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Fast Road Classification and Orientation Estimation
Using Omni-View Images and Neural Networks
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Abstract—This paper presents the results of integrating omnidi- side or behind. Second, most of the vision algorithms for
rectional view image analysis and a set of adaptive backpropaga- outdoor road understanding only work well in predefined

tion networks to understand the outdoor road scene by a mobile ¢\ ironments. However, whenever the environment changes,
robot. Both the road orientations used for robot heading and .
they may perform improperly.

the road categories used for robot localization are determined by ) )
the integrated system, the road understanding neural networks ~ TO solve the first problem, several researchers have studied

(RUNN). Classification is performed before orientation estimation - the omnidirectional vision system. Elkins and Hall [1] used a
so that the system can deal with road images with different fish eye lens for the visual navigation of an outdoor mobile
types effectively and efficiently. An omni-view image (OVI) sensor robot. The mobile robot located itself by referring to the

captures images with 360 degree view around the robot in real- . . .
time. The rotation-invariant image features are extracted by a KNOWn targets in the environment. Yagt al. [2] applied a

series of image transformations, and serve as the inputs of a Conic mirror to acquire omnidirectional image for the indoor
road classification network (RCN). Each road category has its mobile robot, and vertical edges were used to detect obstacles

own road orientation network (RON), and the classification result \yhile the robot carried out a constant linear motion on flat
(the road category) activates the corresponding RON to estimate . .

the road orientation of the input image. Several design issues, floor: _HO”Q et aI.. [3] used a sphgrlcal mllrror to capture the.
including the network model, the selection of input data, the num- Omnidirectional images and studied the image-based homing

ber of the hidden units, and learning problems are studied. The problem in the indoor environment. The one-dimensional
internal representations of the networks are carefully analyzed. (1-D) horizon circle of the omnidirectional image captured
Experimental results with real scene images show that the method 4t 5 |ocation was matched with those of a series of predefined
is fast and robust. N e . .
homing” locations and guided the robot to reach the nearest
Index Terms—Neural network, omnidirectional vision, road “home.” Stein and Medioni [4] used a rotating camera to

image understanding, rotation invariance, visual navigation. acquire the 360-degree panoramic images in the terrain. The
omnidirectional curves of the horizon were used to find “drop
|. INTRODUCTION off” location of the robot. Most of the above approaches

N AUTONOMOUS mobile robot (vehicle) should h(,:Weshar_e_the_samg characteristics that specific f_eatures in the
agmnidirectional images are used to solve the given problems

three basic functions in order to move safely in apn redefined environments. Omnidirectional image methods
outdoor road environment: road following, obstacle avoidance p“ d to th tdoor r d. nes need furth rigv tination
and landmark recognition. All of them need the comprehensi\"?‘g)p ed 1o the outdoor road scenes need furthe estigation.

understanding of the natural road scene. In this paper, we d rtificial neural networks (ANN'’s) are a reasonable solution

with the first and part of the last issues in an integrated mannferr the second problem due to the following two reasons.

A robot moves along the road and makes decisions when If'st, for the real-world problem of road understanding, there
£ various aspects that should be taken into consideration,

reaches some predefined points. It should obtain two kinds i ) X ) X
information from the visual sensors: the robot heading (or tﬁémh as the we_ather, the light, static and _dy.”a"_“‘_’ objects
road orientation) and its location (in terms of road categorie%r,] Fh.e road, noise, anq so on. Therefore, it is difficult for
e.g., straight road, intersection or T-junction). The tasks can Be?!SIon algorithm ‘designed by a human programmer to

regarded as road classification and orientation identificatiorf’cude all kinds of varieties. Moreover, the need of giving

Two problems prevent the existing vision algorithms an@resholds for feature extraction and parameter estimation
systems from being successfully used in this real-world appﬂIten pOtherS the researchers and engineers n the image
cation. First, most previous vision systems of mobile robofdalysis of real-world problems. Neural networks, in contrast
can only view objects in front of them due to the narroWVith being programmed, capture knowledge and skills by
view angle of the commonly used TV cameras. As a resujfaining. Second, there are enough data to train the ANN's.

robots may go astray or collide against objects from thhile the robot moves along the road, image sequences are
captured at the rate of 25 (or 30) frames/s. For certain road
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full-sized self-driving van equipped with video cameras and
four onboard workstations has been developed and built at
CMU [7], which employ the ANN in real world application.
ALVINN is a fully connected three-layered backpropagation
network, whose input is 32 32 subsampled road image from

a video camera and whose output is the vehicle heading (one
out of 45) required to make the van stay on the road. Nine

hidden units are used in the system and the output is updated “\

15 times/s. The ALVINN network is trained using a unique “on ;'-, VIRTUAL
the fly” procedure. A road image is processed as the vehicle is ROBOT i\t CAMERA
driven by a person down a highway. Vehicle headings, while

steered by the human driver, provide the feedback necessary
for training. Although the ALVINN has successfully driven
the Navlab vehicle on various types of the road in various
weather conditions, the system is still not perfect. The images
taken at different viewing directions by a commonly used
TV camera are quite different from each other due to the
perspective projection and quite different viewing zones, so the
network will be complicated for complex scene. In their recent
work, Jochem and Pomerleau [8], [9] proposed the so-called
virtual camera method to handle the lane transition problem of
highway driving. The basic idea is to find the suitable image
subregion and to transform it as if it was captured by a virtual
camera from the desired viewing point. As a result the input
requirements of the ALVINN are satisfied. Problem may also
arise when the vehicle head for directions that are not included
in the training range, or when the road scenes vary drastically
during the long driving.

Recently we have proposed a method in which omnidirec-
tional imagery and the neural networks are combined in order

to reach a better solution for the aforementioned problems [10], X.y)
[11]. The omnidirectional images provide rotation-invariant §
features to the neural networks, while the neural networks r

0

provide an adaptive way for image classification and identifi-
cation. Our work, sharing the similar goals with the CMU'’s
ALVINN, possess four distinctive features.

