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Abstract— In this paper, we propose a deep learning based
approach for facial action unit detection by enhancing and
cropping the regions of interest. The approach is implemented
by adding two novel nets (layers): the enhancing layers and the
cropping layers, to a pretrained CNN model. For the enhancing
layers (the E-Net), we designed an attention map based on facial
landmark features and applied it to a pretrained neural network
to conduct enhanced learning. For the cropping layers (the C-
Net) , we crop facial regions around the detected landmarks
and design convolutional layers to learn deeper features for
each facial region. We then fuse the E-Net and the C-Net to
obtain our Enhancing and Cropping (EAC) Net, which can
learn both feature enhancing and region cropping functions.
Our approach shows significant improvement in performance
compared to the state-of-the-art methods applied to BP4D and
DISFA AU datasets.

I. INTRODUCTION
Facial Action Unit (AU) detection is an essential process in

facial analysis. With a robust AU detector, facial expression
and facial action problems can be solved more effectively.
AU detection is the process to find some basic facial actions
defined by FACS, the Facial Action Coding System [1]. Each
AU represents a basic facial movement or expression change.
Figure 1 shows 4 basic AUs, namely eyebrows lower, cheek
raiser, chin raiser and lip tighter. The AUs are elements
for more complicated facial actions. For instance, sadness
might be the combination of AU1 (inner brow raiser), AU4
(brow lower), and AU15 (lip corner depressor). Most of
current AU detection approaches either need the processed
faces with frontal views or the texture features are artificially
designed, making the features not well learned [12], [21] .
To tackle these problems, we proposed the EAC (enhancing
and cropping) Net to a convolutional neural network (CNN)
to detect facial AUs automatically. We added the enhancing
and cropping layers because even though a CNN has great
capability in finding different patterns across images, it is
not flexible enough to know which regions of the images
need more attentions, and when comparing with peer images,
the network is unable to shift the pixels to compare across
corresponding regions. We enhance the regions of interest
by assigning higher learning weights to corresponding areas
during deep model training, and then crop corresponding
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areas to force the network to learn better representations by
being trained on related regions. We first build the enhancing
net (E-Net), which is constructed by adding attention layers
to a pretrained VGG net, one of the very effective CNNs.
The E-Net yields a significant improvement in average F1
score and accuracy on BP4D dataset compared to the state
of the art approaches. We then add cropping layers on top of
the E-net and design the EAC-Net. The cropping layers are
implemented by cropping AU areas of interests from high-
level convolutional feature maps. The EAC-Net yields up to
7.6% increase in average F1 score and 19.2% improvement in
accuracy compared to the state of the art approaches applying
to BP4D dataset. In addition to the improvement in metrics,
our approach also has the following technical contributions:
(1). We propose an AU detection approach which is more
robust to face position and orientation changes. (2). No facial
preprocessing such as normalization is required to apply to
the input images in our approach, which not only saves lots
of preprocessing time, but also maintain the original facial
expressions. (3). Although face landmarks are used in our
EAC-Net, they do not need to be very accurately located,
i.e. the approach is robust to landmark detection errors.

Fig. 1. Action unit images for AU 4, 6, 7, 17

The idea of our approach is inspired by recent break-
throughs in deep learning research. Pretrained ImageNet
models and transfer learning have found significant appli-
cations in many areas [2], [3]. The main reason is that the
low-level convolutional layers extract similar features across
different recognition tasks, which means the learned filters
can be transferred. Yang et al [4] proposed to use an attention
layer for finding interesting areas to provide better answers in
a visual question-answering task. In salient object detection
[5], a salient map is used to describe the important sub-
areas of an image. This salient map (or attention map) is a
2D matrix with its elements ranging from 0 to 1, depicting
the importance of corresponding pixels on the entire image.
We believe that by applying an attention map to an existing
network for facial computing, richer and more robust infor-
mation can be obtained. The SPP net [6] proposed a ROI
pooling idea, which can turn different interest areas into fixed978-1-5090-4023-0/17/$31.00 c©2017 IEEE



Fig. 2. The structures of FVGG, E-Net and EAC-Net for AU detection

length features. Faster RCNN [7] generated region proposals
for objects to be detected and used the proposals to determine
“objectiveness”. These findings made us believe that it might
be possible to apply similar operation to facial interest
regions and learn individual filters for specific regions. Thus,
we designed our EAC-Net with three elements: a pretrained
model, enhancing layers and cropping layers.

