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Abstract 

 
This paper describes a study on automated emotion 

recognition using four different modalities – audio, video, 
electromyography (EMG), and electroencephalography 
(EEG). We collected a dataset using the 4 modalities as 12 
human subjects expressed six different emotions or 
maintained a neutral expression. Three different aspects of 
emotion recognition were investigated: model selection, 
feature selection, and data selection. Both generative 
models (DBNs) and discriminative models (LSTMs) were 
applied to the four modalities, and from these analyses we 
conclude that LSTM is better for audio and video together 
with their corresponding sophisticated feature extractors 
(MFCC and CNN), whereas DBN is better for both EMG 
and EEG. By examining these signals at different stages 
(pre-speech, during-speech, and post-speech) of the current 
and following trials, we found that the most effective stages 
for emotion recognition from EEG occur after the emotion 
has been expressed, suggesting that the neural signals 
conveying an emotion are long-lasting. 

1. Introduction 
Emotional state can be observed or measured in many 

different ways, including through facial expressions, 
speech, and physiological signals. The idea of emotion 
recognition while speaking has been investigated by several 
researchers in applications such as human-computer 
interaction (HCI) and call center monitoring. These 
applications have also produced multiple datasets that are 
being used by researchers. The goal of the majority of 
emotion detection work has been to optimize the accuracy 
of emotion recognition, more recently by utilizing the state-
of-the-art statistical or machine learning models and the 
most relevant modalities such as visual information, vocal 
features, body movements and posture, or physiological 
signals. Several attempts have been made to combine 
multiple modalities to further improve the accuracy of the 
emotion recognition models.  

The goal of the current research was twofold. First, we 
examined the efficacy of using different modalities and 
machine learning models for emotion recognition. We 

collected a rich new dataset by recording video, audio, 
facial muscle movements (with EMG signals), and brain 
activity (with EEG signals) while subjects (actors) spoke a 
generic sentence expressing one of the seven different 
emotions. We then applied a set of state-of-the-art feature 
extractors, each suitable for a specific modality, before 
applying the most effective deep learning and statistical 
models. Various different machine learning models were 
compared to determine the best models for the different 
modalities. 

The second goal, which is the main focus of this work, 
was to compare the characteristics that are specific to each 
modality and the conditions in which each modality 
performs optimally. We analytically show that even though 
each modality might seem ineffective in some settings, if 
used correctly, their unique contributions to emotion 
recognition can be effectively applied to increase 
classification. Scientifically, we investigated, using the 
same dataset, how much spatial-temporal visual facial 
expression, auditory speech information, facial muscle 
movements, and neural activity can classify a person’s 
emotion and in what stages of speech and expression that 
each modality best captures the emotion.  To assess how 
neural activity may be used to detect emotions, we used 
EEG to record brain activity while subjects expressed 
different emotions. Thus, the overall goal of this work was 
not to improve existing emotion recognition methods, but 
to thoroughly study different emotional state detecting 
modalities and to determine the optimal stages of 
information in the signals, the best categories of feature 
extractors, and the most appropriate machine learning 
models that would best fit each modality.  

As a summary, the contributions of the work include: (1) 
A new multimodal dataset was collected with four different 
modalities: audio, video, EMG, and EEG. (2) A thorough 
comparison was performed across these four modalities to 
determine how to optimize the data, which features and 
models are most informative, and to offer insights into the 
effectiveness of each modality to classify emotions. (3) 
Most notably, we study at what stage of each modality, 
especially for the neural activity measured with EEG 
signals, emotion information prevails and for how long they 
remain reliable. 

The remainder of the paper is organized as follows. 
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Section 2 is a review of related literature. We will introduce 
and explain the models used for emotion recognition in this 
work in Section 3. The process of data collection and 
preprocessing is explained in Section 4. Section 5 covers 
the steps of data preparation and our analyses. We conclude 
our work and discuss our future direction in Section 6.  

2. Related work 
There is a large body of work on emotion recognition 

using different modalities separately and in combination 
with one another. Three categories of datasets are usually 
used in analyzing emotions: acted emotions, natural 
spontaneous emotions, and elicited emotions [1]. Although 
different actors may understand and interpret instructions 
differently and may actually experience the emotions to 
different degrees, data obtained from acted emotions are 
less ambiguous because actors express the exact emotions 
they were instructed to act.  

In contrast, spontaneous speech and emotions can, for 
example, be collected from call center data [2] or through 
human-computer interaction [3]. These emotions are more 
diversified and are often difficult to classify given that the 
data must be mapped onto a limited number of classes. 
Even if it is evident that emotion research should ideally 
target natural databases, acted databases are more 
systematically controlled and useful, especially neural 
activity will be measured. Furthermore, there is a direct 
correspondence between the collected data and their labels, 
generally resulting in higher accuracy in emotion 
recognition [4, 5]. We therefore use acted emotions for data 
collection in this work. 