1) The system estimates not only the headings of the robot
but also (at the first stage) the road types along the route.

2) Omnidirectional view image is used. In this way the
system will not be troubled by the limited view angle of
the camera that has brought lot of problems in the past
works of road following.

3) Rotation-invariant features are extracted from rotation-
dependence omnidirectional images by a series of ima
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Fig. 1. OVI sensor. (a) Side view (supports not shown). (b) Top view (with
supports shown) (c) Image coordinates.

4)

: . . ; eplying to real-time problem. In order to obtain in real-time
transformations. No image segmentation and expllctln A fih d and obiect dth bile robot
feature extraction are needed. e omni-view of the road and objects around the mobile robot,

Since we use the preprocessed image data as the infifs €St Of the methods may be used. A fish eye lens yields
of the network, the number of the input variables id wide semispherical view around the camera. However the
reduced and the networks are concise. The separatiB}f9€ Of roads and objects near the robot locates along the
of the process of the road classification and the headifgcular image boundary with poor image resolution. Imagery
decision also greatly reduces the computation comple<en by a spherical mirror provide a similar omnidirectional
ity. view of the environment as by a conic mirror, but a large part

of the image is occupied by the robot itself and the image

[l. OMNI-VIEW IMAGING SENSOR along the radius axis is not purely perspective projection but

To capture the omnidirectional view (omni-view) imagencludes a quadratic distortion. So we adopt and modify the
of the environment, various imaging methods have beéanic projection sensor system COPIS proposed by ¥agi.
explored, including fish eye lens [1], conic mirror [2], sphericdR], aiming to deal with the situation of the outdoor road scene.
mirror [3], and rotating camera [4]. The time-consuming omni- The geometry and configurations of the omni-view image
view imaging by using a rotating camera prevents it frofOVI) sensor are shown in Fig. 1. A conic mirror (with a
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(b)
Fig. 2. Prototype of the OVI sensor. (a) Side view (b) Back view.

(@)

i
(b) (©

Fig. 4. Ground projections of images in Fig. 3. The robot is located in the
center of the white disc in each image.

(b) adjustments, and the protection of the camera lens. Moreover,
Fig. 3. OVI's. (a) 512x 512 OVI image of a square scene (lower-left is Zhe OVI after two mirror reflections gives an un-inverse view
car, right is a truck and upper-right is a person). (b), (c) 256@56 images of the scene, as opposite to the mirror image by the COPIS
E:I'?jztrlljéggnv.men the robot just entered the T-junction and was in center of g&‘?stem. The transparent tube used in the COPIS is replaced

by two thin sheet metal supports of the conic mirror because

vertex angleé = 55°) is fixed on the roof of the robot we have found that the commonly available transparent tube
by two very thin sheet metal supports whose thickness isislnot completely transparent, and the reflection by the tube
mm. The intersection line of the sheets coincides with theubles image analysis, which is more severe in the outdoor
vertical axis of the conic mirror. A planar mirror is placedenvironment. The diameter of the conic mirror is 110 mm and
beneath the conic mirror with a tilt angte/4. The camera is the nearest edge of each thin sheet is 100 mm far away from
mounted horizontally on the roof of the robot. The optical axithe conic vertical axis, so each sheet occupies less th&n 0.6
of the camera, the vertical axis of the conic mirror, and thaut of the 360-'s field of view. Fig. 2 shows a prototype of
normal of the planar mirror lie in the same vertical plane. Thibe OVI sensor used in our experiments. The camera is placed
distance between the conic mirror and the roof of the roboh a titled plane (about 2% instead of a horizontal plane in
must be large enough to avoid the occlusion of the field ofder to avoid the occlusion of the field of view by the large-
view by the robot. The position of the planar mirror and thsize camcorder used in our experiment. The tilt angle of the
camera should be carefully adjusted to ensure the coincideptznar mirror increases to about®orrespondingly.
of the optical axis of the “virtual camera” inside the planar The image taken by our OVI sensor represents & 368w
mirror and the vertical axis of the conic mirror. We use af the scene around the robot, ranging from about 5-30 m
planar mirror and a horizontally placed camera instead ofh the ground. The omnidirectional image taken by a conic
a camera pointing upward for sake of easy installation amdirror is equivalent to the image taken by a tilted line scan
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(b)

© (d)

Fig. 5. Images of a paved straight road. The robot (a) headed forward, (b) rotated for an angle, (c) moved to the roadside, and (d) rotated again.
The width of the road is about 5 m.

camera rotating around a vertical axis, while its optical center3) The low-resolution sensing image is quite fit for the
is moving along a circle around the same axis [12]. Fig. 3  qualitative recognition (classification) of road categories.
shows three OVI's of different scenes: one is captured in A small amount of lateral offsets of the robot on the
the center of a square, the second is near the entry of a T- road with moderate width, for example, do not bring
junction, and the last is in the center of the T, respectively.  great changes in the OVI. Appearances in the image
As the prototype OVI sensor is not accurately adjusted and remain similar if the robot moves within the same road
the conic mirror is not perfect, the sheet supports project two ~ Segment (same category) surrounded by similar scenes.
thin gray lines [see Fig. 3(a)] and there are some geometric As an example, images with different rotation and lateral
distortions around the boundaries of the images. Fig. 4 shows Offsets for a paved straight road are shown in Fig. 5.
the corresponding ground projections of the OVI images in

Fig. 3. The ground projection is approximately equivalent to [ll. ROTATION-INVARIANT FEATURES

the image taken by a down-looking camera high above the

robot [12]. The parallelism of the road has not been completely Polar Transform and Projection Transform

recovered due to the errors stemmed from coarse systengyppose the origin of the OVI coordinate systeny is in
adjustments and a rough calibration procedure. the center of the image where the conic vertex is projected, we

Although the resolution of the OVI's is relatively low transform the Cartesian coordinate imaide, ) into a polar
compared with images of a commonly used TV camera, theordinate imagér, ©) [Fig. 1(c)]

