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Abstract 

Large transportation hubs are difficult to navigate, especially for people with 
special needs such as those with visual impairment, Autism spectrum disorder (ASD), 
or simply those with navigation challenges. The primary objective of this research is 
to design and develop a novel cyber-physical infrastructure that can effectively and 
efficiently transform existing transportation hubs into smart facilities capable of 
providing better location-aware services. We investigated the integration of a number 
of internet of the things (IoT) elements, including video analytics, Bluetooth beacons, 
mobile computing, and facility semantic models, to provide reliable indoor navigation 
services to people with special needs, yet requiring minimum infrastructure changes. 
Our pilot tests with people with special needs at a multi-floor building in New York 
City has demonstrated the effectiveness of our proposed framework.  

 
INTRODUCTION 

Transitional spaces such as bus terminals, train stations, airports, and multi-
modal transportation hubs have become an increasingly important part of city’s 
infrastructure as we are spending more and more of our lives in these spaces in 
today’s ever more connected world. Transportation facility owners are facing 
growing challenges to accommodate the rising public travel demands while 
improving quality of service. Future transportation facilities need to be smart, 
providing efficient, high-quality, and equitable services to the increasingly diverse 
population. This is especially true for those gigantic transportation hubs because 
wayfinding in these facilities has always been challenges for people with special 
needs such as individuals with visual impairment and Autism Spectrum Disorder 
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(ASD) and people with difficulties in finding places, particularly persons unfamiliar 
with metropolitan areas.  

In the United States alone, the visually impaired population has reached 6.6 
million people and expected to double by 2030 (from 2010 figures) (Varma et al., 
2016). According to Centers for Disease Control and Prevention (CDC), ASD is the 
fastest-growing developmental disorder affecting 1 in every 68 people in the US. One  
common and recurring obstacle that people from both groups face every day is 
navigation, particularly as related to mobility. Using public transportation services is 
the best way for them to travel. However, there are also significant hurdles in using 
them due to their challenges. In 2015, a study conducted at Rutgers University found 
that according to adult respondents on the spectrum and their family members, 35.1% 
of these adults with ASD have difficulty in determining directions/route (Feeley et al., 
2015).  

 

Table 1.  Difficulty with Different Aspects of Walking 

Difficult Aspects of Walking Responses 
Percent of 
Responses

Percent of 
Respondents

Difficulty determining directions/route 247 14.2 35.1
Crossing a street  290 16.7 41.3
Judging the distance and/or speed of 318 18.3 45.2
Walking in areas without sidewalks (on 193 11.1 27.5
Dealing with distractions while walking 282 16.2 40.1
Too many people on the sidewalk  64 3.7 9.1
Too many cars or too much traffic  257 14.8 36.6
Other, please specify: 86 5.0 12.2
Total 1737 100.0 NA

 

While new technologies can be included and integrated into the design and 
construction of new transportation hubs to make them smarter, retrofitting existing 
facilities to make them smarter will be a more cost-effective choice in highly 
developed urban settings. Current emerging mobile computing and IoT technologies, 
together with advances in computer vision techniques used in 3D localization and 
crowd analysis, will provide great opportunities in significantly improving navigation 
services as well as creating innovative approaches to accommodate passengers and 
customers. While the support for these kinds of projects is evident, few studies have 
systematically investigated the synergy of these technologies as a cyber-physical 
infrastructure to enable these services. Most studies have focused on individual 
technological solutions which tend to fail to deliver reliable services in large and 
complex transportation hubs. The purpose of this study is to explore deep integration 
of Internet-of-Things (beacons, surveillance cameras, facility models, and mobile 
devices), Big Data analytics (deep learning, localization, and computing 
infrastructure), and affective computing (cognitive computing) as a novel cyber-
physical system to build smart and accessible transportation hubs (SAT-Hub) capable 
of providing better location-awareness services (e.g. navigation support) to all, 
especially to people with disabilities (visual impairment and ASD) and people with 
navigation challenges. This paper describes and presents preliminary results on a 
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novel cyber-physical infrastructure framework that can effectively and efficiently 
transform existing transportation hubs into smart facilities that are capable of 
providing better location-awareness and personalized navigation services (e.g. finding 
terminals, improving travel experience, obtaining security alerts) to the traveling 
public, especially for the underserved populations including those with visual 
impairment, ASD, or simply navigation challenges. 