Figure 2 shows the structure of our EAC-Net. The EAC-
Net includes 3 main parts. The first part is a fine-tuned
pretrained VGG 19-layer network [8]. The low level con-
volutional layers (Group 1 and 2) of the pretrained network
and their parameters are kept for low-level visual feature
extraction. The parameters of the higher-level convolutional
layers (Group 3 and 4) are updated for AU detection task.
The use of VGG pretrained net is to guarantee that the
network has a deep understanding of the input images. The
second part of the EAC-Net consists of the enhancing layers
that are on top of Group 3 and 4 convolutional layers. The
purpose of adding these layers is to give more attention to
individual AU areas of interest. The features extracted after
the enhancing layers are supposed to contain more valuable
information to detect AUs. The third part of the framework
includes the cropping layers. Sub-features are cropped from
ten selected interest areas of the feature map, followed by
upscale layers and convolutional layers in each sub-area for
further learning. The purpose of the cropping layers is to
assure that only corresponding regions are compared by the
network. Adding cropping layers as the higher convolutional
layers would also help the region obtain deeper contextual
information.

This paper is organized as follows. Related work is re-
viewed in Section 2. Section 3 introduces our approach and
describes the details of EAC-Net. The experimental results
are summarized in Section 4. Finally the conclusions are
provided in Section 5.

II. RELATED WORK

AU detection has been studied for decades and several ap-
proaches have been proposed. Facial key points play an im-
portant role in AU detection. Many conventional approaches
[10], [11], [14], [15], [16], [17], [23], [29] were designed
by employing texture features near the facial key points.
Valstar et al. [9] analyzed Gabor wavelet features near 20
facial landmark points. The features were then selected and
classified by Adaboost and SVM classifiers. Since landmark-
based geometry changing is robust in many AU detection
methods, Fabian et al. [12] proposed an approach for fusing
the geometry and local texture information. The geometry
information is obtained by measuring the normalized facial
landmark distances and the angles of the Delaunay mask
formed by the landmark points. On the other hand, the tex-
ture features were obtained by applying multiple orientation
Gabor filters to the original images. Zhao et al. [13] proposed
the Joint Patch and Multi-label Learning (JPML) for AU
detection. Similarly, landmark-based regions were selected
and SIFT features were used to represent the local patch.
Overall, the conventional approaches focused on designing
more representative features and finetuning more robust clas-
sifiers. In addition to facial AU detection, some researches
also have focused on other related problems. Song et al. [22]
investigated the sparsity and co-occurrence of action units.
Wu [18] exploited the joint of action unit detection and facial
landmark localization and showed that the constraints can
improve both AU and landmark detection. Girard et al. [19]
analyzed the affect of different sizes of training datasets on
appearance and shape-based AU detection. Gehrig et al. [20]
tried to estimate the action unit intensity by employing linear
partial least squares to regress intensity in AU related regions.

Over the last few years, we have witnessed that CNNs
boost the performance in many computer vision tasks. Com-
pared to most conventional artificially designed features,



CNNs can learn and reveal deeper information from the train-
ing images which in turn contribute to better performance.
Zhao et al. [21] proposed a region CNN-based approach for
AU detection. Instead of directly applying a regular CNN to
the entire input image, the network divides the input image
into 8×8 blocks and then trains over these regional areas
independently. All sub-regions are then merged back into one
net, followed by regular convolutional and fully connected
layers. The proposed approach outperforms both the regular
and Fully Convolutional Net (FCN) [21]. Our proposed
approach is also CNN-based and we share similar ideas
with Zhao et al [21] in training sub-regions independently.
The distinction of our approach is that instead of directly
dividing the image into blocks, we use a “smarter” way to
find the important areas and crop the regions of interest. In
their approach, the facial landmarks play an important role
for normalizing the faces. Errors will accumulate in both
landmark detection and face normalization processes, and
facial normalization may neutralize expressions. However,
in our approach, the network directly works on the interest
areas, and even though landmarks are also used for building
the attention map, our approach has large tolerance for
landmark shifting, since we use a relatively large local region
to cover the AU target areas. This will reduce errors from
misalignment along images and will focus more on interest
regions.