360° view image has some distinct advantages when it is used .
in the road scene understanding: r=\az2+y?, O=tan" (y/z) (1)

1) It covers all the information in the scene around th@herer is the radius and is the orientation anglé0 — 2x).
robot. As a result, the robot never misses the road. |deally, for a 256x 256 original sensor image, the resolution

2) The image is of rotation invariance in the sense thaf the angle in the polar image is about %o the dimension of
the structure of the image and the field of view are n@iorresponding polar image is 128360 (r = 0,---,127;© =
changed at all if the robot rotates around the optical axis- - -, 359). Since the center of the OVI is not in the image
of the camera, no matter what kinds of three-dimensionegénter in our actual system, and the near-center zone is too
(3-D) structures of the environment are. blurry to be useful, the effective range of radius is from
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as we did in [10], which may bring errors to the samples.
The orientation of the road will be estimated after the road
category has been correctly classified.

B. Road Orientation for Data Collecting

In order to prepare the samples for training and testing
the BP networks, we should know the ground truth of the
road categories and orientations of each image at first. The
former can be easily provided by human operators since the
image sequence for a certain road category lasts for a long
time period. The later, however, should be estimated by the
computer automatically due to that road orientations change
from frame to frame (see Section V). We use a simple three-
step peak finding and tracking algorithm [12] to determine
the road orientations if the roads show intuitive peaks in the
orientational projection:(#). The polar image, orientational
projection, and the estimated road orientation for each OVI
in Fig. 5 are shown in Fig. 6. Estimated angles between the
roads in front of and behind the robot are 18689, 198°, and
208 for the four images, respectively. Even if the peak finding
and tracking method is tolerant of the geometric distortions of
the images, it should be pointed out that the method partially
relies on the peak finding procedure. For some road categories,
the method may be not successful (refer to Fig. 12). So other
techniques need to be investigated.

(b)

C. Rotation-Invariant and -Dependent Features

Suppose that the orientational projectia(®) is sampled
to N discrete orientations, and then normalized ififo=
{uw(n),n=0,---, N — 1} with zero mean and unity standard
deviation. The normalized procedure eliminates or at least
reduces the influence of any illumination changes of images
that are captured at different times. If rotation angle of the
robot is

27T7’Lo

b= 3)

where¢ € [—-2, 0] then the new orientational projectiefin )
will be the circular shift ofu(n) by ng, and can be denoted as

. . . v(n) = u(n —no) @)
Fig. 6. OVI transformations. (a)-(d) shows the polar transform images
(upper row) and the smoothed orientational projections (lower row) for thghere u(n) is the orientational projection when the robot

corresponding images in Fig. 5, respectively. The orientational projections . .
have been smoothed for the sake of peak finding. The arrows between E@%‘E‘ds for the front road (refer to Figs. 5 and 6)' The Fourier

images of the upper and lower rows indicate the estimated center of ti@ansform Ofu(n) is
roads, while the number beside them are the corresponding orientation angles

(d)

in degrees. 1 Nl j2rkn
)= 3 wmes (-2,

30-100. Fig. 6 shows the polar images of the OVI's shown E=0.-.N_1 (5)
in Fig. 5. T

The two-dimensional (2-D) polar imagEr, ©) is trans- and the Fourier transform af(n) can be expressed as
formed to a 1-D orientational projectia{®) by accumulating j2rnok
(projecting) the image along radius(Fig. 6) as b(k) = a(k) exp <— N >7 k=0,1,---,N -1

w(®) =Y I(r,6), 6€[0,2m). @) (6)

By representing:(k) andb(k) in amplitude-phase forms
In this paper, we use the Fourier transform of the original

projection to extract the rotation-independent features, instead a(k) = ay exp(jthr),
of determining the road orientation in the preprocessing stage b(k) =brexp(jor), k=0,---,N-1 @)
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™ re Fig. 8. Orientation differences by using the CCF in the Fourier domain. (a)
CCF between projections (a) and (b) in Fig. 7. (b) CCF between projections
(a) and (c) in Fig. 7. (c) CCF between projections (c) and (d) in Fig. 7. The
vertical lines and the number besides them indicate the poditigh where

© maximum CCF take place (The axis is zero+860 from right to left).
; 7 D. Road Orientation Difference for Data Collecting
Actually, the orientation difference could be estimated by
searching the minimum value of the following distance:
N-1
) d(¢) = Z (ape’¥r — bkea(w+k¢))2 (11)
k=0

Fig. 7. Each of (a)—(d) shows the normalized projecti®n = 360, upper
left), the first 30 Fourier amplitudes (upper right), the first 30 Fourier phaségr each ¢(ng) = —(2wno/N),no = 0,1,---,N — 1. The

(lower right) and the ACF’s (lower left) of the corresponding polar images i ; : . 2 P
Fig. 6. The ACF'’s are rotation-invariant, which is clearly shown in (a) angompl’Itlng complex of this procedure @(N ) This is

(b). Since there are large geometric distortions between projection in (d) édguivalent to find the maximum value of the circular cross-

the others, the ACF’s are not identical. correlation function (CCF)
N-1
we have the following results: C(ng) = Z u(n)v((n + ng) modulo N),
n=0
by = ax, k=0,---,N—1 (8) no=0,1,---,N—-1 (12)
eI = eI lerthe) (9)  which is alsoO(N?) computation. Since we have obtained

i = 2nmp, + ox + ko, k=1,---,N—1 (10) the Fourier transform o#(n) andv(n), we hope to use them
for the estimation of orientation difference. The correlation
where my, is an integer that indicate8rm; additive am- theorem states that the (circular) correlation of two real signal

biguous in thekth phase value. Equation (8) says that thgédquence(n) anduv(n) is equal to the inverse discrete Fourier
Fourier amplitudes are invariant to the rotation of the OvIgransform (DFT) of the product of conjugation of DFilk)
Therefore, they are appropriate features for road scene cl@gd DFT b(k), i.e.,