 
RELATED WORK 

People who are have normal vision rely almost exclusively on their sight to 
orient themselves in a new indoor environment. As for people with visual impairment, 
eyesight is not a useable or reliable perception means, and they need to use 
alternative sensory tools to collect information to explore the environment. In spite of 
this need, the majority of the tools available to this population of people are not able 
to tell them their locations accurately, not even for navigation. For example, a white 
cane can help them to determine whether an area is walkable or not, but it cannot 
provide users their location information. Guide dogs may help to lead users to walk 
along known paths, but users still need other information to reason their locations 
when they want to change their routes, let alone to say owning a guide dog is 
expensive. GPS is sometimes used for localization in outdoor environments, but GPS 
signals can rarely be detected indoors or in dense urban areas because GPS signals 
are weakened and scattered by walls, roofs, and other obstructions (Agarwal et al., 
2002). 

Similarly, ASD individuals welcome technological solutions in order to 
overcome many of their daily obstacles. Among those obstacles, one common and 
recurring obstacle is navigation, in particular in indoor settings. Outdoor areas have 
signs, maps, and GPS-based navigation systems that can help a person navigate to 
their destination, whereas indoor navigation is often proved to be a much more 
difficult task. Because of this, lack of adequate navigation capabilities has limited 
their opportunities to use public transportation services. In many circumstances, ASD 
individuals may get lost or are unable to find their destinations in a complex building. 
In situations like these, not all ASD individuals are comfortable enough to seek help 
from strangers due to several reasons like communication difficulties, language 
problems, or social issues. 

In recent years, researchers and several startups have been working on indoor 
GPS systems such as WiFi- or Bluetooth-based navigation approaches, and a few 
public facilities even have tested such approaches (i.e. SFO airport) (Indoor.rs, 2016). 
Some have proposed localization using the magnetic field (Li et al., 2012) while 
others have suggested using accelerometers and compasses on mobile devices in 
order to detect the speed and direction of the user (Collin et al., 2003). However, 
these methods are very much prone to error and may not be supported by all devices. 
Recently, localization using Bluetooth Low Energy (BLE) beacons has emerged as a 
viable method of positioning considering its wide availability and low cost (Gruman, 
2014). However, these approaches with fixed beacons often require large-scale 
infrastructure changes and tedious sensor (beacon) installations and calibrations. 
These kinds of requirements are very costly and difficult to meet in large public 
transportation centers, all of which having frequent 3D environment changes and 
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large volume of passengers. Needed are approaches that would require minimum 
infrastructure changes and sensor installations. Semantic facility model-based 
navigation could be a potential solution. However, relying on semantic models alone 
would be problematic because these kinds of facilities are simply changing so fast 
and models become obsolete quickly. 

Another means to provide indoor localization and navigation services is 
computer vision based approaches. Previous work (Hu et al., 2014) explored methods 
to process images by image matching and estimate the location information. However, 
image matches are error-prone in the indoor and urban environments with large 
textureless areas. Some other studies have explored using Structure from Motion 
(SfM) to create street 3D models in the outdoor environment and recognizing the 
places utilizing images from Internet (Sattler et al., 2015; Torii et al., 2015; Zeisl et 
al., 2015). Some researchers use Bag of Words (BoW) (Cao et al., 2016) or ConvNet 
features (Sünderhauf et al., 2015) to represent outdoor environments for localization. 
Among these studies, very few of them focus on indoor scenarios, especially for an 
assistive localization purpose. In addition, a practical SfM model heavily relies on the 
richness and distinguishes of environmental features extracted from the images, 
which is hard to use in environments where few features are available and detected 
features often tend to be repetitive in space.  

The rise of mobile and wearable devices as ubiquitous sensors has greatly 
accelerated the advancement of both general computer vision research and assistive 
applications. Farinella et al. (Farinella et al., 2015) uses Android phones to implement 
an image classification system with DCT-GIST based scene context classifier. Some 
others apply Google Glass and develop an outdoor university campus tour guide 
application system by training and recognizing the images captured by Glass camera 
(Altwaijry et al., 2014). Paisios, a blind researcher, creates a smart phone app for the 
Wi-Fi based blind navigation system (Paisios, 2012). Manduchi proposes a sign-
based way-finding system and tests the blind volunteers with smart phones to find 
and decode the information embedded in the color marks pasted on the indoor walls 
(Manduchi, 2012). However, in spite of the technology promise demonstrated in 
these studies, few research work exist on designing user-friendly smart phone apps 
for helping visually impaired people to localize themselves and navigate through an 
indoor environment. 

