Pitch and Roll Camera Orientation From a Single 2D Image
Using Convolutional Neural Networks

Greg Olmschenk*, Hao Tang®, Zhigang Zhut

*IThe Graduate Center of the City University of New York
tBorough of Manhattan Community College - CUNY
1The City College of New York - CUNY

*golmschenk @ gradcenter.cuny.edu, ' htang @ bmcc.cuny.edu, *zhu@cs.ccny.cuny.edu

Abstract—In this paper, we propose using convolutional
neural networks (CNNs) to automatically determine the pitch
and roll of a camera using a single, scene agnostic, 2D image.
We compared a linear regressor, a two-layer neural network,
and two CNNs. We show the CNNs produce high levels of
accuracy in estimating the ground truth orientations which can
be used in various computer vision tasks where calculating
the camera orientation is necessary or useful. By utilizing
accelerometer data in an existing image dataset, we were able
to provide the large camera orientation ground truth dataset
needed to train such a network with approximately correct
values. The trained network is then fine-tuned to smaller
datasets with exact camera orientation labels. Additionally,
the network is fine-tuned to a dataset with different intrinsic
camera parameters to demonstrate the transferability of the
network.

I. INTRODUCTION

For many tasks in computer vision, the knowledge of
the orientation of a camera can be an invaluable resource.
In particular, the pitch and roll of a camera can provide
much detail on the perspective of the image being viewed.
One example would be a hand-held camera (e.g. a mobile
phone camera) being carried by a visually impaired user.
The angles of the camera would be useful for providing
orientation information for object detection and navigation
to the user.

Another example would be a camera overlooking a scene.
One can imagine surveillance footage or news camera
footage looking over a crowded gathering. Knowing the
perspective helps to determine the size of objects in the scene
and therefore detect, count, or otherwise label information.

Unfortunately, this information is not typically automat-
ically known. In many cases an accelerometer may be
onboard to determine the orientation, but many cameras
have no such device, movement of the device can throw the
orientation estimation off (such as while a robot or person
is in motion), and images obtained secondhand (such as
from a Google search) commonly do not have this meta
data available. These values can be manually determined
by annotating an image, but doing so requires extensive
human effort and such annotations are prone to errors. The
method given here works to provide a reliable measure of

the orientation without any information beyond the image
itself.

‘We have trained convolutional neural networks (CNNSs) to
recognize patterns in an image and automatically determine
the roll and pitch of the camera from this information. The
networks were trained on an extensive dataset of more than
400,000 images. The average predictive accuracy of the
CNNs is within a few degrees of the true value. However,
the roll and pitch in the data is not uniformly distributed.
Specifically, due to the method of data collection, most of
the roll and pitch values cluster around the same values, so
simply knowing the average absolute error has little meaning
because a different distribution would produce a different
error. Thus, we use other metrics which we discuss in more
detail in Section V-A. The initial networks were trained
using an approximate dataset from an onboard accelerometer.
This was used to train a network from scratch which was
then fine-tuned to preform well on exactly annotated data.
This network was also fine-tuned to a camera with different
intrinsic parameters to test the ability of it being transfered
to other cameras then the initially trained camera.

The main points that make this work unique are the
following:

« Provides a mostly scene agnostic orientation detection
method. (No explicit requirements are set on the image,
though the vast majority of the examples are indoor
images)

« Does not require knowledge of intrinsic camera param-
eters.

o Introduces a method to provide the large datasets
needed for training a deep network for orienta-
tion, where others have discussed the lack of such
datasets [2].

o Allows for real-time estimation through CNN inference.

« Proposes a novel use of CNNs in determining camera
parameters.

o Tests the transferability of orientation estimation net-
works to different cameras.

The rest of the paper is organized as follows. First, we
discuss what is new in our approach compared to the state-

of-the-art in Section II. We discuss the methodology in
Section III. Section IV describes the data in detail and how
it was prepared. In Section V we describe the specifics of
each network trained and tested. Detailed results are given
in Section V-A. In Section VI we discuss the meaning and
value of the results. Finally, we conclude in Section VIIL.

