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ABSTRACT 

Current visual prosthetic devices provide only very limited 

restoration or substitution of vision for the visually im-

paired, in part due to their low resolution and simple scene 

transducing approaches with uniform sampling and quanti-

zation. In this paper, a novel smart sampling method using a 

color-patch-based stereo reconstruction approach is de-

scribed to automatically select, sample and transduce the 

most useful scene information to end users using visual 

substitution devices. The proposed method first constructs a 

patch-based 3D model of the scene using the color-patch-

based stereovision algorithm given a pair of video frames 

captured by a stereo camera head. Then, the patch-based 3D 

model is analyzed using the smart sampling algorithm and 

further transduced into various alternative perception choic-

es, using both color and depth information. Some prelimi-

nary experimental results are shown to validate the proposed 

method. 

Index Terms— image sampling, 3D reconstruction, as-

sistive technology, visual prosthesis 

 

1. INTRODUCTION 

Various visual prostheses have been developed in the past 

decade. The most prevalent visual prosthesis, the retinal 

prosthesis, is an experimental visual device aimed at restor-

ing vision functions of the visually impaired [2, 15]. It can 

provide low resolution images to a blind user with these 

retinal prostheses, which electrically stimulate his/her retinal 

cells. Currently, the state-of-the-art retinal prosthesis has 

very limited resolution (60 – 100 channels, in the form of a 

6x10 or 10x10 array) [15]. Another example of a visual 

prosthesis that does not require surgery is tongue stimula-

tion: the Brainport technique [1] of Wicab Inc. captures an 

image and processes the image by converting it into impuls-

es which are sent via an electrode array on the tongue. The 

tongue simulator currently has 400 channels (a 20x20 reso-

lution).  

Both methods face a very serious problem: low resolu-

tion. If we simply sample an original image into a 20x20 or 

lower resolution array to drive the retinal or tongue stimula-

tion, it would be hard to preserve small objects that are close 

to the user. Another problem is when a scene is cluttered, it 

is difficult to represent the complex scene in a low-

resolution display. It is challenging to convey and enhance 

the most useful and important information without a com-

prehensive analysis of the scene.  

To meet this challenge, we propose a smart-sampling 

method. The basic idea is as follows. Using 3D computer 

vision techniques, we can first pre-process a scene and ob-

tain its 3D model. Then, using the 3D model, only the im-

portant objects will be selected, sampled and conveyed to 

the low-resolution display for an end user who is visually 

impaired. The output of the system can be easily encoded 

into the input device of any kind of visual prosthetic that has 

low resolution. 

 
Fig. 1.  Smart sampling based on 3D scene segmentation. (a) The 

simulated scene with a number of objects (e.g., a pole is in a close 

range). (b) 3D depth map of the simulated scene. (c) Sampling 

results of the 2D image (left) and 3D depth map (right) using a 

regular sampling method. Note the pole is missing after the regular 

sampling. (d) Sampling results of the 2D image (left) and 3D depth 

map (right) using our smart sampling method. The pole is still 

preserved after sampling. 

Fig. 1 illustrates the idea using a simulated scene. Fig. 1a 

is a simulated image with a green background (ground 

plane) and three objects: a building façade, a cubic object, 

and a thin, vertical pole. Using the patch-based stereo ap-

proach [14], the 3D information of all regions is obtained 

(Fig. 1b). Fig. 1c shows the results of a regular uniform 

sampling of the image into 20x20 pixels: the thin long pole 

disappeared. However, using our smart sampling method, 

the thin pole is preserved in the final 20x20 sampled image. 

(b) 

(d) (c) 

(a) 



This paper will focus on a novel 3D scene transducing 

method under very low image resolution: the smart sam-

pling algorithm using both color and depth segmentation. 

During the writing of this paper, we are performing more 

experiments that send the transducing results to the tongue 

stimulator of the Brainport device. We hope the new sam-

pling approach will increase the capability of alternative 

perception techniques for the visually impaired. 

The paper is organized as follows. Section 2 discusses 

some closely related work. In Section 3, we present the 

smart sampling and enhancement method. Section 4 pro-

vides some experimental results. Finally we conclude our 

work in Section 5. 

 

2. RELATED WORK 

Computer vision techniques are playing an increasingly 

important role in the development of visual prostheses [3]. 

Computer vision can be used to help restore some specific 

visual abilities, such as light perception and object recogni-

tion in retinal prostheses. Image segmentation has been 

applied in a visual prosthesis to enhance object recognition 

[5] and face detection and tracking methods are used to 

assist with recognizing faces [4]. Another challenge that 

visually impaired people encounter is navigation, and many 

different vision technologies have been applied in the devel-

opment of electronic travel aids for the visually impaired. 

Coughlan et al. [7, 8] propose systems for helping the visu-

ally impaired find a path to a machine-readable sign using a 

cellphone camera. Using stereo cameras [9, 10], depth maps 

are produced to aid navigation. Staircases [11 and 12] and 

zebra-crossings [13] are detected using stereo cameras to 

help blind users identify and climb stairs and cross streets.  