 
PROPOSED APPROACH 

Our proposed solution to provide reliable indoor navigation services in major 
transportation hubs relies on integration of Internet-of-Things (beacons, surveillance 
cameras, facility models, and mobile devices), data analytics (deep learning and 
localization), and affective computing (cognitive human factors). The proposed 
cyber-physical system is designed to require minimum infrastructure changes as it 
leverages existing cyberinfrastructures such as surveillance cameras, facility models, 
and mobile phones, and incorporates a minimum number of beacons to achieve 
reliable navigation services. Figure 1 shows four essential elements in our proposed 
framework. In the following, we detail the technical innovations in each of these 
elements. 
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make the installation and maintenance of both fixed and mobile beacons more 
effective. 3D locations of beacons can be planned either interactively or automatically 
in the 3D digital model for the best coverage, and visualized in a virtual reality 
display for each installation. When a user comes into the facility, his/her App will be 
able to detect at least three of the beacons with known locations to obtain a relatively 
accurate location (from a meter to several meters). Then the 2D-3D registration 
approach will be used to further refine and track the location of the user. 
Video based crowd analysis 

A unique component of our proposed approach is integrating crowd analysis 
into indoor navigation services. Traditional indoor navigation services rarely consider 
contextual information when providing navigation guidance. However, this could be 
an important issue for people with special needs. For example, ASD individuals may 
prefer to choose paths that have less dense crowds due to psychological factors; 
people with visual impairment try to avoid large open space due to difficulty to find 
references for localization; and people in wheel chairs can navigate along paths with 
less crowds far more conveniently than along those with large crowds. In our 
proposed framework, we analyze the video feeds in real-time from surveillance 
cameras in the facility to evaluate the density of crowds in different parts of the 
facility. The analysis results will be incorporated into path choices. 

 
Context-aware navigation guidance 

The proposed framework also includes a user-centric, activity-aware and 
feedback-enabled services with the support of the surveillance camera system to 
provide human crowd analysis results. In our framework, path planning for a user is 
made based on the following five factors: 1) Both the user’s current location and 
his/her destination; 2) The user’s planned schedule (for example the time to take a 
bus); 3) The special needs of the user; 4) The semantic 3D models with all the 
important facility labels; and 5) The crowd analysis results from the surveillance 
cameras. This is a graph planning problem with multiple cost attributes, and probably 
the graph and the path need to be updated if the path is not very short. As examples, a 
visually impaired or wheelchair user should avoid stairs. We will also need to adapt 
the path based on user’s feedback. If an ASD user gets stuck and panic at certain 
location, the App will need to re-route the path, probably will also need to put them to 
wait if certain areas that they have to pass are too crowded and their time still allow 
them to wait.  

 
PRELIMINARY RESULTS 

In order to test the proposed framework, we have conducted pilot tests at a 
multi-floor facility in New York City. The facility has high definition surveillance 
cameras in place and it provides services to people with visual impairment. Estimote 
beacons (Estimote, 2016) are installed in the facility during our study. Although the 
facility was not a true transportation hub, it provides a great opportunity to test and 
validate our proposed approach with the easy reach to one of the groups we would 
like to provide services. The pilot provides foundational knowledge to expand our 
approach to transit stations and transportation hubs. In the following, we describe the 
development and testing of the framework at this facility. 
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3D semantic model and image model registration 
As the first step, we utilized a terrestrial laser scanner (Figure 2a) to create a 

high-fidelity 3D model of the facility. The facility is represented with colorized 3D 
point cloud (Figure 2b) with dense annotation of building elements (Figure 2c). The 
creation of dense annotation is realized with a semi-automated segmentation and 
labeling tool developed as part of this project. Basically, the tool segments the point 
clouds through a region growing method (Rusu, 2010) and the segmented point 
clouds are manually annotated. 

