a narrow range of orientations,
for example, from 16 to 16 with 1 interval. So only 33
outputs and the corresponding connections are activated, and
most of the outputs and the corresponding connections could
be disabled. Therefore even the RUNN is simulated in the
general von Neumann computer, the real-time computation
is possible for real applications if a faster PC system (i.e.,
Pentium II/266M Hz) is used.

VII. CONCLUSION AND DISCUSSION

In this paper, we present the experimental results of train-
ing and testing the BP network for the outdoor road scene
understanding using OVI’s. Both the road orientations used
for robot heading and the road categories used for robot
localization are determined through the integration of invariant
image analysis and adaptive neural networks. Several design
issues, including the network model, the selection of input
data, the number of the hidden units and the learning problems
are studied. The internal representations of the networks are
carefully analyzed, which could guide further research and
applications. Experimental results with real scene images are
promising. In order to actually apply the neural networks to
real-world autonomous robot navigation in the outdoor natural
scene environment, the following aspects are in consideration.

A. Using 2-D Image Patterns

Keeping the requirement of extracting rotation invariant
image features in mind, and at the same time reducing the
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dimension of the original 2-D OVI’s, we are investigating
the possibility of using the principal component analysis—the
Karhunen–Loeve transform (KLT) along the radius axisof
the omni-view polar image to obtain eigenfeatures for
a given

(20)

where is expected to be much smaller than the original
dimension of Preliminary experiments show that the first
three components of KL coefficients of the 1-D radius image
can properly represent the original 2-D OVI with from
zero to 127. The sampled eigenfeature sequence along the
orientation direction can be expressed as

(21)

Sequence the first component of is approx-
imately the orientational projection define in this paper. The
rotation-invariant vector sequence can be obtained by applying
the 1-D DFT to each component sequence. The computation
complexity for 1-D KLT-DFT method is only

where is the dimension of the eigenfeature, is
the number of orientations and is the radius of the polar
image.

B. Using Temporal Coherence

A spatio-temporal pattern recognition (SPR) network was
proposed by Grossberg [20], [21] to explain certain cognitive
process for recognizing sequence of events. The primary
application of SPR networks appears to be in the area of
recognizing repetitive audio signals. It is straightforward to
apply the SPR network for recognizing image sequence of
outdoor road scene. Since the same road category will last for
a period of time, SPR network should not be sensitive to the
occasional image events and could give a robust recognition.

C. Self-Organization and Unsupervised Learning

The natural extension of the work is to use the unsupervised
self-organization neural network [22]. When the robot has
enough ability to travel around the known world, we can
expect that it can also explore the unknown world by itself.

D. Multiple Sensor Fusion and Integration

Visual navigation of a mobile robot in the natural envi-
ronment is a difficult and comprehensive subject, which is
related to almost every aspects of computer vision researches.
The fundamental tasks of visual navigation are composed
of global localization, road following and obstacle detection.
Environment modeling is the foundation of visual navigation.
A task-oriented, multiscale and full-view scene modeling
strategy is proposed for visual navigation in natural envi-
ronment [12]. It combines the panoramic vision for scene
modeling, omnidirectional vision for road understanding and
binocular vision for obstacle detection into an integrated
system. This approach overcomes the drawbacks of traditional
visual navigation methods that mainly depended on local
and/or single view visual information.
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