Generally, facial expressions and speech have been the 
two most used modalities for emotion recognition, although 
other modalities have also been investigated. In the area of 
unimodal emotion recognition, there have been many 
studies using a variety of different, but single modalities. 
Facial expressions [6, 7], vocal features [4, 8], body 
movements and postures [9, 10], physiological signals such 
as skin temperature, skin conductance, blood volume pulse 
and heart rate [11, 12], and EMG (facial muscle activity) 
[13, 14] have been used as inputs during these attempts. 
Several approaches have also examined the integration of 
information from facial expressions, speech, and body 
gestures [1, 15]. 

Another approach that has more recently been explored 
for emotion recognition is through EEG, which measures 
electrical activity in the brain [16, 17, 18]. EEG is 
especially interesting due to its capability to detect internal 
emotional states, as opposed to the other modalities 
mentioned above. Some previous studies ([16, 17, 18]) have 
incorporated the use of EEG in attempts to determine the 
inner emotional (affective) state. Here, we recorded EEG 
signals during different expressed emotional states and 
compared them with other modalities.  

3. Baseline and deep learning approaches  
Different machine learning techniques have been used in 

emotion recognition. One approach, which has been 
successful, is to use deep learning approaches because they 
have the ability to learn the most relevant features with 
respect to the task. Two deep learning models were used in 
this work to classify the emotions: Long-Short Term 
Memory (LSTM) [19] and Deep Belief Network (DBN) 
[20]. Although both models are characterized as being 
‘deep’, as they use layers of latent or hidden variables, they 
have very different characteristics.  

   The architecture of deep learning techniques can be 
categorized into two different categories: generative and 
discriminative. The deep models that fall into each category 
often share the properties of the other category, making it 
difficult to draw a clear boundary between the two groups 
of models. Generative models are very useful for both 
classification and regression tasks, especially when data 
preparation and pre-training of the parameters of the model 
are necessary. These models have the ability to initialize the 
search through the parameter space in an area that 
potentially contains the solution. On the other hand, the 
architecture of the discriminative models has direct ability 
to classify the data [21]. In other words, the former models 
describe the distribution of data, whereas the latter models 
describe the distribution of targets conditioned on data [22]. 
In the current work, we investigated how the two different 
models handle the data from the four different modalities 
and draw some useful conclusions about the effectiveness 
of these models for different types of datasets. 

Example of discriminative architectures include 
Convolutional Neural Network (CNN) [23], Recurrent 
Neural Network (RNN) [24], and LSTM. RNN is an 
artificial neural network model that has feedback 
connections in the hidden units, therefore RNN can store 
historical information like memory and can solve context-
dependent tasks with the architecture. However, the 
vanishing and explosion gradient problem makes learning 
of RNN difficult. LSTM is a special type of RNN 
architecture to overcome the vanishing gradient problem of 
RNN. Thus, we choose LSTM for both its memory and its 
performance. 

The DBN on the other hand, is an example of generative 
models. DBNs are probabilistic graphical models that are 
built by stacking up Restricted Boltzmann Machines 
(RBMs). An RBM is an undirected graphical model that 
consists of one layer of visible and one layer of hidden 
Bernoulli units. There are no connections between units of 
the same layer, but the two layers are fully connected to 
each other. Connections between layers are bidirectional 
and symmetric, so the weights are also shared between both 
layers. The effect of pre-training is studied in detail by 
Erhan et al. [25]. They explain that the reason why pre-
trained DBNs work much better than traditional neural 
networks is that pre-training initializes the parameters of the 
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DBN in a more desirable area of parameter space where a 
better local optimum can be found. Therefore, pre-training 
introduces a bias towards configurations of the parameters 
that the supervised learning phase can explore, which is 
adopted in this paper. 

For applications that involve speech, i-vector features 
[26] have been state of the art. For the sake of completeness 
of comparisons, in addition to DBN and LSTM, we will use 
this method for classification of voice signals. i-vectors 
convey the speaker characteristic among other information 
such as transmission channel, acoustic environment or 
phonetic content of the speech segment. The i-vector 
extraction could be seen as a probabilistic compression 
process that reduces the dimensionality of speech-session 
super-vectors according to a linear-Gaussian model.  