 
 
 
 

(a) (b) (c) 
Figure 2. (a) Facility modeling with terrestrial laser scanning; (b) Colorized 

point cloud data of the facility; (c) Point clouds with dense annotation of 
building elements (in this case, elevator doors) 

 
In this component, we also investigated registration of mobile phone image of 

the user with the 3D semantic model to provide user more accurate location and 
orientation information to get to his/her desired location. The registration between 
mobile images and facility point cloud data is solved by determining the projection 
between corresponding pixels/points. Denote a point as ܥ = [ܺ, ܻ, ܼ, 1]், and a pixel 
as ܿ = ,ݑ] ,ݒ 1]். The projection from a 3D point on to a 2D pixel could be expressed 
as: ܿ =  (1)   ܥ[࢚|ࡾ]࡭
Where A includes intrinsic camera parameters, R and T are extrinsic camera 
parameters, including rotation and translation of the camera, according to the 
reference coordinate. Figure 3 shows alignment of a user view of the elevation from 
his mobile phone with the point cloud data. 
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Figure 3. Registration of mobile phone image with the 3D semantic model 

 
Deep learning for crowd analysis 

We have been studying deep learning methods to improve the accuracy of 
crowd density estimation for the low- or mid- density crowd (Zhang et al., 2015), and 
tackle the high-density crowd using a regression-based method (Lempitsky and 
Zisserman, 2010; Chen et al., 2012). So far we have obtained very promising results 
on both crowd counting and crowd density estimation (Figure 4) based on 
convolutional neural networks (CNNs) (Jia et al., 2014). Though other convolutional 
neural networks have been used for crowd detection (Zhang, Li, Wang and Yang, 
2015), our proposed pixel-wise calculation structure of the neural network is novel 
for the application of crowd density detection. From a high level perspective, the 
program would take as input a single color frame from the surveillance footage and 
output a form of “heat map” showing where people are at in the image and how many 
people there are. The “heat map” visualizes the count of the number of people per 
pixel of the image. Since a person takes up more than one pixel – and the sum of the 
total values within the body of a person is 1, the value per pixel is low. Where 
multiple people are occluding one another, we expect a higher value in that area. That 
is, even though that specific pixel only shows part of one person, the program should 
use surrounding pixels to determine that one person is occluding another. From this, 
any portion of the image can be considered, and within that portion the count of 
people can be determined. Additionally, these values can be averaged over time to 
compare the density of people per period of time. 

The detection process is performed by a convolutional neural network. A brief 
explanation of how this works is as follows: an artificial neuron (which exists in the 
form of code) “looks” at the values in a tiny patch of pixels in the image. Each neuron 
has a certain pattern of values it “likes” to see in this patch. The closer the patch 
matches what the neuron likes to see, the higher value the neuron itself outputs. 
Additional layers of neurons then look at the output of the previous layers, 
themselves each liking their own pattern from that pervious layer. In this way, early 
neurons might like to see something like lines while the later layer neurons like to see 
combinations of lines in certain shapes. Finally, the entire network of neurons is 
made to like the appearance of people or groups of them. The neurons are trained to 
like the patterns they do, by training them on manually annotated data with density of 
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of the beacons in the fingerprint (potentially from walking around or due to 
congestion). Thus, we are able to almost guarantee that a position will be computed 
and that this calculated position is very near to the real position. The resulting 
fingerprint map using three Estimote Beacons (Estimote, 2016) is shown in Figure 5. 
By comparison between the two approaches, the fingerprinting is a very viable and 
very robust method of localization and is a preferred approach to provide location-
based services inside large, complex transportation hubs.  

 
Figure 5. Server-generated map of fingerprints (blue circles) and beacons (red 
triangles) in the test area. Grid lines on hand-drawn floor plan represent tiles on 
floor. Axes represent pixel coordinates. 76 fingerprints were taken at 21 
locations (average: ~3.6 fingerprints per location). In this visualization, the unit 
of both axes is in pixels.  
 
Path planning and navigation assistance 

The path planning element is encapsulated in a mobile application which 
leverages user location information (computed from the registration of image 
captured by user and the 3D facility model, and beacon-based localization), semantic 
facility model or simply a floor plan of the facility, and crowd analysis results to 
make decisions on paths that consider users’ personal need. The mobile application is 
capable of providing multi-mode sensory feedback such as vibration and voice to 
users to achieve assistive navigation. Figure 6 shows an example test scenario where 
a user used the mobile app to navigate our studied facility using both the beacon-
based localization and floor-plan-based path planning algorithms we developed on 
Android smart phones. Our study has shown that the app is capable of providing 
personalized travel guidance utilizing semantic 3D model, crowd analysis results, and 
strategically placed beacons. 
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Figure 6. Beacon-based localization and floor-plan-based path planning. 