III. THE EAC-NET

The EAC-Net is composed of three parts: the VGG fine-
tuning network, E-Net and C-Net. For comparison purposes,
we implement three networks using VGG net as their base:
FVGG: the fine-tuning network of VGG; E-Net, the Enhanc-
ing Net based on the fine-tuned VGG; and finally EAC: the
integration of Enhancing and Cropping Nets based on the
trained E-Net model.

A. FVGG: VGG fine-tuning model

Fine-tuning pretrained models for image classification are
proved to be efficient in many areas [2], [3]. To make sure
we can have a deep understanding of the images for AU
detection, we employed the VGG 19-layer model. The VGG
model follows a conventional CNN structure, comprising 16
convolutional layers and 3 fully connected layers. It also
includes 5 pooling layers downsampling input images from
224×224 to eventually 7×7. In our implementation, we
divide the convolutional layers into 5 groups as shown in
Figure 2, which are separated by the 5 pooling layers. There
are 2, 2, 4, 4, 4 convolutional layers in Groups 1 through 5,
respectively. The FVGG structure is straightforward and has
been modified in many related tasks such as object detection
or emotion recognition. Before designing our special purposs
networks (E-Net and EAC-Net) for AU detection, we first
modify and fine-tune the VGG net as our baseline approach.
We keep the parameters of the first 3 groups of convolutional
layers unchanged and update the rest of the layers during
training. In order to match with the AU detection task,
the number of nodes for the last 2 fully connected layers

are changed to 2048 (by reducing parameters) and 12 (by
matching the 12 AU targets). Dropout is also applied on
both new layers to prevent overfitting during training.

B. E-Net: The Enhancing Net

We mentioned that the idea for the enhancing net (E-Net)
is inspired by the attention map and the salient map in the
literature. Figure 2 demonstrates how the E-Net works by
using enhancing layers. The feature map output from Group
2 is multiplied by the designed attention map – the first
enhancing layer (details will be discussed below), in parallel
with the convolutional layers in Group 3. The two feature
maps – one from the enhancing layer and the other from the
Group 3 convolutional layers – are then fused by element-
wise summation. Same operation is performed jointly by
the second enhancing layer with the convolutional layers in
Group 4. The reason why we designed the enhancing layer is
that not all the areas of a facial image are equally important
for individual AU detection. We can see that different AUs
focus on corresponding sub-areas of the face. For example,
in Figure 3, the eyebrow raiser AU is close to the texture in
the area near the middle of the eyebrows and the lip corner
AUs are determined by the texture information around lip
corners. These areas are more important than the nose or
most of the other parts of the face. For this reason, we build
the attention map for AUs based on key facial landmarks, as
shown in Figure 3.

We have noticed that many previous works provide robust
facial landmark positions [24]. Furthermore, our approach
does not require the localization of landmarks to be very
accurate in pixels since we are trying to find the areas for
AUs. We will work on 12 AUs as listed in Table I, since these
are the ones labeled in the datasets we use. After obtaining
the facial landmarks as shown in Figure 3, we can define
the centers for AUs and then build a bounding box around
the center. Observing the AU figure, we manually define the
center of AUs (the green spots) based on the muscles of
a human face. Note that many AU centers are not directly
on the same spots of the detected landmarks. We define a
scaled distance as a reference for facial pixel shifting by
calculating the distance of the corners of the two eyes, as
shown in Figure 3. Then the centers for 12 listed AUs in
Table I are illustrated in Figure 3 (the green spots). Since
most AUs are symmetric on a human face, we define one
pair of points for each AU. We should note that some AUs
share the same centers, such as the lip corner puller and the
lip corner depressor. So finally we defined 20 AU centers
on the face for the 12 AUs listed in Table I. The rules for
defining the centers of the 12 AUs are also illustrated in
Table I. After obtaining the AU centers, we can build the
attention map based on center positions. Figure 3 shows
how the attention map is generated. Given an image like the
one shown in Figure 3 (left), we first obtain the landmarks
for the key points on the face, which are shown with blue
points. Having the facial key points, we can obtain the AU
centers by shifting a distance or directly using existing facial
landmarks. The AU centers are illustrated with green points