II. RELATED WORK

Fischer, Dosovitskiy, and Brox [3] proposed a convolu-
tional neural network with the goal of estimating 2D image
rotations from a single image. Their work consisted of arti-
ficially rotating images from image classification databases
and building networks which could classify and regress to
the rotation. Our work goes beyond this previous research
in two main aspects. Firstly, our network works to take into
account multiple orientations (both pitch and roll) rather
than a single orientation change. Secondly, the rotations
in the work by Fischer, Dosovitskiy, and Brox are 2D
transformations. Due to the nature of their datasets, they did
not have an option to apply 3D transformations. Our dataset
provides 3D rotations that create perspective distortions and
come from images taken in actual rotated camera poses.
This provides a greater challenge which our network was
able to solve. Our work also introduces a method to provide
the large datasets needed for training a deep network for
orientation. From this, the model can be fine-tuned on small
manually annotated datasets.

Kendall, Grimes, and Cipolla [5] determine full 6-DOF
camera localization using a CNN, however, their approach
requires the network is trained on the same scene it is being
tested on. Specifically, their network matches the position
of the camera relative to a known database of images
containing the same structure as is in the new test data.
Our network is designed to determine orientation with no
previous knowledge of the scene and without any database
to match against.

Borji [2] used a CNN to detect a vanishing point. This
work could possibly be a precursor to estimating orientation,
but in their work they were only detecting a single vanishing
point within the image frame, and only had success with
images on roads. They discussed the need for more data to
provide a more general approach, which is a problem we
address in our work.

Other non-CNN methods to determine the orientation of
the camera require extra information or specific scene types.
For example, localization by structure from motion [14]
requires multiple images at the very least where our method
requires only a single image. Most methods which detect
the world coordinate system vanishing points (from which
the orientation can be calculated) require a scene with
many conspicuous parallel lines running to these vanishing
points [13] or make other assumptions about the content of
the image. Our method makes no explicit assumptions about
the scene.

>

FC (2)
A
FC (20)
i
FC (100)

A
Conv
256 10x10 2(S) (D)
A
Conv
256 3x3 2(S) (D)
A
Conv
128 3x3 2(S) (D)
A
Conv
64 3x3 2(S)
A
Conv
32 3x3 2(S)
A
Conv
16 3x3 2(S)

Figure 1: A diagram of our first CNN. "NxN" displays the
kernel size of the layer. This value is preceded by the number
of filters being output. Each convolution in this network
is applied with a stride of 2. Layers with dropout during
training display a "(D)".

III. METHODOLOGY

Our first convolutional network consisted of 9 layers. The
network diagram can be seen in Figure 1. The structure
design based on information in literature as well as our
experimental trials. The first 6 layers were 3x3 convolutional
layers of depth (number of filters) 16, 32, 64, 128 256, and
256. Each convolution was applied to the full depth of the
previous layer. All 6 convolutional layers were applied with
a stride of 2 to the layer before them. This is followed by
three fully connected layers. These had a unit count of 100,

20, and 2, with the output of the last being pitch and roll.
These consist of sets of weights applied to the activation of
previous layers, in the form of y = Wx + b. After each
layer (excluding the output layer) a Leaky Rectified Linear
Unit (ReLU) [8] activation function was applied. A ReLU
was chosen due to it’s effectiveness and simplicity [8]. The
leaky variant produces an activation of

i = i . 1
Y x—, if z; <0 M
a

with x; being the input from channel 7, a is a fixed parameter,
and y; being the output activation for channel i. The leaky
activation combined with the momentum of the optimizer
prevented neurons from remaining in a saturated (negative)
state. Additionally, a 50% dropout [12] was applied to
the final 3 convolutional layers. The dropout both prevents
overfitting and improves the robustness of the network by
reducing the networks reliance on a select few neurons. The
dropout was only applied during training, while during test
time all neurons were used (with weights properly scaled
to account for total number of neurons being used). An
Adam optimizer [6] was used for the parameter update due
to its experimental effectiveness in bringing a network to
convergence.