4. Data collection and feature extraction 
The data we used to train and test the models was 

gathered from 12 human subjects (5 female and 7 male 
individuals), who participated after informed consent. The 
study was approved by the Institutional Review Board of 
the City University of New York. In general, having a 
relatively small number of subjects is typical in 
neuroscience studies due to the difficulty in data collection. 
For this study, each testing session lasted approximately 
two hours and it took approximately four months to recruit 
the actor subjects and collect all of the data. We included a 
large number of repetitions/instances in the dataset to 
minimize variability. For each of the 7 emotions, 50 trials 
were expressed for a total of 350 emotion instances per 
subject.  We will release the dataset following publication 
of the paper for research purposes. 

The subjects either had acting experience or were acting 
students because the emotions needed to be expressed as 
naturally and believably as possible. Every five seconds, 
one of the seven standard emotion labels were presented on 
a monitor placed 57 cm in front of the subject. The emotions 
were happiness, sadness, anger, surprise, fear, disgust, and 
neutral. Each time an emotion label appeared on the screen, 
the subject uttered the sentence “The sky is green” while 
trying to mimic the facial expression and experience the 
emotion associated with that label. This sentence was 
chosen because of its neutral content, thereby minimizing 
interference with any emotion that the subject was trying to 
experience and express. During the utterance, the subject’s 
face and voice were video recorded and EMG and EEG 
signals were acquired from their facial muscles and scalp 
using gold plated surface electrodes that were connected to 
Grass amplifiers. The camera and microphone were placed 
in front of the subject to ensure an adequate quality of the 
acquired video and voice. 

Each emotion label was displayed for 4 seconds, and a 
one-second break was given between every emotion. 
Overall, the longest it took the subjects to speak the 

sentence was approximately 2.5 seconds. The entire 
interval, therefore, was not completely filled with the 
utterance of the sentence and started and/or ended with 
periods of silence. 

The entire session was divided into five sub-sessions. 
Each sub-session contained 10 repetitions of each emotion 
in random order. That is, we used a 7x10 total number of 
emotions per sub-session, or 5x7x10=350 emotions overall, 
for each of the 12 subjects. Between every two consecutive 
sub-sessions, the subject took an optional break that was 
arbitrarily long.  

The video was used for extracting two types of 
information: 1) a clip of audio signals with a 44.1kHz 
sampling rate, and 2) an image sequence of 24 screenshots 
per sentence. The 24 images were evenly sampled from the 
2.5 seconds (on average) during speech, such that this 
window included most of the emotional expression. Only 
24 frames were used for computational efficiency, 
following the work presented in [6]. A few samples of the 
screenshots are shown in Figure 1. 

 

 
Figure 1: Screenshots from videos of four subjects 

 

The audio was recorded using a laptop’s microphone 
with the 44.1kHz sampling rate. We divided the audio into 
20ms intervals with 10ms offsets and then extracted MFCC 
features from each interval separately. The features 
extracted from the intervals formed a sequence that embed 
both frequency and time information.  

The EMG data consisted of six channels captured 
through six surface electrodes with a 5kHz sampling rate 
that was then downsampled to 1 kHz. Six muscles were 
chosen: the depressor anguli oris, zygomaticus major, 
levator labii superior alaeque nasi, levator labii superioris, 
procerus, and occipitofrontalis (Figure 2, top). These are the 
major muscles that are involved during facial expressions 
and their equivalent facial Action Units (AUs) have often 
been used in the literature for facial expression recognition 
[6, 27]. A band-pass Butterworth filter (20 to 450 Hz) was 
applied to the EMG data to eliminate noise and meaningless 
parts of the signals. 

EEG data were acquired using the same sampling 
frequency as the EMG data but through 8 surface electrodes 
placed onto the scalp: F3, Fz, F4, Cz, P3, Pz, P4, and O2 
(Figure 2, bottom). The preprocessing steps applied to the 
EEG data were similar to the EMG data but with different 
bandpass filter settings (0.1 to 30 Hz). Figure 3 shows 
samples of EMG and EEG signals collected from one of the 
subjects while acting “fear”. 

All electrode impedances were below 10 kΩ at the start 
of the experiment. After filtering the EEG and EMG 
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signals, wavelet transforms (WT) [28] were applied for 
feature extraction.  

   

 
Figure 2: the position of the sensors on the face (top) and scalp 
(bottom). 

 
Figure 3: The EMG/EEG Data (Subject: 03, Emotion: Fear, EMG 
channels 1 and 2, and EEG channels 7 and 8) 

 

To extract emotions from the images, we first cropped 
the face area on each frame using the open source DLib 
C++ Library [29]. A few cropped frames from a “happy” 
sequence are shown in Figure 4. Each cropped image was 
186x186 pixels, which was enlarged to 224x224 pixels to 
fit into the feature extraction method. Note that transparent 
tape was used on the faces to minimize occlusion of the 
facial features. 
 