TABLE I
RULES FOR DEFINING AU CENTERS

AU index Au Name AU Center
1 Inner Brow Raiser 1/2 scale above inner brow
2 Outer Brow Raiser 1/3 scale above outer brow
4 Brow Lowerer 1/3 scale below brow center
6 Cheek Raiser 1 scale below eye bottom
7 Lid Tightener Eye center

10 Upper Lip Raiser Upper lip center
12 Lip Corner Puller Lip corner
14 Dimpler Lip corner
15 Lip Corner Depressor Lip corner
17 Chin Raiser 1/2 scale below lip
23 Lip Tightener Lip center
24 Lip Pressor Lip center

in Figure 3. The AU centers are in pairs due to the symmetry
of human face, with each AU center corresponding to one or
more AUs. To make the shifting distance more adaptable to
all face images, we define a measurement reference for the
shifting distance. Inner corner distance is used as the scaled-
distance, as shown in Figure 3. This scaled-distance is used
in Table I to help locate the AU centers. We first resize the
images to 100x100 to make sure the same scales are shared
among all images. Then, for each AU center, we define the
nearby 5 pixels belonging to the same area, therefore the size
of each AU area is 11×11. Higher weight is assigned to the
closer points to the AU center. The relationship follows the
equation:

Fig. 3. Attention map generation

w = 1 − 0.095 · dm (1)

where dm is the Manhattan distance to the AU center.
An attention map obtained for a face image is demon-

strated in Figure 3. The areas in the attention map with
higher values correspond to the AU active area in the face
image and can enhance deep learning at these areas in our
enhancing layer. We can then apply the obtained attention
map to the feature maps. Figure 2 shows the E-Net structure.
For Group 1 and Group 2, we keep the layers unchanged
for detecting low-level features. For Group 5 (size 14×14),
the feature maps are too small to use any attention map,
so eventually we apply the attention map only to Group 3
and Group 4, thus we add two enhancing layers. Adding
attention layers directly to the feature maps by replacing the
original ones will lose all the contextual information. So,

we add the attention maps to the feature maps in parallel
with the convolution operations, in Group 3 and Group 4,
respectively, as shown in Figure 2. Element-wise summation
is then conducted to obtain enhanced feature maps. We call
our enhancing net based on the fine-tuned VGG model the
E-Net. The E-Net structure is also similar to Residual Net
[26], but is designed for generating enhanced features by
applying an attention map. The other structure in the E-Net
is the VGG finetuning network. After training this model, we
observed that the E-Net can lead to 5% increase in average
F1 score and 19% increase in average accuracy on the BP4D
AU dataset [26]. The detailed experimental results will be
reported in the next few sections.

C. EAC-Net: The Integrated Model with Enhancing and
Cropping

The E-Net can generate the features with more emphasis
on the AU related regions, but it doesn’t change the fact
that the same AU areas are not normalized across images.
To make sure the same regions are aligned across images,
we use the approach in [21] which preprocesses all faces by
normalization. Face normalization is a common preprocess-
ing approach for face recognition. The disadvantage though
is that during face normalization, some context information
might be lost, and since face normalization is trying to align
the faces to neutral expression, the facial expression might
be weakened. The goal of our cropping net (C-Net) is to
obtain each individual AU related area without changing the
texturural information of the original images. Then, for each
AU sub-area, independent convolutional layers are applied
to learn more features.

Figure 2 shows the structure of the C-Net. Cropping layers
are added to the end of Group 4, right after the enhancing
feature maps are obtained. The output size for the feature
map from Group 5 is 512×28×28. With the same ratio as
an AU area of 11×11 pixels in the attention map versus
the face image of 100×100 pixels, the cropped areas should
have the size of 3×3. For each of the 20 AU centers, we
obtain a feature sub-map with size 512×3×3; in total we
have 20 such feature sub-maps for the 20 AU centers. When
adding convolutional layers after the cropped feature map,
the new obtained feature map size will be 512×1×1. We
feel that this is less representative for the AUs. So, before
adding new convolutional layers, we apply an upscaling layer
to the feature maps, upscaling the feature maps to 512x6x6.
Actually our experiments show that this upscaling layer by
itself leads to approximately 1% increase in the average F1
score.