The work most related to ours is the method proposed by 

McCarthy et al. [6], which is a vision algorithm for retinal 

prostheses to support visual navigation. With stereo vision 

techniques, the system classifies a scene into ground and 

non-ground surfaces and renders a depth image in a low 

resolution version. But it might miss small/thin objects, such 

as a pole, a horizontal bar, or a thin tree branch in front of 

the user due to the use of uniform sampling. 

 

3. SMART SAMPLING 

The smart sampling approach consists of two steps. First, a 

patch-based stereovision method [14] is applied to a pair of 

stereo images captured by a stereo camera head. The out-

come of the patch-based method is not just an array of indi-

vidual 3D points that are usually produced by a typical ste-

reovision system. Instead, it is a geometric representation of 

plane parameters, with geometric relations among neighbor-

ing planar surfaces. Second, a smart sampling algorithm is 

applied, using the patch-based 3D and color segmentation 

results. This paper will focus on the second step.  

In order to make full use of the limited resolution of al-

ternative perception devices such as retinal prostheses and 

tongue stimulators, starting with the patched-based 3D rep-

resentation, our smart sampling algorithm provides en-

hancements to the alternative perception devices of end 

users.  

Sampling needs to be conducted to reduce a 2D/3D map 

from an original high resolution image (Ro) to a low resolu-

tion sampling (Rs) for visual prosthetic or tongue stimula-

tion. Regular uniform sampling methods sample one pixel 

every N pixels (N=Ro/Rs). For some thin objects, for exam-

ple, a lamp pole in front of the blind user, it is impossible to 

preserve the object after sampling if the width of the pole in 

the image is smaller than N. It will be very dangerous be-

cause the user may bump into the objects right in front of 

him/her.  

The smart sampling we have proposed can preserve such 

thin objects, which are determined to be significant by a 

number of measurements: the distance from the user, the 

confidence in the 3D measurements, and the shapes of the 

objects. Currently, we consider thin but long objects that 

could be vertical poles and horizontal bars. From the patch 

based stereo vision method, a 3D map consists of many 

planar patches with known geometric relations. The goal of 

smart sampling is to not lose any important information 

when the sampling is performed based on the patch-based 

3D representation.  

In order to reduce the computational cost for a portable 

device implementation, we propose a very efficient algo-

rithm based on the patch-based stereovision result. The fol-

lowing shows the details for the smart sampling of the depth 

image. 

 
Fig. 2. Illustration of smart sampling of a patch Pi. The original 

image is divided into multiple rectangle cells, each cell corre-

sponds to a pixel in the sampled image. The bounding box Bi of 

the patch Pi occupies a number of cells {Ci
m}, each corresponding 

to a pixel ci
m in the sampled image  (m=1, 2, 3 4 in the figure). Pi

0 

is the first point in Pi , and PCi
m

n , n = 1. .4 , are the four sampled 

pixels in the cell Ci
m.  

Smart Sampling Algorithm for the Depth Image  

Input: 

Z: the original depth image, of the size W × H 

Output:  

Zs: the sampled depth image, of the size  w × h 

Notations Used in the Algorithm (Fig. 2): 

Pi = {Pi
j
}, i = 1 … K where 

Pi: the ith patch obtained in the image segmentation step 

(Note: the depth in a single patch may be different); 



Pi
j
: the jth pixel in the patch Pi; 

K: the total number of patches in Z; 
 

(sx, sy) : the ratios between the resolutions of Z and Zs,  i.e., 

sx = W/w and sy = H/h.  

Bi : the bounding box of patch Pi, which includes a number 

of cells {Ci
m} that are rectangular regions in Z.  

(Note: ⋃ Ci
mM

m=1 = Bi, but Ci
m ∩ Pimight be ∅. M is the total 

number of the Cells in Bi) 

{ci
m}: the set of the sampled pixels in Zs , corresponding 

to {Ci
m}  

 

1. Initialization of 𝑍𝑠 using a uniform subsampling method 

For q = 1 to w ∗ h 

xl = xq
s ∗ sx, yl = yq

s ∗ sy // (xl, yl)  ∈ Z, (xq
s , yq

s  ) ∈ Zs  

Zs(xq
s , yq

s ) = Z(xl, yl)   //initial sampled image 

End for 

2.  Smart sampling 

For i = 1 to K // loop for the patches 

a) Sample the first pixel Pi
0 = (xi

0, yi
0) of the patch Pi in the 

original depth image Z (the red pixel in Fig. 2) to deter-

mine if pixel (x0
s , y0

s) = (xi
0 sx⁄ , yi

0 sy)⁄  in the sampled 

image will be replaced: 

if Z(xi
0, yi

0) < Zs(x0
s , y0

s) 

Zs(x0
s , y0

s) = Z(xi
0, yi

0) //update depth value  

b)  For m = 1 to M //do regular sampling in the {Ci
m}, 

Sample four pixels PCi
m

n , n = 1. .4 (uniformly distribut-

ed, orange points in Fig. 2) in the cell Ci
m,  

if PCi
m

n ∈ Pi  

xn
s = xCi

m
n sx⁄ , yn

s = yCi
m

n sy⁄   

if Z(xCi
m

n , yCi
m

n ) < Zs(xn
s , yn

s ) 