 
Figure 4: Face cropping from the video using DLib 

 

Using pre-trained models for visual feature extraction 
has become a very common and promising approach among 
researchers [6, 30]. As explained earlier, we have a 
sequence of 24 images per utterance of the sentence. The 
features were extracted by applying an integrated deep 
learning model with the pre-trained VGG-16 network [31], 

followed by the ROI networks, as proposed by Li et al., 
2017 [6]. The reason we chose the VGG+ROI model rather 
than more sophisticated models, such as ResNet [32], is that 
the VGG model is sophisticated enough for our data and 
VGG+ROI has been a further trained model using more 
than 10K facial expressions [6].  

More specifically, the ROI nets were designed to ensure 
that regions of interest on the faces were learned 
independently; each sub-region (out of 20 in this case) had 
a local CNN - an ROI net, whose convolutional filters were 
only trained for the corresponding region for facial 
expression recognition. The structure of the VGG+ROI 
model is illustrated in Figure 5. The VGG net’s output from 
fully connected layer 7 (fc7) provided the input to the ROI 
net. Each feature vector was obtained from the output of the 
last layer and had 2048 elements. 

 
Figure 5: Framework of the CNN model we used: VGG Net 
followed by the ROI Nets [6] 

5. Hypotheses and analytical experiments 
The goal was both to classify the emotion using each of 

the four modalities and to explore the unique characteristics 
of the EEG modality. Although the former is a very 
important topic, it has been explored by many researchers, 
therefore the latter will be the focus of most of the analyses 
in this section.  

Before describing the details of each analysis, we first 
describe the experimental setup for the models. The 
following configurations were shared among all the 
analyses unless otherwise is explicitly stated. 

Even though LSTM and DBN are both deep models and 
are able to extract hidden information from the data and 
represent it as learned features, each has different strengths. 
Since each modality captured in our data is a sequence of 
information over time, we used the LSTM, which is very 
powerful in dealing with temporal information. On the 
other hand, DBN is a very powerful feature extractor when 
pre-trained properly. For this reason, either LSTM or DBN 
is more suitable depending on the task. These models have 
also been combined and used as a hybrid to provide 
strengths from both models [21]. In this paper, we will 
focus on the comparison of LSTM and DBN for all 
modalities instead of integration.  

5.1. Data preparation 
In this section, we provide details and parameter 

configurations for the different feature extraction methods.  
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Images: For each of the 24 images, we extract a feature 
vector size of 2048. When using LSTM, these feature 
vectors were provided to the model as a sequence and an 
output was reported after the entire sequence. Given a 
sequence of n frames Xi =	{X1, ..., Xn}, the target prediction 
is the class of the last frame Xn (Figure 6). When the length 
of the sequence of images was shorter than what the model 
expects, we padded the sequence with a blank black frame. 
In such cases, the sequence of images was padded at the 
beginning with black images and the features extracted 
from those frames were also appended to the rest of the 
feature vectors. On the other hand, when the data was 
provided to the DBN, all feature vectors from the sequence 
were concatenated and used as a single input vector to the 
model. Note that each image frame has been turned into a 
feature vector of a length of 2048 using the ROI Net, so the 
input dimension to DBN from 24 frames is 24*2048. 
 

 
Figure 6: Feature extraction via CNN (in our case the VGG+ROI 
model) and prediction using LSTM (Bellantonio, 2016) 
 

Voice: For extraction of MFCC features, we used a 
Hamming window of size 20ms with a 10ms offset, 
following the work presented by Wang, 2014 [33]. From 
each 20ms interval, we then extracted MFCC features and 
chose the 20 most significant coefficients. The input to the 
LSTM model was a sequence of such feature vectors. For 
the DBN, we concatenated these feature vectors into a 
single vector. Again, if the sequence was shorter than 
expected, we padded it with a frame of silence. The MFCC 
features extracted from these silent frames were used 
normally as part of the sequence. We also used the i-vector 
features along with PLDA, for which we set up the input 
sequence similar to LSTM. For the extraction of the i-vector 
features and classification of the feature vectors using 
PLDA, we utilized the MSR Identity Toolbox [34]. 
 

EMG and EEG: Since both EMG and EEG are non-
stationary signals that share similar characteristics with the 
voice signal, we used the same settings for processing them. 
The same 20ms window with 10ms offset was used to cut 
the signal of each of the six channels into a sequence of 
intervals. WT was applied to each interval channel by 
channel and the 20 most significant coefficients were kept 

as a feature vector for each channel. To apply LSTM to 
EMG, the WT coefficients of all 6 channels from a single 
interval were concatenated and used as the feature vector 
associated with that time step. Similarly, the WT 
coefficients of all 8 channels of EEG were concatenated to 
form the feature vector of each time step. The input feature 
vector to DBN on the other hand, was formed by 
concatenating the WT coefficients of the entire sequence. 
In the case of EEG, shorter sequences were padded with 
WT coefficients corresponding to Electrocerebral inactivity 
(ECI) or electrocerebral silence (ECS), which is defined as 
no EEG activity over 2µV [35]. In this case we padded the 
sequence with zeros to represent the inactivity of the area, 
both for EMG and EEG, and extracted WT features from 
the padded sequence. 