The second CNN involved a more complex structure, as
seen in Figure 2. This network was similar to the first
as there are again six main modules followed by a fully
connected layer. In the first network, each module was
a single convolution layer. In this network, each module
consisted of four parts: a column convolution layer, a row
convolution layer, an average pool layer, and a maximum
pool layer. Both pool layers output a value for each kernel
position of each input depth, with the value corresponding
to their respective names in regards to their input. The
average pool and max pool layers were followed by a 1x1
convolution' in all modules. The output of these four parts
are then concatenated. The final two concatenations also
have dropout applied during training.

It should be noted that receptive field of the convolutions
for both networks is the same. That is, in both spatial
height and width, although divided between row and column
convolutions individually, they still contain 5 kernels of
size 3 and 1 kernel of size 10. Breaking the convolutions
in to both row and column components in the second
CNN (the branching structure) requires fewer weights while
maintaining the receptive field. This allows either faster
training or more layers to be added.

The average pool and maximum pool can be seen as
retaining a compressed version of previous layers for the
new layers to use as input. There is no average pool in the

IThis convolution allows for a dimensionality reduction an acts as a
miniature fully connected layer from an aisle to the next layer’s aisle.

)

Depth Concatenate

(D)
/ \ Conv
64 1x1

Conv Conv Conv A
128 1x3 128 3x1 64 1x1 Max Pool

\ / 2x2

Depth Concatenate

/

/

i

(D)
A
/ Conv Conv
32 1x1 32 1x1
Conv Conv [y [y
64 1x3 2(S) 64 3x1 2(S) Average Pool Max Pool
v\ \ 2x2 2(S) 2x2 2(S)
5.4

Depth Concatenate

il

AN
/ Conv Conv
16 1x1 16 1x1
Conv Conv A [
32 1x3 2(S) 32 3x1 2() Average Pool Max Pool
‘\ \ 2x2 2(S) 2x2 2(S)
X

Depth Concatenate

/

AN
/ Conv Conv
8 1x1 8 1x1
Conv Conv))
16 1x3 2(S) 16 3x1 2(S) Average Pool Max Pool
\ \ 2x2 2(S) 2x2 2(S)
5.4

Depth Concatenate

/

AN
/ Conv Conv
41x1 41x1
Conv Conv [y [y
8 1x3 2(S) 83x12(S) Average Pool Max Pool
‘\ \ 2x2 2(S) 2x2 2(S)
X

Depth Concatenate

i

AN
/ Conv Conv
4 1x1 4 1x1
Conv Conv))
4 1x3 2(S) 4 3x12(S) Average Pool Max Pool
2x2 2(S) 2x2 2(S)

Figure 2: A diagram of our second CNN. "NxN" displays the
kernel size of the layer. For convolutional layers, this value
is preceded by the number of filters being output. Layers
applied with a stride of two show a "2(S)". Those without
this are a stride of one. Layers with dropout during training
display a "(D)".

final module, as the striding is one, so it would only act to
blur the existing information.

The leaky ReLU activations, optimizer, and dropout for
this network were the same as for the previous network.

For all of the networks?, mini-batching was used [7]. The
mini-batching provides approximate global descent steps and
the ability to utilize parallelization for processing speed
while still allowing more rapid gradient decent by not
needing to process the entire dataset.

1V. DATA

As mentioned by Borji [2], one difficulty that arises
in training a deep network to detect the orientation of
the camera (or a similar task) is the lack of sufficient
training data. To overcome this difficulty, we propose taking
advantage of other sensors in existing large datasets to infer
the information needed for the dataset to act as training data
for our task.