To make the C-Net converge more quickly, we build the
C-Net on top of the pretrained E-net, thus leading to the
Enhancing and Cropping Net (EAC-Net). So the features
obtained from Group 4 have already been pretrained for
AU detection. During implementation, we found that feature
values obtained from the last convolutional layer of Group
4 are very large and make the C-Net unable to converge. So
a local response normalization layer is added before C-Net



convolutional layers. The local response layer normalization
algorithm follows Equation 2:

x′i =
xi

(k + αΣjx2j )
β

(2)

In our experiments, k=2, α=0.002 and β=0.75. xi, x′i are the
model extracted feature values before and after applying the
normalization, while j =, 1..., 9 denotes the 9 neighboring
2D feature pixels around xi (including itself). All the indi-
vidual convolutional layers are followed by fully connected
layers with a fixed size of 150. We then concatenate the fully
connected layers. The rest is similar to FVGG and E-Net.

AU detection is different from regular classifications in
the sense that instead of classifying images into one object
category, multiple AUs can co-occur simultaneously. Thus
this is a multi-label binary classification problem. Cross
entropy as in [21] is used to measure the loss for this kind of
problem. In our loss function equation 3, we added offsets
to prevent the number from becoming too large:

Loss = −Σ(l · log(
p+ 0.05

1.05
)+(1− l) · log(

1.05 − p

1.05
)) (3)

where l is the ground truth label for one certain AU, p is
the regressed number by the trained model for the certain
AU ranging from 0 to 1.

IV. EXPERIMENT

A. Datasets and Evaluation Methods

The most popular datasets for AU detection are CK+ [27],
BP4D[26] and DISFA[28]. AU datasets are harder to obtain
compared to other tasks such as image classification. This is
because there are multiple AUs in one face which requires
much more manual labeling work. Here we give a brief
review of the AU datasets referred and compared in this
paper.

DISFA: 26 people are involved in the DISFA dataset. The
subjects are asked to watch videos while spontaneous facial
expression are obtained. The AUs are labeled with intensities
from 0 to 5. We can obtain more than 100,000 AU-labeled
images from the video, but there are much more inactive
images than the active ones. The diversity of people also
makes it hard to train a robust model.

BP4D: There are 23 female and 18 male young adults
involved in the BP4D dataset. Both 2D and 3D videos are
captured while the subjects show different facial expressions.
Each subject participates in 8 sessions of experiments, so
there are 328 videos captured in total. AUs are labeled by
watching the videos, and the valid AU frames in each video
varies from several hundreds to thousands. There are around
140,000 images with AU labels that we can use.

To train a deep learning model, we need larger numbers
of image samples, plus the diversity of the samples is also
important. Similar to Zhao’s experiment settings [21], we
choose BP4D to train our model. We first split the dataset
to 3 folds based on subjects. Each time two folds are used
for training and the third fold for testing. For the DISFA
dataset, all samples are used for testing. The balance of data

is very important in training deep learning models. For our
task of multi-label learning, this is even more challenging
since several AUs are not independent of each other. The
original occurrence rate for the 12 selected AUs is shown in
the first row of Table II. We can clearly see that the AUs are
divided into 2 groups. AUs 6, 7, 10, 12, 14 and 17 are more
representative than the minor AUs 1, 2, 4, 9, 11 and 12. If
we just pick all the less representative AUs, the occurrence
rate is shown in table II, second row. We can see that even
with only the less representative AU samples, the occurrence
rate is imbalanced. We still need to keep the other samples
to maintain the data diversity. Thus, we finally decided to
try to keep the balance of training data by changing the
selection rate during training. For all the training samples, we
used to equally randomly pick a fixed number of images. To
compensate for the less occurred AUs, we manually increase
their rate during random picking operation by 4 to 7 times.
Then the occurred rate is shown in Table II, third row.