CONCLUSION 
This project investigated a novel cyber-physical infrastructure framework that 

can effectively and efficiently transform existing transportation hubs into smart 
facilities that are capable of providing better location-aware services (e.g. finding 
terminals, improving travel experience, obtaining security alerts) to the traveling 
public, especially for the underserved populations including those with visual 
impairment, ASD, or simply those with navigation challenges. We conducted our 
pilot test at a multi-floor building in New York City to evaluate the feasibility of our 
proposed framework. This initial test has demonstrated that it is feasible to integrate 
our proposed Internet of the Things elements (including video analytics, BLE 
beacons, mobile phone apps, and LiDAR-scanned 3D digital models) into a coherent 
framework to provide navigation services to people with special need. Future 
improvements would include using the 3D model to automatically determine 
information about the surveillance camera scene (such as camera pose and 
environment structure). This will not only improve the accuracy of the network, but 
more importantly provide a way in which the network can be generalized to all 
cameras in a facility without specific training the network to each individual camera. 
This could also make the network viable for completely different facilities and 
useable in any location, which will be our follow-on work. Future research will also 
focus on the best beacon and fingerprinting density and RSSI margin of error. 
Another area of interest is the best method for selecting the user’s current coordinates 
during fingerprinting. Existing services automatically assume that the location that 
the user selects on the floor plan is correct. However, there is no way for the user to 
actually know if they are correct or are off by inches or feet. Thus, a better method 
for self-localization during fingerprinting is also certainly a future area of research. 
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Lastly, it is in our team’s agenda to test this framework in several public transit hubs 
in New York City and New Jersey.  

ACKNOWLEDGEMENT 
This research was performed under two appointments (one for Zhu/Gong and one for 
Tang) to the U.S. Department of Homeland Security (DHS) Science & Technology 
(S&T) Directorate Office of University Programs Summer Research Team Program 
for Minority Serving Institutions, administered by the Oak Ridge Institute for Science 
and Education (ORISE) through an interagency agreement between the U.S. 
Department of Energy (DOE) and DHS. ORISE is managed by ORAU under DOE 
contract number DE-SC0014664. This work is supported in part by the National 
Science Foundation through Award EFRI -1137172, VentureWell (formerly NCIIA) 
through Award 10087-12, NIST/US Ignite Global City Teams Challenges(GCTC) . 
The work is also supported by Rutgers Center for Advanced Infrastructure and 
Transportation – a national University Transportation Research Center supported by 
USDOT. We would like to thank the following individuals for their partnerships in 
the GCTC effort: Barbara Campbell of the NYS Commission for the Blind, William 
H. Seiple of Lighthouse Guild, Ed Hoff of NJ Transit and Michael Lysicatos of 
Passaic County Department of Planning & Economic Development. All opinions 
expressed in this paper are the authors’ and do not necessarily reflect the policies and 
views of DHS, DOE, NSF, USDOT, VentureWell or ORAU/ORISE 

REFERENCE 
Agarwal, N., Basch, J., Beckmann, P., Bharti, P., Bloebaum, S., Casadei, S., Chou, 

A., Enge, P., Fong, W. & Hathi, N. (2002), Algorithms for Gps Operation 
Indoors and Downtown, GPS solutions, 6(3), 149-160. 

Altwaijry, H., Moghimi, M. & Belongie, S. (2014), Recognizing Locations with 
Google Glass: A Case Study, IEEE Winter Conference on Applications of 
Computer Vision, IEEE, pp. 167-174. 

Cao, J., Chen, T. & Fan, J. (2016), Landmark Recognition with Compact Bow 
Histogram and Ensemble Elm, Multimedia Tools and Applications, 75(5), 
2839-2857. 

Chen, K., Loy, C. C., Gong, S. & Xiang, T. (2012), Feature Mining for Localised 
Crowd Counting, BMVC, pp. 3. 