The data used in this paper to train the initial network
from scratch is the entirety of the NYU Depth Dataset
V1 [9] and V2 [10]. This combined database consists of
~450,000 images taken from a Kinect device. Typical RGB
data from this dataset is shown in Figure 3. The Kinect is
most well known for its depth sensor, however, there is also
an onboard accelerometer. We used this sensor to calculate
the acceleration due to gravity so that the orientation of the
camera could be estimated.

For the exact manually annotated data, we used the
SUNRGBD V1 dataset [11]. This dataset includes data from
various other datasets as well, including portions of the NYU
Depth V2 [10], Berkeley B3DO [4], and SUN3D [15]. For
this data, the transformation from the camera to the global
reference frame has been manually annotated, so the roll
and pitch of the camera can be easily obtained. Specifically,
we use the small portion of the NYU Depth V2 which has
been manually annotated to fine-tune the model, and test
it on the Berkeley B3DO data. Both these use the Kinect
V1 as is used with the accelerometer generated dataset. We
additionally fine-tune the network to the Xtion device data
in the SUNRGBD dataset. This allows us to test our model
when applied to a different camera then was used for training
the original network. Of the SUNRGBD dataset images, we
used ~1200 for training and ~200 for testing from the NYU
Depth dataset, ~450 for training and 56 for testing from the
Berkeley B3DO dataset, and ~750 for training and ~250 for
testing from the Xtion dataset.

For all datasets, an additional validation dataset was pre-
pared of approximately equivalent size to the test data. These
validation datasets were used for hyperparameter tuning.

A problem that arises when using the acceleration of the
Kinect is that the acceleration comes from both gravity and

2Including the networks used for comparison which are detailed in
Section V.

Measure Combined Pitch Roll
Mean Error N/A +0.230 +1.771
MAE 2.226 1.543 2.910
RMSE 3.153 2.137 3.759

Table I. Error of accelerometer data from true orientation
when comparing 1449 images.

the movement of the person who carried it during the data
taking process. However, the acceleration from movement
is minor in comparison with gravity in this case. And more
importantly, we only used this large accelerometer dataset
to train the initial network, which is then fine-tuned on the
exact data from the SUNRGBD V1 datasets. When gener-
ating our large approximate orientation dataset, acceleration
was assumed to be due only to gravity. Comparing the 1449
images that make up the portion of the NYU Depth V2
dataset which was manually annotated in the SUNRGBD
dataset against our annotations from the accelerometer, we
can check the error in the accelerometer generated orienta-
tions. Various measures of error in the accelerometer data
from the true orientations can been seen in Table I: Mean
error, mean absolute error (MAE), and root-mean-square
error (RMSE). It seems that the error in roll is larger than in
pitch. The distribution of the approximate dataset generated
by the accelerometer data can be seen in Figure 4.

During our experiments with the approximate accelerom-
eter dataset, ~400,000 images were used for training and
~45,000 images were used for testing.

The variation in the data causes some difficulties. While
the types of environments are extensive, the orientation of
the camera tends to be neutral. That is, the Kinect tended to
be angled near level with the ground and without much roll
(zero pitch and zero roll). A different dataset would produce
a different absolute accuracy using the same network. To
account for this, we are not interested in the absolute error
from the true value, but instead use baselines. In particular,
we use the mean value over the entire set as the lowest level
baseline, while the linear and two-layer networks provide
additional measures of comparison.

V. EXPERIMENTS

For the initial training and testing using the accelerometer
generated dataset, five approaches were tested and compared.
Our goal was to see how well our deep convolutional neural
networks compared against other methods.

The first of the methods compared against was the base-
line which simply uses mean values for pitch and roll in the
test dataset. Such a choice of baseline is necessary due to the
bias in the data a simple absolute angle accuracy means very
little (as explained in Section IV). Additionally, it provides
a way to see which networks have any impact at all. If a
network cannot do better than this baseline, then the network
can’t be seen as having learned anything useful.

Figure 3: Typical example images from the database.