Both the F1 score and the average accuracy are used
to measure the performance of AU detection. In a binary
classification scenario, especially when samples are not
balanced, F1 score can better describe the performance of
an algorithm [9], [10]. F1 score includes two components:
precision (p) and recall (r). The precision is also called the
positive predictive value and is the fraction of true positive
predictions to all positive predictions. The recall is also called
sensitivity and is the fraction of true positive predictions to
all ground-truth positive samples. Knowing p and r, we can
obtain F1 using the following Eq. 4:

F1 =
2p · r
p+ r

(4)

B. Implementation Details and Results

In our neural network structures, we employed the basic
VGG structure as the base, so all of the input images to
the networks need to be resized to 224×224 to become
compatible with the structures. In order to create the attention
map for E-Net and interest region cropping parameters for
the cropping layers, we use the facial landmark data provided
by the dataset. We use a learning rate of 0.0001 in our
training and a momentum of 0.9. First, VGG fine-tuned net
is trained as the baseline for our proposed E-Net. EAC-Net
training is based on pretrained E-Net with new C-Net layers.
We trained 3 models using the BP4D dataset: finetuned VGG
(FVGG), E-Net, and EAC-Net. The accuracy and F1 score
for all 12 selected AUs and the average accuracy (i.e. the F1
score) are listed in Tables III and IV. We also list the state
of the art results from DRML [21] using deep learning and
traditional approaches LSVM [21] and JPML [13] in same
settings for comparison.

As shown in Tables III and IV, for the BP4D dataset,
compared to the state of the art approaches, the VGG
fine-tuned model (FVGG) has a higher average accuracy,
but the average F1 score does not outperform the state of
the art. Note that in our proposed approach, we do not
perform any preprocessing to the input images. For the more



TABLE II
BP4D SAMPLES BALANCING FOR AU OCCURRENCE

AU 1 2 4 6 7 10 12 14 15 17 23 24
Original 0.24 0.18 0.23 0.44 0.52 0.58 0.57 0.43 0.15 0.36 0.19 0.16

Minor AU occurred 0.56 0.43 0.40 0.47 0.57 0.64 0.59 0.56 0.35 0.58 0.46 0.39
After balancing 0.39 0.32 0.33 0.45 0.54 0.60 0.56 0.49 0.30 0.50 0.33 0.30

TABLE III
F1 SCORE ON BP4D DATASET

AU LSVM JPML[13] DRML[21] FVGG E-Net EAC
1 23.2 32.6 36.4 27.8 37.6 39.0
2 22.8 25.6 41.8 27.6 32.1 35.2
4 23.1 37.4 43.0 18.3 44.2 48.6
6 27.2 42.3 55.0 69.7 75.6 76.1
7 47.1 50.5 67.0 69.1 74.5 72.9

10 77.2 72.2 66.3 78.1 80.8 81.9
12 63.7 74.1 65.8 63.2 85.1 86.2
14 64.3 65.7 54.1 36.4 56.8 58.8
15 18.4 38.1 33.2 26.1 31.6 37.5
17 33.0 40.0 48.0 50.7 55.6 59.1
23 19.4 30.4 31.7 22.8 21.9 35.9
24 20.7 42.3 30.0 35.9 29.1 35.8

Avg 35.3 45.9 48.3 43.8 52.1 55.9

TABLE IV
ACCURACY ON BP4D DATASET

AU LSVM JPML[13] DRML[21] FVGG E-Net EAC
1 20.7 40.7 55.7 27.2 71.1 68.9
2 17.7 42.1 54.5 56.0 72.9 73.9
4 22.9 46.2 58.8 80.5 77.4 78.1
6 20.3 40.0 56.6 72.3 76.9 78.5
7 44.8 50.0 61.0 64.1 70.7 69.0

10 73.4 75.2 53.6 72.4 75.7 77.6
12 55.3 60.5 60.8 69.1 82.8 84.6
14 46.8 53.6 57.0 52.8 56.7 60.6
15 18.3 50.1 56.2 67.4 77.6 78.1
17 36.4 42.5 50.0 61.2 69.3 70.6
23 19.2 51.9 53.9 72.2 80.2 81.0
24 11.7 53.2 53.9 77.0 82.3 82.4

Avg 32.2 50.5 56.0 64.4 74.5 75.2

representative AUs, the network is able to correctly predict
the AU labels even without being told the position of the
AUs. We believe that this is due to the depth of the VGG
model, which can learn very deep features, and the pooling
layers, which make the AU detection robust to position
shifts. For the less representative AUs, the texture is less
discriminative for instance around the eyebrow area. Also the
occurrence rate is still smaller than the other AUs, making
the training more challenging.