S|f|(_:at|ons. Equr_:ltlons_ (9) a_md (10) give the basic rela}tlon to Clng) = F~H(a* (k)b(k)). (13)
estimate the orientation difference between two OVI's. For

real scene images, the equality can not hold exactly. AnalysisThe alternative approach has odl3N log, NV )-time com-

and experimental results show that the Fourier phases are valigxity. The advantage of the global correlation method is that
sensitive to the noises, especially to the geometrical distortinn feature extraction is needed, so the correlation method is
of the orientational projections. Fig. 7 shows the normalizadore robust to noise and more general in different cases.
projection (N = 360), the first 30 Fourier amplitudes, andFig. 8 shows the experimental results. Compared with the
phases of the polar images in Fig. 6. It can be seen tregtimations in Fig. 6, the results from the CCF method are
the Fourier amplitudes are similar for the four images, btihe average of the orientation difference between the front
the phases are not stable, especially when the correspondivads and the orientation difference between the back roads in
amplitudes are small. the two images. Therefore, the CCF method, together with the
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peak finding and tracking method, is used in the data collectipattern classification problem. Moreover, this scheme requires
and training for the networks since the behavior of the robatmuch larger network than the first one. A typical example
can be controlled in the training stage, and the man-machiofethe second scheme for visual navigation is the ALVINN
interaction can be involved. In real operations, the orientati¢ni]—[9].

is estimated using the neural networks. We take an alternative approach from the two typical
schemes. The basic model for road understanding neural
E. Another Rotation-Invariant Feature networks (RUNN) is an adaptive combination of an image

I}%)_rocessing module (IPM) and several fully connected BP

From (12) and (13) we can obtained another rotatio tworks—a single three-layer road classification network

invariant sequence, the auto-correlation function (ACF) ? CN), one two-layer road orientation network (RON)) for each
u(n) road category. Fig. 9(a) shows the system architecture. Raw
N-1 image data is preprocessed by the IPM before feeding into
R(no) = Z u(n)v((n 4+ no) moduloN), the neural nets. However, no image segmentation and explicit
n=0 feature extraction are needed. A composed macro-network,
ng=0,1,--- N —1. (14)  composed of several basic BP networks, is constructed to solve

. . . Poth the road classification and orientation estimation.
The ACF ofu(n) is equal to the inverse Fourier transform o

the energy spectrum ai(n) B. Configurations of RCN’s and RON’s

R(no) = F~*(a"(k)a(k)) = F~*(a}). (15)  We adopt the convention that a standafeayer BP net-
. , . . work consists of an input layerY(2) hidden layers and an
F|g. 7 also shows the ACF's estimated by the _'”V?fs&tput layer of units successively connected in a feedforward
Fourier transforms of the energy spectrums of the Projectionzshion. The RCN is a fully connected three-layer BP network
Compared with the Fourier amplitudes, the similarity of ACF\ﬁ:

. Co ) , ig. 9(b)]. The inputs of the RCN ard (<N) rotation-
IS more intuitive .(refgr aIsp to'F|g. 13). So the ACF can Senyariant image data (i.e., Fourier amplitudes or ACF), and
as another rotation-invariant input for road classification.

the outputs areld road categories. The net can be viewed

as a nonlinear input-output mapping. The connection between
IV. SYSTEM ARCHITECTURE the input and the hidden layers extract special features of input

In order to successfully work with real-world problemspatterns and the connections between the hidden and the output

we must deal with some design issues, including the netwd@¥ers recognize specific road categories. Therefore, the hidden
model, network size, activation function, learning paramete4)its may represent different kinds of features and the number
and selection of training samples. We will address these iss@d/nits in this layer will be decided by an experiment-based
in this and the following sections, bearing in mind that waPproach. A bias unit is connected to the hidden layer and the
face the problems in the outdoor road scene, namely the ré4Hput layer, respectively.

layer [Fig. 9(c)]. Its function is virtually a correlation opera-
A. RUNN Architecture tion, and details of this design will be explained in Section VI.

The inputs of each RON ar@® (<N) rotation-dependence

It is commonly accepted that the backpropagation leamifg,qe data (i.e., the original orientational projection), and the
procedure has become the most popular method to tr%‘l’}tputs arel, road orientations.

multilayer feed-forward networks [13], and the so called back- The pasic model of the neuron unit. or the processing
propagation (BP) networks have been widely used in charact®&ment (PE) for all the networks, is shown in Fig. 9(d). The
recognition, speech recognition, vehicular control and may,mmation function is
more cases of applications [7], [10], [13], [14]. There are
two main schemes for using ANN’s in a pattern classification I, = Z wi; x5 + 5 (16)
system [15]. The first one employs an explicit feature extractor j
(not necessarily a neural network). The extracted feature ) -
are passed to the input stage of the multilayer BP netwomﬁfrzzétzga?gs' f_or the current PE,‘sta‘r'\o_Is for a F.)E thatis

z; is the output of PE, w;; is the weight of the

The scheme is very flexible in incorporating a large varie ? ¢ and 4 43 is the bi | The t f
of features. However explicit features, e.g., the boundary pnnection of: andj, an ./.'S. € bias value. The transter
nction of each input unit is linear and that of each hidden

the road, have proved to be very difficult to extract in th L . .
outdoor road scene. The other scheme does not explicﬁgloUtput unit is the hyperbolic tangent [TanH, see Fig. 9(e)]

extract features from the raw data. The feature extraction ' =1 * gain,
implicitly takes place within the hidden layers of the ANN. of _ T
A nice property of this scheme is that feature extraction =
and classification are integrated and trained simultaneously ¢ te
to produce optimal classification results. However, it is nethere gain is called the steepness factor. The TanH is quite
clear whether the types of features that can be extracted dipilar to the sigmoid transfer function. However, its range is
this integrated architecture are the most effective for the giverl to +1, as opposed to the sigmoid range of 0—1. Because

(17)
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Fig. 9. Architecture of the RUNN. (a) The system is composed of an OVI sensor, an IPM, an RCN, and a set of ROWs, Re.,-- -, Ry,. (b) RCN
for road recognition. (c) RON for road orientation. (d) The model of PE. (e) Transfer function TanH.

the output of the transfer function is used as a multiplier in trearried out in an MPS at the video field rate (60 fields/s). The
weight update equations, a range of 0-1 could lead to a b@®jection transformation is implemented in the ISMAP at the
to learning higher desired output (approaching 1). The Tarfthme rate. The 1-D Fourier transform is carried out by the

gives equal weight to low- and high-end values. PC486.
The RUNN works in the following three steps.
C. Installation and Execution 1) The OVI is captured and transformed by the IPM.