5.2. Artifact removal 
EEG recordings are usually corrupted by spurious 

extracerebral artifacts, which should be rejected or 
corrected. Since manual screening of human EEGs is 
inherently error prone and might induce experimenter bias, 
we used an automatic artifact detection method. The impact 
of muscular activity on the EEG signal can be evaluated 
using artifact removal approaches [36, 37, 38]. To remove 
the effect of EMG from EEG signals, we used the AAR 
plug-in for EEGLAB [38]. We compared the results on 
unfiltered EEG data with filtered EEG to assess the 
effectiveness of this removal procedure, but once the 
artifact removal procedure was established, we preformed 
the remaining analyses with filtered EEG signals only. 

5.3. Initial experiments 
We began our analyses by comparing different 

modalities for emotion recognition using DBN and LSTM 
as the classification methods. First, we randomly chose 
60% of the samples for training and the remaining 40% for 
test. For each modality, the entire 5-second sequence was 
provided to the model and the model classified the sequence 
into one of the seven emotions. For image sequences, a 
more accurate term to use would be facial expressions 
instead of emotions, but since our goal was to label the data 
based on the underlying emotion, we simply refer to the 
task as emotion recognition/classification.  

The process of randomly dividing the data into 60% 
training and 40% test samples was repeated 100 times and 
the results averaged over all repetitions. The goal was to 
classify the emotions, not the subjects. The training and test 
datasets do not overlap from an emotion classification 
perspective, but they did contain samples from the same 
subject expressing the same emotion on different trials. 
Emotions were quite different across sub-sessions, and the 
order of the emotions that were being expressed was 
randomized and different across the sub-sessions to 
minimize information leak. Table 1 summarizes the means 
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and standard deviations of the results, showing that LSTM 
(the discriminative model) classifies better on voice and 
images, whereas DBN (the generative model) performs 
better for EMG and EEG data. The results also show that 
facial images discriminate between emotions the best, 
followed by voice, EMG, and then EEG activity.  

 
Table 1: Comparison of emotion recognition accuracies on all 
modalities using DBN and LSTM. Results are reported as “mean 
(standard deviation)”.  

 DBN LSTM 
EEG before artifact removal 40.4% (8.5) 35% (10.9) 
EEG after artifact removal 51.7% (7.3) 37.6% (8.2) 
EMG 62.8% (8.7) 58.4% (9.1) 
Images 71% (7.7) 81.1% (5) 
Voice 64.5% (7.9) 70.3% (5.7) 

 

As also seen in Table 1, the EEG signals result in higher 
accuracies after artifact rejection. However, the classifier, 
especially in the case of EEG signals, are not as accurate 
and accuracy variations across the trials was high. 
Nonetheless, classification performance was still much 
greater than would be expected by chance (14.3%). The 
confusion matrix in Table 2 shows the class assignments for 
classifying EEG after artifact removal with DBN (top) vs. 
images with LSTM (bottom). As can be seen in this table, 
the model gets easily confused between different classes, 
especially for Sad (as Disgust, Fear and Anger for around 
10%) and Fear (as Disgust and Anger for around 10%). We 
also note that approximately 10% of each of the non-
Neutral emotions (except Surprise) was classified as 
Neutral, which indicates that the overall emotion 
information provided through the EEG signals was not very 
strong. The images still do a much better job in classifying 
the emotions; only Sad was classified as Neutral for more 
than 10% of the classifications. Note that the goal of Table 
2 is to clarify the cause of the low accuracy achieved by 
DBN on EEG rather than showing the best cases from Table 
1. In other words, the table shows which emotions are 
confused by the model and cause the low accuracy in those 
classes using the EEG. 
 