Zs(xn
s , yn

s ) = Z (xCi
m

n , yCi
m

n )  //update depth value  

       End for 

    End for 

The smart sampling is performed on each patch and it is 

guaranteed that at least one pixel can be sampled regardless 

of the size of the patch. Initially the sub-sampled image is 

filled with the regular sampling method. During the smart 

subsample process, a sampled 3D value is filled in by com-

paring the new 3D values with the existing 3D value and the 

value of the closer value to the user is kept. In this way, thin 

objects in close range can still be preserved during sam-

pling. With the same method (based on 3D information), the 

original color image can be subsampled and any important 

information can be kept as well.  

The computation complexity of initialization is O(w×h), 

where both w and h are 20 in our experiments. The smart 

sampling is processed on each patch, and then we do the 

regular sampling in each patch so the time complexity is 

∑ (𝑇
𝑘

+ 1)𝐾 , where 𝑇𝑘  represents the computation of the 

regular sampling in patch k, which depends on the shape of 

each patch but may not be proportional to the size of patch. 

The worst case happens when each patch is a diagonal line 

after image segmentation, but the average computation 

should still be proportional to the total size of the subsam-

pled image, thus O(w×h). Therefore the overall computation 

of smart sampling is O(w×h). In addition, because the pro-

cess of each patch could be performed separately, it can be 

easily programmed with a parallel processing method, 

which is extremely useful for real-time processing, such as 

during navigation by blind people. 

In order to provide blind people with stronger input 

when observing obstacles and other types of objects of in-

terest, the objects of interest (OIs) can be highlighted by 

using or combining following methods: background remov-

al, highlighting OIs using motion parallax simulation, or 

dynamic object highlighting. Details of these methods and 

corresponding experiments can be found in an accompany-

ing paper [16].  

 

4.  EXPERIMENTAL AND RESULTS 

Experiments have been performed to test our approach. 

Image sequences were captured by the stereovision head 

Bumblebee, which is fixed on a mobile platform. For a pair 

of stereo images, the left camera serves as the reference 

camera. Fig. 3a shows a stereo pair of color images captured 

in an office, and Fig. 3b shows the rendered depth map from 

the estimated planar representations using the patch-based 

stereo matching algorithm. The plane parameters in the form 

of “no. (a, b, c) d, n”, where no. represents the index of the 

plane, (a, b, c) represents the planar surface normal vector, d 

represents the average distance of the plane to the viewer 

and n represents the uncertainty measurement, are marked 

for a number of large patches. Note that patches with large 

uncertainties are highlighted in green. 

 

  

Fig. 3. (a) A stereo pair of color images (b) 3D depth map generat-

ed by patch-based method (the brighter, the closer). For several 

large regions indexed, the boundaries of regions are marked by 

closed curves (blue) and planar parameters are drawn on the re-

gions. 

In Fig. 4a, a pair of stereo images of an indoor scene is 

shown, including a table, a chair, a printer and a tripod, 

which are about 1 to 4 meters away from the stereovision 

head. A depth map (the brighter, the closer) is shown in Fig. 

4b. For several large surfaces, the plane parameters in the 

form of “no. (a, b, c) d, n” are also shown, with their bound-

aries highlighted in blue. These plane estimation results are 

consistent with the results measured by hand. The paramet-

ric representation can be transduced to a blind user easier 

than an array of depth points with a uniform sampling meth-

b 

 

a 

 



od. Fig. 4 shows results after applying a uniform (c) and the 

smart sampling approach (d). Fig. 4c shows that the tripod, 

which is about 1.55 meters from the user, is missing after 

uniform sampling, but it is preserved using the proposed 

smart sampling approach (Fig 4d). The geometric represen-

tations enable safe and efficient navigation for the visually 

impaired.   

Fig. 4. (a) a pair of stereo images of an indoor scene captured in an 

office with a number of objects (note: a tripod is in a close range); 

(b) 3d depth map of the indoor scene; pixels with large uncertainty 

are marked in green; (c) sampling results of 2D image (left) and 

3D depth map (right) using a uniform sampling method:  the tripod 

is missing after regular sampling; (d) sampling results of 2D image 

(left) and 3D depth map (right) using our smart sampling method: 

the tripod is kept after sampling. 

 

5. SUMMARY AND DISCUSSIONS 

Transducing digital video images into displays of a low 

resolution device is required for state-of-the-art visual pros-

thetics. The proposed smart sampling method can preserve 

close range objects that are significant by a number of 

measurements: the distance from the user, the confidence in 

the 3D measurements, and the shapes of the objects. Using 

this smart sampling approach, a number of practical sam-

pling and enhancement methods can be applied to transduce 

important information and highlight objects of interest in 

different ways in order to allow an end user to easily under-

stand the environment. We are currently working on apply-

ing the proposed method to existing visual prosthetic sys-

tems, such as the Wicab tongue simulator; some of the re-

sults will be reported in [16]. 
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