The linear regressor was of the simple form of y = Wx+
b. Here y contains the 2 values being sought, namely pitch
and roll. x is the pixel values of the image under test in
vector form. W contains the weights being trained and b is
2 biases, which are also trained. An Adam optimizer [6] was
used for the parameter update.

The fully connected two-layer neural network started with
the input being each color channel of each pixel in the
image. This input is fully connected to 64 neurons. These
neurons are fully connected to the 2 output neurons, one
which outputs roll and the other pitch. The layer of the 64
neurons are passed through a Leaky ReLLU. More formally,
we have

vy = Wa fireeu(Wix + b1) + ba. 2

pearsonr = -0.39; p = 3.4e-51

Roll

-5

Pitch

Figure 4: The distribution of the test data. Note that there
are examples outside the contour, but relatively few in
comparison with the number within the contour.

RMSE
Network Combined Pitch Roll
Test Mean Value 8.618 7.117 2.887
Linear 12.868 13.681 12.000
Two-Layer 5.007 6.413 3.002
Branching Deep 3.988 5.069 2.471
Straight Deep 2.324 2.852 1.634

Table II: Results showing the root mean squared error of
the predicted label from the true label in the accelerometer
generated dataset from the complete NYU Depth V1 & V2
datasets.

An Adam optimizer [6] was used for the parameter update.

The details of the proposed two CNNs can be found in
Section III: in these results we refer to the first network
as the Straight Deep CNN and the second Branching Deep
CNN.

For all of the networks, mini-batching was used [7]. All
networks were constructed using the TensorFlow frame-
work [1].

A. Results

Table II shows the results of our experiments comparing
the various networks on the dataset generated using the
accelerometer. Table III shows the results of the experiments
when fine-tuning the network on smaller databases with
exact orientations. In all experiments, due to the tendency
of the data being centered around the neutral orientation,

Datasets RMSE
Test Train Finetune Network Combined Pitch Roll
SUNRGBD NYUD V2 14% N/A N/A Test Data Mean Value 5.137 5.302 4.972
SUNRGBD NYUD V2 14% Accel NYUD V1 & V2 SUNRGBD NYUD V2 86% Straight Deep 3.613 3.090 4.069
SUNRGBD NYUD V2 14% Accel NYUD VI & V2 None Straight Deep 4.161 4.045 4.274
SUNRGBD B3DO 11% N/A N/A Test Data Mean Value 9.776 13.240 6.312
SUNRGBD B3DO 11% Accel NYUD VI & V2 SUNRGBD B3DO 89% Straight Deep 7.649 10.198 3.609
SUNRGBD B3DO 11% Accel NYUD V1 & V2 None Straight Deep 7.498 10.001 3.522
SUNRGBD B3DO N/A N/A Test Data Mean Value 11.339 12.489 4.767
SUNRGBD B3DO SUNRGBD NYUD V2 N/A Linear 60.976 62.098 59.833
SUNRGBD B3DO Accel NYUD VI & V2 SUNRGBD NYUD V2 Straight Deep 6.903 9.132 3.450
SUNRGBD B3DO Accel NYUD VI & V2 None Straight Deep 6.379 8.372 3.360
SUNRGBD Xtion 33% N/A N/A Test Data Mean Value 11.339 12.489 4.767
SUNRGBD Xtion 33% Accel NYUD V1 & V2 SUNRGBD Xtion 66% Straight Deep 8.402 11.203 3.958
SUNRGBD Xtion 33% Accel NYUD V1 & V2 None Straight Deep 9.034 12.234 3.683

Table III: RMSE for various combinations of training, testing, and fine-tuning datasets for various networks.

we optimized our networks to result in the lowest root mean
squared error (RMSE). Thus the three values were measured
for each network: pitch, roll, and combined values. The
"combined" value is the error when taking into account
both pitch and roll differences between the labels, and is
the value that was optimized by our network. It should be
noted that for all of these results, the networks were trained
to determine roll and pitch simultaneously. There was not a
separate network for each®.

