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Abstract— This paper presents a novel technique to register a 
set of two 3D laser scans obtained from a ground robot and a 
wall-climbing robot which operates on the ceilings to construct a 
complete map of the indoor environment. Traditional laser scan 
registration methods like the Iterative Closest Point (ICP) 
algorithm will not converge to a global minimum without a good 
initial estimate of the transformation matrix. Our technique 
uses an overhead camera on the wall-climbing robot to keep line 
of sight with the ground robot and solves the Perspective Three 
Point (P3P) Problem to obtain the transformation matrix 
between the wall-climbing robot and the ground robot, which 
serves as a good initial estimate for the ICP algorithm to further 
refine the transformation matrix. We propose a novel particle 
filter algorithm to identify the real pose of the wall-climbing 
robot out of up to four possible solutions to P3P problem using 
Grunert’s solution. The initial estimation ensures convergence 
of the ICP algorithm to a global minimum at all times. The 
simulation and experimental results indicate that the resulting 
composite laser map is accurate. In addition, the vision-based 
approach increases the efficiency by reducing the number of 
iterations of the ICP algorithm. 

I. INTRODUCTION 

D laser scan registration is a widely studied research topic 
in robotics community [1-3]. Relative pose between two 

laser scans has been traditionally computed using the ICP 
algorithm and its variants [1, 4]. However, this algorithm 
diverges from the global minimum without a good initial 
estimate of the transformation matrix and is computationally 
expensive due to large number of iterations. It is especially 
true in the case of large rotation and translation between two 
laser scans. In this paper, we address the problem of 
computing the transformation matrix using a vision-based 
algorithm, which provides a good initial estimate for the ICP 
algorithm to register the laser scans.  

We study the scenario of a dual-robot system consisting of 
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a ground robot and a wall-climbing robot [5] that operates on 
the ceiling. The wall-climbing robot, also known as 
City-Climber, adopts a novel adhesive mechanism based on 
aerodynamic attraction to the surface. It is capable of 
operating on all kinds of surfaces, be it smooth or rough and 
effortlessly transit between walls, ceiling and floor. The 
advantages include vantage viewpoint from the ceiling for 
surveillance and inspection.  Both robots are equipped with a 
3D laser scanner and the wall-climbing robot has a 
perspective camera with top-down view of the ground robot. 
The laser scanner on the wall-climbing robot augments the 
laser scan data provided by the ground robot and together, 
they form a complete laser point cloud map. The complete 3D 
map consists of all surfaces in the environment, including 
those surfaces (e.g., the furniture tops) that are impossible to 
detect using the laser scanner on the ground robot.  

We introduce a vision-based algorithm that computes the 
geometric relationship (i.e., the transformation matrix) 
between the wall-climbing robot and the ground robot. The 
overhead camera on the wall-climbing robot captures 2D 
images of the 3 blinking LED lights (control points) that are 
placed on the ground robot. Given the image location and the 
3D location of the control points with respect to the ground 
robot coordinate frame, we can estimate the pose of the 
overhead camera by solving the P3P problem. The P3P 
problem [6, 7] also known as Location Determination 
Problem (LDP) or Camera Pose Estimation problem 
provides the relative pose of the camera with respect to the 
three control points. To date, all attempts to solve the P3P 
problem have resulted in multiple solutions, out of which 
only one solution is valid [8]. Earlier, we presented an 
algorithm that determines a valid solution to the P3P problem 
when the wall-climbing robot moves in linear trajectory [9]. 
In this paper, we present a novel particle filter algorithm that 
probabilistically determines the valid solution to the P3P 
problem when wall-climbing robot moves with an arbitrary 
trajectory. The error analysis of the vision-based algorithm 
reveals that the solution to the P3P problem is bound to have 
errors if noisy images are considered. However, the result 
from the P3P problem really provides good initial estimate for 
the ICP algorithm to further refine the accuracy of the 
transformation matrix. In such a way, the ICP algorithm is 
guaranteed to converge into the global minimum and the 
number of iterations to register the laser scans is reduced 
compared to ICP algorithm with no initial transformation 
input. Other scan matching algorithms can be used for 
refining the transformation matrix such as the Normal 
Distribution Transform, which requires initial position by 
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preview or odometry [2], Angle Histogram [10]. It is known 
that these algorithms also fail to converge to a global 
minimum when there is a large rotation and translation 
transformation between two scans, which is our case between 
the ground robot and the wall-climbing robot (one scan 
inverted with respect to each other if the wall-climbing robot 
is on the ceiling). 

Section II introduces the vision-based algorithm to 
determine the rough initial estimation of the transformation 
matrix between the two robots. First, we present the approach 
used to solve the P3P problem. Then, we introduce a particle 
filter algorithm that is used to identify which solution is the 
valid solution to the P3P problem. Section III presents the 
error analysis of the vision-based algorithm. Section IV 
presents a method for denoising of the scan point cloud and 
laser scan registration using the ICP algorithm with initial 
estimate of the transformation matrix. The simulation and 
experimental results are discussed in Section V. The 
conclusion is drawn in section VI.  

II. VISION-BASED ALGORITHM 

A. Robot Coordinate Frames 

 

 
Fig. 1A 

 
Fig. 1B 

Fig.1A. Wall–climbing robot and its coordinate frame fixed on the laser 
scanner. Fig. 1B shows ground mobile robot and its coordinate frame fixed 
on the laser scanner and the blinking LED lights (P1, P2, P3).  

 
 For laser scan registration, we set the coordinate frames of 

wall-climbing robot (Xw-Yw-Zw) and the ground robot 
(XG-YG-ZG) on their laser scanners respectively as shown in 
Fig. 1.  