Table 2: Confusion matrix of DBN classifier on filtered EEG (top) 
and the LSTM classifier on image sequences (bottom) 

 Neutral Sad Happy Disgust Fear Surprise Anger 

Neutral 49.8% 10.3% 0.7% 4.7% 5.1% 19.7% 10.0% 
69.2% 15.1% 0.1% 0.2% 9.9% 0.1% 5.4% 

Sad 14.9% 45.6% 0.1% 9.6% 9.7% 5.5% 14.3% 
15.1% 79% 0.2% 0.3% 5.4% 0.4% 0.1% 

Happy 9.6% 5.6% 59.8% 0.1% 5.1% 10.3% 9.9% 
0.1% 0.2% 88.1% 0.3% 0.2% 10.3% 0.2% 

Disgust 10.3% 5.2% 0.0% 70.6% 4.9% 0.3% 9.7% 
5.1% 0.2% 0.4% 84.1% 0.3% 0.4% 10% 

Fear 10.2% 5.1% 5.0% 9.9% 48.6% 5.4% 14.9% 
0.2% 5% 0.3% 0.4% 78.9% 15% 0.1% 

Surprise 0.2% 0.5% 10.3% 4.5% 10.1% 64.6% 9.8% 
0.3% 0.1% 5.3% 0.1% 10.3% 83.9% 0% 

Anger 9.7% 4.9% 0.5% 5.3% 4.9% 4.7% 69.3% 
5.3% 5.1% 0.2% 10.3% 0% 0.2% 78.9% 

 

The fact that several of the examples were classified 
incorrectly led us to manually investigate the data and to 
check if classes with different labels have similarities. We 
suspected that the emotions do not exactly start or end in 
the dedicated time slot and might leak into the previous or 
following slots. For EEG signals, this can particularly be 
more explainable due to the possible delay in emotional 
state taking effect in the brain [18], and in more general 
visual classification tasks [17]. In the next analysis, we 
verify this hypothesis by analyzing different parts of each 
sequence separately. 

5.4. Dividing data into more meaningful segments 
The easiest way to divide each sequence into sensible 

intervals is by using the beginning and end of the voice 
signal to mark the sequence. Since we previously found that 
the maximum length of the utterance was approximately 2.5 
seconds, but the data was sampled for 5 seconds after the 
emotion word onset, we segmented each sample into three 
parts: pre-speech, during-speech, and post-speech, using 
the beginning and end of the voice signal as the timestamps 
to divide the sample. “During-speech” starts as soon as the 
subject begins uttering the sentence and ends once the 
utterance ends. This is done by automated speech 
segmentation. We standardized the length of all “during-
speech” segments (by resampling) across the entire dataset 
so that they were all 2.5 secs. We considered the 1.25 sec 
segment before the beginning of speech as “pre-speech”. 
The 1.25 sec segment beginning at the end of voice was 
considered as “post-speech”.  

Using this segmentation method, we performed a series 
of analyses where we compared every segment against all 
the three segments from the same emotion across trials. We 
repeated this analysis for all modalities, using both DBN 
and LSTM, for a total of 9x2 results for each modality 
(except speech). Since i-vector is often used in speech 
signal classification, we compared the classifiers with the i-
vector approach as well. In addition, since we used voice to 
split the segments, pre-speech and post-speech segments 
are not meaningful for voice-based emotion recognition; 
thus, we did not include those combinations in our analyses.  

Note that, for instance, when we test post-speech against 
pre-speech, we randomly chose 60% of the pre-speech 
segments as the training set and the post-speech segment 
part of the remaining 40% as the test set. This process was 
repeated 100 times and the accuracies were averaged. On 
the other hand, for post-speech against post-speech (or any 
other matching pair), we randomly chose 60% of the 
segments for training and the remaining 40% for test, as 
usual.  

Furthermore, since the length of the pre- and post-speech 
sequences are shorter than during-speech, we padded the 
shorter sequences to the length of the longer sequence in 
order to test and train on a non-matching pair (e.g. pre- 
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against during-speech).  
Tables 3 through 6 demonstrate the accuracies of DBN 

(left) and LSTM (right) classifiers on all modalities, per 
segment. We compared every segment of an emotion 
against other segments (including the segment itself) of the 
same emotion to verify whether the emotion consistently 
continued over the entire 5 second interval. The following 
observations should be noted from these results: 
(1) The overall observation based on Tables 3 through 6 is 
that even though all segments that are compared belong to 
the same emotion, they do not exactly match if the pair is 
from non-matching segments, i.e. any combination other 
than pre-vs-pre, during-vs-during and post-vs-post-speech. 
This observation holds for all modalities. In particular, the 
large difference between the pre- and post-speech 
convinced us that the data is contaminated before and after 
the speech, either by random emotions/facial expressions, 
or hypothetically by the leakage of each emotion into the 
following, which result in mismatch between the pre and 
post- speech segments. 
(2) Another important observation is that post-vs-post-
speech comparison is always more accurate than pre-vs-
pre-speech for all modalities. By manually examining the 
data, we realized that the subjects tend to keep the same 
facial expression after the 5-sec duration of the trial, until 
they fully read and process the label displayed on the next 
trial and then switch to the next emotion. This makes the 
post-speech segment more stable compared to the pre-
speech segment. We suspect that the same phenomenon 
happens with EEG signals, similar to the observation made 
in [17, 18]. To further test this hypothesis, we performed a 
more thorough analysis. The results will be reported in 
Sections 5.5 and 5.6. 
(3) Interestingly, the post-speech segment is more accurate 
in classifying the emotions compared to during-speech for 
EEG signals. This suggests that the EEG response begins 
taking place slightly later than other modalities and stays 
active longer or that the movement contaminated EEG 
signals are not as reliable. We will investigate this more 
thoroughly later in this section.    
(4) For EMG and EEG signals, DBN often does a better job 
in classifying the emotions correctly. In contrast, LSTM 
performs better on image sequences. This observation holds 
for results on both the whole segment and sub-segments. 
This can be due to generative vs. discriminative capabilities 
of the models. EEG and EMG require a model with a strong 
ability to extract hidden information within the data. 
However, the image sequences and voice signals can 
readily be classified using LSTM, especially since these 
images and sounds have already been processed by another 
deep model, the CNN+ROI platform and MFCC feature 
extractor, respectively, and valuable information has 
already been extracted from the data before the LSTM was 
applied. 