The RCN and RON'’s are set up using the Nworks tool
[15], which provides a variety of ANN architectures and the
flexibility of parameter controls. The IPM’s hardware is a
pipeline image processing machine named PIPE [16], hosted
by a PC 486 with a Nworks environment. The UserlO interface
(written in C) of the Nworks connects the image processing
module (PIPE) and the neural network environment, working
in parallel. Our PIPE system includes a video stage, an inpu
stage, three modular processing stages (MPS's), an iconic-to-
symbolic mapping stage (ISMAP) and a output stage. Each
of the MPS’s includes several frame buffers, two real time

The orientational projection U and rotation-invariant

Fourier amplitudes are obtained. For comparison, the
auto-correlation function (ACF) sequence is also calcu-
lated using the inverse Fourier transform of the energy
spectrum.

2) The rotation-invariant data (A or ACF) is used to decide

the road category by the RCN.

) The road category estimation is used to activate the

correct RON, and the rotation-dependent data (i.e., the
original orientational projection U) is fed into that se-
lected RON to estimate the road orientation.

convolution processors, ALU’s, and most important, a two- There are two advantages of the separation of road classifi-
valued function (TVF) LUT that greatly facilitated the imagecation and orientation estimation. First, since rotation-invariant
geometrical transformations. The polar transformation can tata are used as the input of the RCN instead of the original
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image, the distinctiveness of the input units is increased, and ROAD BOUNDARY
therefore the complexity of the network is reduced. If the
Fourier amplitude A is used as the input of the RCN, the ROBOT TRAJECTORY

number of the input units can be reduced o< (N/2).
Second, since a separate RON is used to estimate the road
orientation for each road category, and the classification res “ A A

is used to select the corresponding RON, the efficiency of the T I
networks will be improved.

Fig. 10. Collecting the data for training and testing.
V. DATA COLLECTION FOR TRAINING AND TESTING

The data for the RUNN are collected while the robot is TABLE |

moving on the road. In our experiments, the robot moves SELECTING AND DIVIDING THE DATA FOR THE RCN

along the route around the main building at the campus of \ Category T + D C S Total

Tsinghua University. The OVI sequences are recorded by a Set\

video camcorder, and then are played back for processing by  Original set 1073371 182 557 441 175 2799

the RUNN system. Selected set 930 312 160 445 374 148 2342
Training set 135 133 133 134 133 133 799
Testing set 797 179 26 311 241 15 1569

A. Collecting the Data for the RUNN

At the beginning of data collecting for each category of road
segment in a camera shot, the robot heads for the front raadan is used to judge whether it is a “good” example. Good
(i.e., the road orientation angle is zero), and the desired outamples are chosen from the original raw data set and then are
of the RCN, representing the road category, is assigned byjigided into the training set and the testing set. For best results,
human supervisor. The peak finding and tracking algoriththe selection of training set is based on the following rules:
(Section Ill) with human interaction verifies the orientation of) every category has roughly same amount of examples; ii)
the first frame for each shot. For the current experiments, the training set is reasonably representative of each category;
input data of the RCN aréV = 32 subsampled elements ofjii) it is best to make the testing and training sets completely
the orientational projection. The road images are classified @isharate. The actual selection and division results are listed in
six categorieg M = 6): paved straight road surrounded byrable I. The numbers listed in the table are the numbers of
bushes and trees (denoted #%),'T road junction (denoted as real images captured by the OVI sensor, and for the training
“T"), intersection (denoted as+"), earthy road surrounded and testing of the RCN. For the training and testing of the
by grass and trees (denoted as “D”), narrow curved ro®DN’s, each sample has as manylasotated versions.
passing through the garden in front of the building (denoted
as “C") and the square in front the main building (denote@  scaling the Data

as “S"). In order to cover most of the situations, the robot

zigzags on the road so that captured images can cover mos1t'he inputs are already in number forms. The desired outputs

possible directions and various lateral offsets (refer to Fig. 1 '€ fet to either O O,f 1 (g.g., the output vector is 1, 0, 0, 0,
0” for category f|"). Since we use the TanH as transfer

For preparing data to train and test the RON, the orientatigh =~ . -
prep 9 ction, we will need to scale these values betweérto +1.

difference is calculated for the successive image frames wit : . .
Eg)rtunately, a so-called minmax table mechanism is provided

the same road category by find the maximum value of t : ) o

CCF in (13). The absolute road orientation is obtained the Nwo_rks tool. This preprocessing facmt.y computes.the

accumulating the orientation differences and is modified ws and highs of each data field corresponding to each input
pit (in the training set or both the training and testing sets)

the peak-finding and tracking method. In order to cover mo d'st in the mi table. The Nworks th tes th
of the rotation (orientation) cases, the sampled orientatiorfg]C SOres INthe minmax table. The Nworks then computes the

projection is shifted by software to simulate all the differerffoPer scale and offset for each data field. Real-world values

road orientations. Both the inputs to the network as well &€ then scaled to network range( to +1) for presenting

the desired outputs are mapped into numbers. Fig. 11 shog/sthe network. Whenever a scaled result is produced, it is

one typical sample image for each of the six categorie escaled to real-world units.
Figs. 12 and 13 show the corresponding polar images, projec-

tions, Fourier amplitudes and phases, and the autocorrelation VI. CONSTRUCTION OF THERUNN

functions of the images in Fig. 11. We construct the RUNN during the training and testing
process using real image data, and study the following four

B. Selecting and Dividing the Data issues:

It is important to make sure that examples selected for1l) the suitable representation of input data;
training the network do not have any dubious data fields (e.g.,2) the number of the hidden units;
outliers). To this end, we calculate the mean Fourier amplitude3) the internal representation of the networks;
vector of all the samples within one category, and the distance4) the learning problem, for example, the epoch size, the
between any Fourier amplitude vector of each sample and the converging speed, etc.
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() (b)

Fig. 11. Sample images of the six road categories (a) Paved straight fpgd () T-junction (“T"). (c) Intersection (4"). (d) Earthy road (“D”).
(e) Curved road (“C"). (f) Square (“S").