During the experiments using the accelerometer generated
data, the deep CNNs had the highest accuracy for pitch,
roll, and combined values. The straight deep neural network
out performed the branching deep network by a significant
amount. Possible explanations are discussed in Section VI.

It should be noted that the linear and two-layer networks
failed to out perform the mean value in regards to roll. These
networks are not guaranteed to find a set of weights can do
even as well as this static value. Considering what a darker
image overall and brighter image overall using the same
weights in these networks would output should give some
sense as to why this is.

In the fine-tuning experiments (Table III) we used the
network trained on the accelerometer data and retrained the
last few layers of the network on the annotated data. For each
set of data, we provide the baseline value and the error in
using the the accelerometer trained network with and without
fine-tuning. The last two fully connected layers in the deep
network were being fine-tuned in these trails.

During fine-tuning trials with the manually annotated data,
the deep neural network had significant improvements over
the baseline, but far less than the improvements seen on the
network trained from scratch. Using an additional validation
set, it seemed that underfitting was the largest cause of this
discrepancy and perhaps the problem could be mitigated by

3Though, in the case of the linear classifier, outputting to two values is
equivalent to having two separate networks.

fine-tuning larger portions of the network, though it seems
larger numbers of samples are needed to effectively do this.
This is discussed further in Section VI

These networks also have the advantage of being able to
run in real-time. The network is able to process an image in
~40ms on a consumer level laptop*. These were the speeds
achieved without any special optimization for deployment
purposes. Optimization was only performed for the goal of
speeding training.

VI. DISCUSSION

We see from our results in Section V-A that deeper
networks tend to have better results. This makes sense as
the deep convolutional network is able to detect features
that would suggest orientation, such as vanishing point lines,
where as the simpler networks cannot.

While examining these results, the distribution of the data
should be kept in mind. Most of the pitch and roll values
lie within a fairly narrow range of values. This both means
that the accuracy has an absolute advantage, in that even
simply selecting the mean value results in not large absolute
errors, but it also presents a challenge to the network as
any rotations that are recognized are very small rotations.
Presumably, a deep network could more easily detect a large
rotation than a small one, though explicit evidence for this
is not given here.

In contrast, the deep CNNs could most easily determine
roll, but have a more difficult time with pitch (though
still doing far better than the other networks). This also is
reasonable if we consider something like the recognition of
lines. Most of the images were in a mostly neutral position.
Due to this, any roll rotates lines parallel to the ground to
a similar degree in the image, even if those lines are not
horizontal in the image. A change in pitch results in the more
complex behavior of moving vanishing points (i.e. changing

42 GHz Intel Core i7, 8 GB 1600 MHz DDR3.

perspective distortions) without as obvious of a change in
individual lines in the image. If correct, it would then be
reasonable to assume that had the network been trained on
a database with a more uniform spread of rotations that the
pitch and roll accuracies would have been more similar.

There was a interesting difference between the two deep
CNN structures. Both did approximately equally as well
in regards to estimating pitch. However, the straight CNN
structure did significantly better than the branching CNN
structure. Having estimated pitch more accuracy while doing
worse with respect to roll, in this regard at least, makes the
branching structure similar to the non-deep networks. One
possible reasoning for this is that the 1xN and Nx1 filters
do not take into account more complex spatial features as
well as an area convolution despite acting on the results both
row and column filters from the previous layers. However,
the possible causes were not explored further in this work.

In the trials testing on the annotated data, the most notable
feature is that fine-tuning resulted in no significant change
in error. This seems to be caused by underfitting due to
the small portion of the network being retrained. However,
during extensive tests of fine-tuning, different numbers of
layers being retrained and various sizes of layers were tested.
Either no change in the training and validation were affected,
or the network overfit the data. This suggests that the number
of samples in these datasets were not sufficient to fine-tune
the network effectively. This is reflected in the fact that the
largest of these datasets (SUNRGBD NYU, ~1200 training
images) had the best fine-tuning results and the smallest
(SUNRGBD B3DO, ~450 training images) had the worst
results. Additionally, the network without fine-tuning had
a significant improvement over the baseline, which both
shows that the accelerometer trained network is useful when
applied to other scenes, but also that the fine-tuning provided
little improvement due to the underfitting.