Since Tables 3 through 5 have several entries, full segment results 
from Table 1 are added to those tables for easy comparison.  
 
Table 3: Classification of emotions based on EEG signals with 
DBN and LSTM. Results are reported as “mean (standard 
deviation)” in all following tables. 

 DBN LSTM 
Pre-vs-pre 61.3% (6.4) 55.1% (6.1) 
Pre-vs-during 34.7% (5.3) 36.5% (5.3) 
Pre-vs-post 36.2% (4.2) 32.3% (4.4) 
During-vs-pre 31.3% (2.9) 34.1% (4.2) 
During-vs-during 66.4% (2.7) 62.7% (3.5) 
During-vs-post 56.1% (3.1) 49.1% (3.6) 
Post-vs-pre 42% (4.8) 39.2% (7.1) 
Post-vs-during 38.9% (4.1) 36% (7.2) 
Post-vs-post 70.9% (6) 66.5% (3.1) 
Full segment 51.7% (7.3) 37.6% (8.2) 

 
Table 4: Classification of emotions based on EMG signals 

 DBN LSTM 
Pre-vs-pre 67.9% (4.5) 64.3% (3.4) 
Pre-vs-during 54.3% (5) 49.2% (5.9) 
Pre-vs-post 41.2% (6.2) 35.7% (4.8) 
During-vs-pre 33.8% (5.1) 37.9% (6.1) 
During-vs-during 77.6% (3.6) 71.5% (2.5) 
During-vs-post 66.2% (4.1) 61.5% (3.3) 
Post-vs-pre 47.8% (2.8) 43.4% (4.8) 
Post-vs-during 53.8% (5.3) 56.9% (6.1) 
Post-vs-post 72.1% (4.9) 68.1% (5.7) 
Full segment 62.8% (8.7) 58.4% (9.1) 

 
Table 5: Classification of emotions based on image sequences 

 DBN LSTM 
Pre-vs-pre 59.1% (6.1) 66.5% (3.3) 
Pre-vs-during 52.2% (8.2) 60.8% (7.1) 
Pre-vs-post 44.6% (4.5) 55.2% (5.7) 
During-vs-pre 35.7% (4.2) 37.9% (5.6) 
During-vs-during 80.1% (5.7) 89.9% (2.7) 
During-vs-post 51.7% (6.1) 60.1% (5.2) 
Post-vs-pre 44.9% (3.3) 57.1% (4.4) 
Post-vs-during 41.1% (3.9) 56.5% (3.6) 
Post-vs-post 63.2% (7.3) 73.6% (3.6) 
Full segment 71% (7.7) 81.1% (5) 

 
Table 6: Classification of emotions based on voice signals (during 
speech) 

 DBN LSTM i-vector 
During-vs-during 67.7% (7.2) 88.7% (3.3) 76.6% (5.1) 

5.5. Unclear boundaries between consecutive 
emotions 

Based on the previous observations (inaccuracy of the 
comparisons between pairs of different segments), we 
trained the models on post-speech from the current 
expression and tested if this emotion can be detected in the 
pre-speech signal from the next expression. We applied 
LSTM on image sequences, and DBN on the EEG and 
EMG signals, since they have shown the best performance 
on those modalities respectively (Table 7). As can be seen 
in Table 7, the post-speech of the current emotion signals 
and the pre-speech of the following emotion signals match 
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with a surprisingly high accuracy for the EEG data (62.8%). 
We repeated this same analysis except we switched the 
training and test sets, i.e., we trained the models on pre-
speech from the next emotion (using the current emotion as 
the label) and tested them on the post-speech from current 
emotion. The accuracy in this case was 66.1%, which is 
very close to (actually higher than) the accuracy in our 
previous analysis (62.8%). This is not the case for EMG or 
images, with fairly low classification performance.  
 