A. Learning Rule and Schedules alize delta rule attempts to alleviate the problem of structured

The BP learning strategy is used to training the network wityesentation of the training set. The basic idea is to accumulate
M output units. The error in the output layer is computed as tifae Weight changes over several training presentations and
difference between the desired outpiit = (dy, do, - - -, dps)) make the application all at once. The update equations are
and the actual outputY = (y1,%2,---,¥a)). This error mj; = mi; + Ciegzi;, at each iteration
E, transformed (scaled) by the derivative of the transfer o
function TanH, is backpropagated to tpeori layer where ;Y * ” 2%

it is accumulated. This backpropagated and transformed error a,“ i ">
T m,. =0
becomes the error term of thatiori layer. The process of BP *
if LCNT mod AUXI =0 (18)

continues until the first layer is reached.
In our implementation, the normalized cumulative deltashere C; is the learning coefficient (step sizej; is the
learning rule [16] is used for the RUNN. Cumulative genemomentum factor,EE = (e1,---,e,) IS the error vector
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Fig. 12. Polar images and projections. Each of (a)—(e) and (f) shows the polar transform image (upper row) and the smoothed orientational projection
(lower row) for the corresponding image in Fig. 12. The arrows between the upper and lower images indicate the center of the roads. Notice that some
results of the peak-finding algorithm are not correct for images in (e) and (f).

(as described above)X; = (zo0,---,2:n) IS the inputs to TABLE I
the ith PE in the current layerW,; = (wio, -, win) IS LEARNING SCHEDULE
the initial weight vector for theith PE in that layer, and Schedule for the input layer
W; = (wio,+,ui,) is the updated weight vecto; = I(AjCNTo 958)(())(())0 0 0(())00 00()000 : 0 ()0(())0 0.0000
. ... . i i ! M N N N N
(mio, -, mi,) is the accumulated weight changes for the C.  0.6000  0.0000 0.0000 0.0000  0.0000
ith RE andA; = (a0, ,a:) IS the agxmary weight field Schedule for the hidden Tayer
that is used as momentum term. Lent is the count of Iear_ned LONT 10000”30000 50000 130000310000
samples and AUX1 (epoch size) is the accumulation period. C, 03000 0.1500 00375 0.0023  0.0000
The RMS error (RMSE) is the stopping criterion for training C, 08000 04000 0.1000 0.0063 0.0000
and is defined as Schedule for the output layer
ol LCNT 10000 30000 70000 150000 310000
1 i i C, 01500 0.0750 0.0188 0.0012 0.0000
—_ 2
RMSE = 3 Z [y® — D)2, (19) C,  0.8000 04000 0.1000 0.0063 0.0000
=1

One of the problems with the cumulative delta rule is thafyt, hidden and output layers, respectively (see Table II). Point
the learning coefficient’; depends on the epoch size AUX1fie|ds, e.g., the intervals between transition points increase
As the size AUX1 increases;; should get smaller, otherwiseexponentially, and the coefficient ratio (e.g., 0.5) defines an
the accumulated weight changes will become too large ag@honential decay of thé; andC; for the hidden and output
cause the learning to diverge. Normalized cumulative deli@yer, which is sampled at subsequent transition points (e.g.,
rule gets around this problem by dividing the accumulated, — 0.5,0.5/2,0.5/4,---). The coefficients for the input
delta weight by the square root of the epoch size before beiager are not changed with the learning iterations.
applied. Moreover, examples in the training set were presented
to the network randomly during the training to avoid the “learn o
one thing but forget others” problem. B. Road Classification

During the learning process, different schedules are used foFirst the rotation-invariant Fourier amplitudes are used
adjusting the learning rates (paramet€isandCs) for the in- to train the RCN. In this case the RCN has 16 inputs
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© (d)
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Fig. 13. Normalized projectiofN = 360, upper left), first 30 Fourier amplitudes (upper right), first 30 Fourier phases (lower right), and ACF (lower
left) of the corresponding polar image of each category in Fig. 12. Notice the differences of Fourier amplitudes and ACF curves among the s#& categorie
and the similarities among the sampled images of the same category in Fig. 7.

TABLE 11l TABLE V
LEARNING PROCESS OF THERCN REcoGNITION RATES OF THE RCN Using ACF
h 0 3 4 5 6 7 0 12 16 set\ h 3 4 5 6 7 ]
53634 51137 86752 73906 65581 75280 71064 86923 50939 training 95.24 9437 9737 97.00 80.35 80.85
e 030 025 020 020 0.15 0.15 0.12 010 0.14 testing 92.22 0025 9299 9273 9038 92.67
(h: Number of the hidden units; C: Training iterations; e: RMS error) original ~ 87.17 84.71 87.17 8885 8274 84.67
TABLE IV . . .
RECOGNITION RATES OF THE RCN USING FOURIER other five values are less than 0.5, then the input road image
AMPLITUDES WITH VARIOUS NUMBER OF HIDDEN UNITS is thought of being correctly classified and is assigneétio
N T T RT category. Table IV lists the correct recognition rate (%) for the

three data sets under every realization of the RCN.