In the end, the most clear result of the experiments is the
high level of accuracy of the CNNs when compared against
the other networks in the accelerometer trials. Even though
the data clusters around a neutral pose, the use of the CNNs
to determine the minor changes in orientation provides a
significant advantage.

VII. CONCLUSION

In this work, we proposed a method to automatically
determine camera pitch and roll from a single 2D image
without any database to compare to or explicit prior infor-
mation about the image being considered. We have shown
that deep CNNs produces significant improvements over
various other approaches. Additionally, we have revealed
interesting information in how different complexity levels of
networks are able to determine information. We have devised
a way to produce large datasets for training such orientation
estimating networks. Additionally, this work shows that
CNNs can be used to determine information about the

camera itself, in addition to the scene it is viewing. We show
the accuracy of these networks when applied to manually
annotated datasets, both with the same camera as the main
training set, and when used for a different camera.

VIII. ACKNOWLEDGMENTS

This research was performed under appointments (to Tang
and Hao) to the U.S. Department of Homeland Security
(DHS) Science & Technology (S&T) Directorate Office
of University Programs Summer Research Team Program
for Minority Serving Institutions, administered by the Oak
Ridge Institute for Science and Education (ORISE) through
an interagency agreement between the U.S. Department of
Energy (DOE) and DHS. ORISE is managed by ORAU
under DOE contract number DE-AC05-060R23100 and DE-
SC0014664. All opinions expressed in this paper are the
author’s and do not necessarily reflect the policies and views
of DHS, DOE, or ORAU/ORISE. Computing power for this
research was partially supported by Azure for Research. This
work is also partially supported by the U.S. National Science
Foundation (NSF) through Award EFRI-1137172.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] A. Borji. Vanishing point detection with convolutional neural
networks. arXiv preprint arXiv:1609.00967, 2016.

[3] P. Fischer, A. Dosovitskiy, and T. Brox. Image orientation
estimation with convolutional networks. In DAGM, 2015.

[4] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz,
K. Saenko, and T. Darrell. A category-level 3d object dataset:
Putting the kinect to work. In Consumer Depth Cameras for
Computer Vision, pages 141-165. Springer, 2013.

[5] A. Kendall, M. Grimes, and R. Cipolla. ~Convolutional
networks for real-time 6-dof camera relocalization. CoRR,
abs/1505.07427, 2015.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[7] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-
batch training for stochastic optimization. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 661-670. ACM, 2014.

[8] A.L.Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinear-
ities improve neural network acoustic models. Proc. ICML,
30(1), 2013.

[9] N. Silberman and R. Fergus. Indoor scene segmentation using
a structured light sensor. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on,
pages 601-608. IEEE, 2011.

(10]

(11]

(12]

(13]

(14]

(15]

N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
Proceedings of the 12th European Conference on Computer
Vision - Volume Part V, ECCV’12, pages 746-760, Berlin,
Heidelberg, 2012. Springer-Verlag.

S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 567-576, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res., 15(1):1929-

1958, Jan. 2014.

J.-P. Tardif. Non-iterative approach for fast and accurate
vanishing point detection. In 2009 IEEE 12th International
Conference on Computer Vision, pages 1250-1257. I1EEE,
20009.

M. Tomono. 3-d localization and mapping using a single
camera based on structure-from-motion with automatic base-
line selection. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, pages 3342-3347,
April 2005.

J. Xiao, A. Owens, and A. Torralba. Sun3d: A database
of big spaces reconstructed using sfm and object labels.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 1625-1632, 2013.