The E-Net results show better average accuracy and F1
scores than the state of the art approaches and the VGG
finetuning net. On average, the improvement using E-Net
over FVGG in F-score are 8.3% and 10.1%, respectively. The
result can prove the effectiveness of our proposed enhancing
layers. To explore more details of the E-Net, we extract the
feature maps from multiple layers in the E-Net and VGG
finetuning Net. The feature maps are illustrated in Figure 4.

We can see the attention map we designed made a big

difference in the output feature maps. We plot the last feature
maps of Group 4 convolutional layers from the two struc-
tures, FVGG and E-Net. The feature map is 512×28×28.
We mapped the feature map into an 896x448 image (height:
32×28 and width: 16×28). In the VGG feature map, the hot
areas or the attention areas do not have a meaningful focus.
In some areas, even the edges are highlighted as valuable
features. The neural network has no idea which region to
look into. While in the E-Net feature map, we can clearly
see the network is concentrating on area on the face, mainly
the regions enhanced by the attention map. This can make
the E-Net extract more valuable features for AU detection.

Fig. 4. Visualization of selected feature maps from FVGG(left) and E-
Net(right).

Finally, our EAC-Net achieves the best performance in
AU detection. Compared to the state of the art approaches,
The EAC-Net shows improvement in nearly all the AU
detections results, except for AU2. We can see that the F1
score and accuracy all have a small improvement from E-Net
to EAC-Net. This means the pretrained E-Net performs well
and the new structure of EAC-Net is able to extract more
detailed information for AU detection. The improvement of
the F-score and the average accuracy are 3.5% and 0.7%
respectively.

C. Discussions

As we have seen in the experimental results on the
BP4D dataset, the cropping layer of the C-Net only slightly
increases the average accuracy, even though the F1 score,
which is a more appropriate indicator of the performance
of the algorithm, increases by 3.5% over the E-Net. We
know that the major role of the cropping layers is for
alignment, but the faces of the BP4D data are mostly close
to frontal view. We also have discussed that normalization
is a typical processing step in AU detection in the literature.
So we would like to answer two questions: (1) Will a



TABLE V
COMPARISON OF AU DETECTION WITH AND WITHOUT FACE IMAGE

ALIGNMENT

With face alignment Without face alignment
F1 ACC Time(ms) F1 ACC Time (ms)

E-Net 43.6% 69.8% 2500 44.8% 70.1% 30
EAC-Net 52.8% 71.4% 2500 54.1% 73.2% 30

preprocessing aligning step using normalization help or hurt
the performance? (2) Will our C-Net increase the average
accuracy of AU detection and the F1 score more significantly
if the face images include more non-frontal views?

(1) Does face alignment help or hurt?
We hypothsize that the E-Net/EAC automatically focuses

on interesting regions and face alignment is not required
in our approach. In addition, face alignment needs more
computing power in real time applications. We conduct an
experiment to compare the performance of the E-Net and
EAC-Net on AU detection with aligned and non-aligned
faces on randomly selected 3000 images from the BP4D
testing sets. In this experiment, both time and accuracy are
considered.

For all the facial images, we first extract all the facial
landmarks. For the non-alignment approach, the E-Net and
EAC-Net are applied to directly predict the AU prediction,
respectively. For the facial alignment approach, we first run a
2D alignment to register six 2D key points (eyes inner/outer
corners, mouth corners) to a standard face template. We then
apply the E-Net and EAC-Net respectivelt to the aligned face.
The results of the comparison is shown in Table V. The
average time needed for landmark locating and normalization
for each face image is also recorded. Average F1 score and
accuracy (ACC) for the 12 AUs labeled in the BP4D dataset
are used for comparison. From Table V, we observe that with
the E-Net and EAC-Net models, adding facial alignment to
the images slightly hurts the performance. Even though this
is not significant, the process of applying facial alignment
is much more time-consuming, from only 30 ms to 2500
ms. For real-time implementation of the AU detection, the
E-Net and EAC-Net can work well without additional face
image alignment. Thus, we can make the conclusion that the
face alignment pre-processing would not contribute to the
AU detection performance, but would cost much more time.