Table 7: The aftereffect of EEG compared to EMG and Images 

 EEG EMG Images 
Accuracy 62.8 (5.1) 34.1 (3.3) 41.2 (5.9) 

5.6. Continuation of emotions through time 
The EEG aftereffects can be controlled for by giving the 

subjects enough time to recover from the emotions, as in 
Palazzo et al., 2017 [16] and Spampinato et al., 2016 [17]. 
In those studies, the subjects were shown a sequence of 
images for 25 secs while EEG activity was recorded, 
followed by a 10 sec pause where a black image was shown. 
The black image was used to “flush” any high-level class 
information present from the previous one. We, on the other 
hand, analyzed the data in order to check the length of this 
aftereffect by comparing each emotion trial with the next 
five trials. We performed this analysis for EEG, as well as 
EMG and images, to show, unlike other modalities, this 
effect is unique to EEG signals (Table 8). Similar to the 
previous analysis, we applied LSTM on image sequences 
and DBN on EEG and EMG. 
 
Table 8: The possible aftereffect of EEG propagated through the 
next five trials  
 Next 2nd next 3rd next 4th next 5th next 
Accuracy 
with EEG 62.8 (5.1) 43.4 (7.3) 31.2 (9.1) 33.9 (5.9) 21.2 (6.7) 

Accuracy 
with EMG 34.1 (3.3) 22.8 (7.2) 19.5 (5.1) 26.9 (10.8) 21.8 (8.1) 

Accuracy 
with Images 41.2 (5.9) 25.3 (6.2) 26 (4.8) 23.9 (7.7) 18.9 (5.1) 

 
Table 8 shows that the emotion aftereffect is the strongest 
into the next trial (within 10 seconds), and still has some 
effect in the n+2 trial (within 15 seconds), but gradually 
decreases after the n+3 trial. Table 8 also shows that unlike 
EEG, the EMG and image modalities reflecting a given 
emotion do not significantly propagate through the next 
trials and their effect only lasts through the pre-speech 
segment of the emotion immediately following the current 
one. Again, we do not track the effect of audio in this case, 
since the audio signal does not appear throughout the pre-
and post-speech segments. 
We should note that the pure random chance of each 
emotion is around 14.3% (1 in 7 emotions) and the results 
we obtained for EMG and images after the immediate next 
trial are close to chance and only slightly higher. Note that 
the probability of the same emotion appearing in the 

sequence in each of the next 2nd, 3rd, … trials was also 
14.3%. 

6. Conclusions 
This paper presents a thorough study on emotion 

recognition using four different modalities – audio, video, 
EMG and EEG. To this end, we collected a dataset with 7 
emotion categories, the 4 modalities, and 12 human actor 
subjects. Both generative models (DBNs) and 
discriminative models (LSTMs) were applied to the four 
modalities. Our analyses indicate that LSTM is better for 
classifying information from audio and video, each with 
their own sophisticated feature extractors (MFCC and 
CNN), whereas DBN is better for classifying information 
from both EMG and EEG. Importantly, we examined how 
different stages of a trial (pre-speech, during-speech and 
post-speech) and the following trials affect EEG signals and 
found long-lasting neural signatures that represent different 
emotional states. 

We believe that the dataset collected in this work can be 
valuable for affective computing and facial analysis, thus it 
will be made publically available following publication. 
This paper has focused on the comparison of the four 
modalities, especially the two bio-sensing datasets (EEG 
and EMG) versus the commonly used visual and audio data. 
In particular, one of the most interesting aspects of the 
analyses is the observation that neural signals conveying an 
emotion are long-lasting and can be detected by the use of 
machine learning. This kind of temporal effect has been 
noted in the psychology and neuroscience literature, but this 
seems to be the first time it has been exploited by the 
computer vision community in such a significant capacity.  

In the future, we would like to further this research in 
three directions. The first is to integrate the modalities to 
optimize performance by using the results of this 
comparison study. This can be done either at the feature 
level (early fusion) or the classification level (late fusion). 
In particular, since LSTM works better on audio and video, 
and DBN works better on EEG and EMG, it would be 
interesting to develop models combining generative and 
discriminative neural networks as in [21], but for emotion 
recognition. We would like to implement and compare both 
approaches. The second is to compare machine algorithms 
and humans in reading the emotion from audio and video, 
drawing more insights into emotion recognition. The third 
is to investigate how sensing processing can be improved 
(especially on EEG and EMG) to obtain more robust signals 
for reading emotions. 
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