The training and testing process indicates that four is the
minimum number of the hidden units for proper classification,
and 12 is the best number. Comparing with the learning
process of the networks using rotation-independent orienta-
(a1,---,a16) and 6 outputs. Experiments indicated that 16 afonal projection as inputs in [10], the network RCN converges
32 is the proper size of the update epoch AUXL. If the epoghuch slower and the recognition rate is slightly lower, and
is too small (e.g., 8), noise in the data set seems to confuse fthere hidden units are needed for the best classification. The
network and the network may oscillate; on the other hand,réason may be that the Fourier amplitudes lose the phase
the epoch size is too large (e.g., 64), proper adjustments niaformation of the orientational projection and the Fourier
be ignored and the network may not converge. The numbertednsform compacts the energy in the first several terms so
the hidden unitsp, is decided by a systematic experimentahat weights between the input and the hidden units are
analysis in order to find the minimum number for the propetot balanced. However, the rotation-invariance and fewer
classification and best number for the problem. Table IHomponents of the Fourier amplitude vector makes itself a
shows the training results for different number of hidden unitpood choice for the input of the RCN.

(h = 0-16). “C” is the number of training iterations at which We also try to use the ACF, which is calculated as the
the network becomes stable. The RMS errors “e” are alswerse Fourier transform of the energy spectrum of the
listed in the table. orientational projection and is still rotation-invariant, as the

Each realization of the RCN was tested by using the trainimgputs of the RCN. Although this transform does not add
set, testing set, and the original raw data set, which may lose any information, experiments indicate that this kind
include noisy data. If the value of one (e.gth) of the six of data representation may be more distinctive for the BP
network outputst” = (y1,---,ys) iS greater than 0.5 and thenetwork (refer to Fig. 13). The testing results using ACF

training 86.9 91.8 963 946 96.7 96.6 97.6 98.5 985
testing 835 865 91.6 889 925 91.6 929 944 942
original 772 79.5 86.1 84.1 859 853 87.6 89.0 88.6
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TABLE VI
RECOGNITION RATES AND ERRORS OF THETWO-LAYERED RONS wWITH INPUT U
class Ii T + D C S
epoch size 4 1 i 16 8 8
training set  100. (0) 999 (0) 100.(0) 83.9(H* 96.2(2) 89.4 (1)
testing set  99.0 (0) 100. () 100.(0) 83.1(4) 95.7(2) 86.7(1)

original set  96.8 (1)  98.1(1) 87.9(5) 704(9)  90.8(4) 765 (6)

*For example 83.9 (4) means the correct rate is 83.9% while the average error for the rest is 4%.

show improvements in convergence speed (half the iteration ,

. o . Al 2 3 4 5 6
number as using FA) and recognition rate while the number
of hidden units is fewer (Table V). Analysis of the weight m =+ -+ + -
patterns shows that the connections between the input and T |- - - - +
the hidden layers extract more distinctive features from this N T
kind of input patterns, which are more suitable for road
classifications. However the improvements of the RCN with D |+ - -
input ACF require more computation power for inverse Fourier c |+ + + +
transform and processing more input units.

S F -+ + - -

C. Road Orientation Estimation Fig. 14. Output of the hidden unitst-: around 1.0 — —: around—1.0; +:

. . ~around 0.5 ;—: around—0.5; c: category; h: no. of the hidden unit).
After the road category is determined, the corresponding

RON for this category is activated. We compare the result§early separable, the perceptron algorithm is guaranteed to
of the networks using original orientational projectibhand find & separating hyperplane in a finite number of steps. It is
the Fourier phase® as inputs, and having different numbef£ommonly accepted that a single layer perceptron is inadequate
of units in the single hidden layers. The outputs of the ROfQr Situations with multiple classes and nonlinear separating
are L (= 32) discrete orientations. The three-layer RON'§oundaries. Hence, the multilayer perceptron network (MLP)
with different number of hidden units (from zero to 16) do nof/a@s proposed. The MLP net can be viewed as a nonlinear
converge when the input is the phase data. The reason miiRut-output mapping, and the learning process can be seen as
be that the phase data is sensitive to noise and has additi{#g & function to the given data set.

ambiguous. So we use the original orientational projection A neural network is widely regarded as a black box that
as the inputs of the RCN. Experiments using zero to 16 hiddesyeals little about its predictions. However, analysis of the
units in a single hidden layer show that the RON'’s with nEpad classification network RCN with 32 input units and six
hidden units (i.e., two-layer BP network) perform best for affidden units reveals some properties of the internal represen-
the road categories. More detailed analysis will be given in tf@tion, especially the role of the hidden units. We developed
next section. Table VI shows the correct orientation estimatidi€ concept in [6] to define the receptive fields of hidden units
rate, measured by percentage of errorless estimation, and@fdhe distribution the connection weights from all the input
average orientation error of the rest in percent&g@0 x u_nits_ to_each hidden uni_ts and_ the integrating fi_elds as _the
Ap/2m), for each road category. The epoch size of |eamir@str|but|on of the connection weights from all the hidden units
process for each road category is also presented in Table i@1€ach of the output units. Roughly speaking, each hidden unit
The estimation accuracy decreases and the epoch size shffacts some kind of features from the input units through
be large when the input data become noisy and scattefBg corresponding receptive field, and the integrating fields
for a certain category (e.g., “D”). It also indicates that thithtegrate several features to conclude the final recognition. It
category should be further divided into several subcategoriésdifficult to describe the mechanism clearly and needs further
The robustness of orientation estimation could be improved B{pdy- Recent works [18], [19] show that rules can be extracted
integrating the RON result with the information of the orienffom ANN's. In our experiments we found that the most of

tation difference of the temporal sequences calculated by (18)¢ outputs of the hidden units are saturated (rear near
—1; see Fig. 14). Since we use TanH as the transfer function,

it means that some kinds of features are detectel) pr not
detected £1). The unstable outputs (with absolute values less
A standardY-layer feed-forward networks consists of anhan 0.5) of the hidden units means that the network is not
input layer,(Y-2) hidden layers, and an output layer of unitsertain about those features.
successively connected in a feed-forward fashion with noExperiments also show that some of the input units are
connections between units in the same layer and no feemt very important so that pruning them does not affect the
back connections between layers. The classical single-layecognition results very much. Similarly, some of the hidden
perceptron (two-layer BP network in our context), given twanits (features), for example the second hidden unit, are not
classes of patterns, attempts to find a linear decision boundwital for road classification. We found that the RCN, virtually
separating the two classes. If the two sets of patterns aralistributed processing system, still works in case of the