Collin, J., Mezentsev, O. & Lachapelle, G. (2003), Indoor Positioning System Using 
Accelerometry and High Accuracy Heading Sensors, Proc. of ION GPS/GNSS 
2003 Conference, pp. 9-12. 

Estimote. (2016), Esimote. 
Farinella, G. M., Ravì, D., Tomaselli, V., Guarnera, M. & Battiato, S. (2015), 

Representing Scenes for Real-Time Context Classification on Mobile 
Devices, Pattern Recognition, 48(4), 1086-1100. 

Feeley, C., Deka, D., Lubin, A. & Mcgackin, M. (2015), Assessment of 
Transportation and Mobility Adults on the Autism Spectrum in Nj, NJ 
Department of Health. 

International Conference on Sustainable Infrastructure 2017 137

© ASCE

 International Conference on Sustainable Infrastructure 2017 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Z
hi

ga
ng

 Z
hu

 o
n 

12
/0

7/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



 
 

Gruman, G. (2014), What You Need to Know About Using Bluetooth Beacons, 
Smart User (blog), InfoWorld, July, 22. 

Hu, F., Zhu, Z. & Zhang, J. (2014), Mobile Panoramic Vision for Assisting the Blind 
Via Indexing and Localization, European Conference on Computer Vision, 
Springer, pp. 600-614. 

Indoor.rs. (2016), Indoors. 
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, 

S. & Darrell, T. (2014), Caffe: Convolutional Architecture for Fast Feature 
Embedding, Proceedings of the 22nd ACM international conference on 
Multimedia, ACM, pp. 675-678. 

Lempitsky, V. & Zisserman, A. (2010), Learning to Count Objects in Images, 
Advances in Neural Information Processing Systems, pp. 1324-1332. 

Li, B., Gallagher, T., Dempster, A. G. & Rizos, C. (2012), How Feasible Is the Use of 
Magnetic Field Alone for Indoor Positioning?, Indoor Positioning and Indoor 
Navigation (IPIN), 2012 International Conference on, IEEE, pp. 1-9. 

Manduchi, R. (2012), Mobile Vision as Assistive Technology for the Blind: An 
Experimental Study, International Conference on Computers for 
Handicapped Persons, Springer, pp. 9-16. 

Paisios, N. (2012), Mobile Accessibility Tools for the Visually Impaired, Citeseer. 
Rusu, R. B. (2010), Semantic 3d Object Maps for Everyday Manipulation in Human 

Living Environments, KI-Künstliche Intelligenz, 24(4), 345-348. 
Sattler, T., Havlena, M., Radenovic, F., Schindler, K. & Pollefeys, M. (2015), 

Hyperpoints and Fine Vocabularies for Large-Scale Location Recognition, 
Proceedings of the IEEE International Conference on Computer Vision, pp. 
2102-2110. 

Subhan, F., Hasbullah, H., Rozyyev, A. & Bakhsh, S. T. (2011), Indoor Positioning 
in Bluetooth Networks Using Fingerprinting and Lateration Approach, 2011 
International Conference on Information Science and Applications, IEEE, pp. 
1-9. 

Sünderhauf, N., Shirazi, S., Dayoub, F., Upcroft, B. & Milford, M. (2015), On the 
Performance of Convnet Features for Place Recognition, Intelligent Robots 
and Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE, pp. 
4297-4304. 

Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M. & Pajdla, T. (2015), 24/7 Place 
Recognition by View Synthesis, Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 1808-1817. 

Varma, R., Vajaranant, T. S., Burkemper, B., Wu, S., Torres, M., Hsu, C., 
Choudhury, F. & McKean-Cowdin, R. (2016), Visual Impairment and 
Blindness in Adults in the United States: Demographic and Geographic 
Variations from 2015 to 2050, JAMA ophthalmology. 

Zeisl, B., Sattler, T. & Pollefeys, M. (2015), Camera Pose Voting for Large-Scale 
Image-Based Localization, Proceedings of the IEEE International Conference 
on Computer Vision, pp. 2704-2712. 

Zhang, C., Li, H., Wang, X. & Yang, X. (2015), Cross-Scene Crowd Counting Via 
Deep Convolutional Neural Networks, Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 833-841. 

International Conference on Sustainable Infrastructure 2017 138

© ASCE

 International Conference on Sustainable Infrastructure 2017 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Z
hi

ga
ng

 Z
hu

 o
n 

12
/0

7/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.