(2) DISFA dataset result
We follow Zhao et al [21]’s setting to evaluate our ap-

proach on DISFA dataset. Since DISFA dataset is smaller in
diversity and has less positive samples of AUs than BP4D,
we do not directly train the model on DISFA. Instead, we
use the trained model from BP4D. Since there are 3 DISFA
AUs that do not exist in BP4D, we use our pretrained fine-
tuned FVGG, E-Net and EAC-Net to extract features from
the DISFA images. Afterward, we use linear regression to
transform our 1x2048 features to 1x8 AU prediction labels.
27 subjects are split into 3 folds to make sure the predictions
are independent. The AU detection accuracy and F1 score are

TABLE VI
F1 SCORE ON DISFA DATASET

AU LSVM APL[21] DRML[21] FVGG E-N EAC
1 10.8 11.4 17.3 32.5 37.2 41.5
2 10.0 12.0 17.7 24.3 6.1 26.4
4 21.8 30.1 37.4 61.0 47.4 66.4
6 15.7 12.4 29.0 34.2 52.5 50.7
9 11.5 10.1 10.7 1.67 13.4 80.5
12 70.4 65.9 37.7 72.1 71.1 89.3
25 12.0 21.4 38.5 87.3 84.2 88.9
26 22.1 26.9 20.1 7.1 43.5 15.6

Avg 21.8 23.8 26.7 40.2 44.4 48.5

TABLE VII
ACCURACY ON DISFA DATASET

AU LSVM APL[21] DRML[21] FVGG E-N EAC
1 21.6 32.7 53.3 82.7 75.1 85.6
2 15.8 27.8 53.2 83.6 82.5 84.9
4 17.2 37.9 60.0 74.1 74.5 79.1
6 8.7 13.6 54.9 64.2 77.4 69.1
9 15.0 64.4 51.5 87.1 84.0 88.1
12 93.8 94.2 54.6 67.8 70.1 90.0
25 3.4 50.4 45.6 78.6 73.8 80.5
26 20.1 47.1 45.3 61.7 68.6 64.8

Avg 27.5 46.0 52.3 74.9 75.7 80.6

shown in Tables VI and VII. Compared to the state of the
art approaches, we see more significant improvement than
that with BP4D. The F1 score of the EAC-Net increases by
4.1% over the E-Net, and the average accuracy increases by
4.9%. More importantly, the improvement yielded by C-Net
is more significant than by the E-Net. This may be due to
the following reasons:

(1) Training dataset balancing. The DISFA dataset is more
imbalanced than BP4D. If we directly use all the raw data,
the AU occurrence rates are shown in Table VIII. Our
preprocessing in balancing the data can improve the AU
detection results.

(2) Our approach is more robust in dealing with wild
images. The DISFA subjects have a small angle to the
frontal view, so normalization is required in most approaches,
while our approach merely needs to know the approximate
landmarks positions on the faces. This make our approach
much more robust dealing with faces not in frontal view.

V. CONCLUSIONS

In this paper, we propose a region of interest based
approach for AU detection. We design the enhancing net
(E-Net) to force the neural network to pay more attention
to AU interest regions on face images. We also propose

TABLE VIII
AU OCCURRENCE RATES IN DISFA DATASET

AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26
4.9% 4.3% 15.2% 7.8% 4.1% 12.88% 27.7% 8.8%



the cropping net (C-Net) to ensure that the network learns
features in “aligned” facial areas individually. This makes
our EAC-Net – the integration of the E-Net and C-Net –
more robust to various facial shifts and orientations.

We evaluate our proposed E-Net and EAC-Net on two
datasets: BP4B and DISFA. The AU detection results shows
that our approach can achieve better performance on these
commonly used AU datasets. We also show the robustness
of our approach to additional facial alignment preprocess.
With deep pretrained models and a “smarter” way to focus
on interest regions, the proposed approach shows its power
in AU detection on multiple datasets. Our approach also
shows the potential to deal with “wild” image AU detection
in real time, such as partially visible faces, and faces with
large pose variations, which is our ongoing work. In the
future, we will try to find more responsive areas for the
enhancing and cropping nets, as currently we manually locate
the positions. In addition, we will explore integrating more
temporal information into the EAC-Net framework to deal
with the wild video AU detection problem.
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