D. Internal Representation
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disability or the injury of some parts of the system. Thenuch slow with large number of PE’s in the training process.
physical meaning of the disability of the input units may b€orrespondingly, the number of the outputs of the RON,
the partial occlusion of the scene by other objects, the partibk estimated orientations, is sampled to 32 in our principle
changes of the environments, or the injury of the “eyeseéxperimental study. It means the angle resolution is about 11
Similarly, the disability of the hidden units means the injurjor the 360 view, which can not meet the practical scene
of some part of the “brain.” The disability of more importantequirements. This problem could be solved by using the N
inputs and/or hidden units (e.g., the third one) have mo860 inputs of original orientational projection to the RON’s.
negative effects to the performance of the network, but effedtxperiments with 360-sampled orientational projections shows
are only obvious to some of the categories (e.g., “S”) . that the orientation difference given by the CCF method is the
Analysis of the RON’s weights reveals that the operations average of the orientation difference between the front roads
the two-layered orientation networks are virtually correlatioAnd the orientation difference between the back roads in the
functions. TheQ@-dimension weight vector betweeB input two images (Fig. 8). It means that acceptable results can be
units and thekth output unit is nearly a circulds-shift version produced by the correlation approach. Since the RON acts as
of the representative vector of the input for the given class 8fcorrelation operation, the trained RON with high angular
the RON. The weight vector corresponding to each output uf@solution should be better than the fixed CCF method.
is compared with the input vector. The best match indicatesSince the energy of Fourier spectrum compacts to the first
the correct orientation of the input vector. In other words, tHW items, so the number of the inputs of the RCR, is
circular-shifted version of the orientational projection for &uch smaller thanV. Experiments show that> = 30 is
given road class are almost linear separable. enough to represent each category wieris 360 (refer to
The reason we use RON’s to estimate the road orientatibi9- 13), so the scale of the RCN does not increase Wit
instead of direct correlation is that the neural networks ca/f used Fourier amplitudes for road classification. Even if the
learn the best templates (the representative vector) from heF is used, the number of the input dataNg2 since ACF

training examples. is symmetric aboutV/2. However if we expect 1 angular
resolution for the orientation estimation, the number of both
E. Practical Considerations input and output unitgy and L, should be 360. It means there

5 N ) .
ANN'’s are essentially massive parallel computing systerf'geN h(al?cotl;t 1:8,1]( |f]|\7 t_h 360.2. clorlnectlofn;sh and wel_ghts

consisting of an extremely large number of simple process ;Fé each o et SH n the ni Iba tshage o edot[;]era '03 Otrh

with many interconnections. State-of-the-art computer tec 1€ recovery stage when the robot has misse € road, the

nology such as VLS| and optics has made this possible T%stem should search for all the 360 directions. Fortunately,

. . . in_the normal conditions of continuous road following, the
computation requirements of road scene understanding usin 'ng, o
system only needs to search for a narrow range of orientations,

the RUNN in the current available serial computer consist of example, from—16° to 16" with 1° interval. So only 33
the following four stepg o outputs and the corresponding connections are activated, and
1) Polar transformation and projection in the PIPEhe 1,46t of the outputs and the corresponding connections could
time complexity is O(RN) where R is the radius phe gisabled. Therefore even the RUNN is simulated in the
dimension andV is the orientation dimension of thegeneral von Neumann computer, the real-time computation

polar OVI. These two geometrical transformations ca possible for real applications if a faster PC system (i.e.,
be realized in the PIPE in real-time whéhand NV are  pentium 11/266M Hz) is used.

80 and 360, respectively.

2) 1-D Fourier transform in PC.The computation com- VII. CONCLUSION AND DISCUSSION
plexity is O(N log, IV) using 1-D fast Fourier transform |, this paper, we present the experimental results of train-
where IV is the number of the orientations. This takeg,g and testing the BP network for the outdoor road scene
about 1.0 s in PC system (CPU 486/66M Hz) wheQngerstanding using OVI's. Both the road orientations used
N = 360 and takes less than 0.1 s whéh=32.  for robot heading and the road categories used for robot

3) Road classification using the RCRhe time complexity |ocalization are determined through the integration of invariant
is O(hP + hM) where P, h, and M are the number of jmage analysis and adaptive neural networks. Several design
units in the input layer, hidden layer and output layggsyes, including the network model, the selection of input
of the RCN, respectively. This number is 424 whe@ata, the number of the hidden units and the learning problems
P =16,h = 12, and M = 6 and it takes about 0.1 are studied. The internal representations of the networks are
s from the input to the output by using Nworks. carefully analyzed, which could guide further research and

4) Road orientation estimation using the ROMie time gapplications. Experimental results with real scene images are
complexity is O(N?) where N is both the number of promising. In order to actually apply the neural networks to
units in the input layer and output layer of the RONeal-world autonomous robot navigation in the outdoor natural
This number is 1024 wheV = 32 and it takes about scene environment, the following aspects are in consideration.
0.2 s from the input to the output by using Nworks.

In the current experiments of the RUNN training and Using 2-D Image Patterns

testing, the orientational projection is resampled from 360 Keeping the requirement of extracting rotation invariant
to 32 since the software Nworks running on a PC486 image features in mind, and at the same time reducing the
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dimension of the original 2-D OVI's, we are investigating ACKNOWLEDGMENT
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