The three blinking lights (P1,P2,P3) on the ground robot 

form an equilateral triangle with side length of 0.3048m. We 
set the camera coordinate frame (X-Y-Z) on the center of the 
overhead camera on the wall-climbing robot. The 
vision-based algorithm computes the relative pose of the 
overhead camera (X-Y-Z) with respect to a coordinate frame 
set at P1 (X1-Y1-Y1) as shown in Fig. 2. The camera and laser 

scanner on the wall-climbing robot are close by and the axes 
of the two coordinate frames align in parallel with zero 
orientation displacement. Also notice that the (X1-Y1-Z1) 
coordinate frame and (XG-YG-ZG) coordinate frame on 
ground robot are displaced by a small translation. The ICP 
algorithm has the capability to deal with these small 
mismatches. This also eliminates the need for laser-camera 
calibration. 

B. P3P Problem and Grunert’s solution 

We obtain the solution to the P3P problem, which is the 
pose estimate of the camera coordinate frame (Xw-Yw-Zw) 
with respect to a reference coordinate frame (XG-YG-ZG). The 
control points are spatially known with respect to the 
reference coordinate frame. The image location of each of 
these three points is obtained from an image snapshot 
acquired by the camera. The spatial location of the control 
points and its image locations form the input to the Grunert’s 
algorithm (which solves the P3P problem) in addition to 
camera calibration [11] parameters, namely focal length, 
principal point and scale factor. Grunert’s solution [6] to P3P 
problem leads to solving a fourth order polynomial 
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From Eqn. 1, we obtain up to four solutions, which are 

length of the sides of the tetrahedron ),,( 321 sss in Fig. 2 

formed by connecting the center of perspective (CP) of the 
camera and the three control points. After we compute the 
length of the sides, given the three point locations with 
respect to ground robot coordinate frame, we can determine 
the position of CP (O) and the camera’s orientation as 
described in [7]. At this stage, we have up to four sets of 
poses of the camera, of which only one of them is a valid 
solution. 

 
Fig.2. Tetrahedron formed by connecting the center of perspective of camera 
(O) and the three control points (P1, P2, P3) are spatially known with respect to 
a reference coordinate system (In our case, the ground robot frame).  
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C. Particle Filter Algorithm to Identify Valid Solution 

The number of solutions obtained by solving the P3P 
problem using Grunert’s algorithm always results in more 
than one solution and up to four solutions. The algorithm 
presented in this section tackles the issue of obtaining the 
valid solution which represents the real pose of the camera. 
At first instance, the wall-climbing robot acquires first set of 
images of the three control points (blinking LED lights) on 
the ground robot. The image is then processed (image 
subtraction algorithm identifies image locations of the three 
blinking LED lights) to locate three control points. After 
solving the P3P problem using the pixel information of the 
three control points, we obtain multiple solutions (i.e., the 
pose of the overhead camera) to the P3P problem. Next, the 
wall-climbing robot is commanded to move to a new position 
in any arbitrary direction and the odometry records the new 
position with respect to its previous pose. At the second 
instance (time after wall-climbing robot moves to a new 
position), the wall-climbing robot captures another set of 
images of the ground robot and is processed to obtain second 
set of solutions by applying the P3P problem. At this time, we 
have two sets of solutions to P3P problem and odometry data 
of the wall-climbing robot. We develop an algorithm inspired 
by particle filter algorithm [12] to determine the valid 
solution at two instances from the two sets of multiple 
solutions (Refer to Algorithm 2). 
1) Prior Distribution 
At first instance (t-1), multiple solutions to P3P problem are 
considered as particles and each of them is assigned an equal 
weight. If the number of solutions obtained is m, each of the 
particles is assigned an equal weight of 1/m.  At this instance, 
we don’t know which one is the valid solution. 
2) Prediction stage 

At second instance (t), the prediction stage incorporates the 
odometry data from the wall-climbing robot and predicts the 
new location of CP for all particles from its previous pose at 
time t-1. The odometry motion model of the wall-climbing 
robot follows the probabilistic approach where the new 
prediction samples are drawn from the 

distribution p xt | ut ,xt1  , where ut  is the control input 

(odometry), xt1 and xt  are the pose of the wall-climbing 

robot at time t-1 and t respectively.  
3) Odometry motion model 

Typical odometry measurements are influenced by 
rotational error and translational error [13]. The odometry 
measurements are represented in the internal robot coordinate 
frame. The control input is given by 

ut 
x t1

x t
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The hypothesized pose of the robot at time t-1 and t is 
given by xt1  (x, y,z) and xt  (x ', y',z') . 

The algorithm for computing the new samples using the 

posterior distribution p xt | ut ,xt1  is in Algorithm 1. 

The inputs to the algorithm are odometry input ut  and 

previous pose xt1. In algorithm 1, the lines 1 and 2 compute 

the measured rotation and translation of the wall-climbing 
robot on the ceiling using odometry input. Lines 3 and 4 add 
random noise to the odometry based on experimental 
(systemic error) evaluation. 1  and 2  are decided after 

measuring systemic error (assumed as Gaussian) of the 
odometry. Lines 5, 6 & 7 output the new position of the 
wall-climbing robot’s camera center. Notice in line 7 that the 
z coordinate remains the same since the wall-climbing robot 
is assumed to move only on a 2D plane (ceiling). The new 

sampled particles are denoted by ][m
tx .  

 

Algorithm 1 Odometry Sample Motion Model ),( 1tt xu  
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Algorithm 2 Unique Solution to P3P ( 1tX , ut , tz ) 

1.  0tX  (Empty set of new particles) 

Initialize particles weight (at time T =0) 

2.  
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while (Wall-climbing robot steps) do 
for j = 1 to M (at time T = t) 
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end for 
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j
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(Importance sampling: pick the particle with max weight)  



  

 
4) Update Stage  

At time t, the wall-climbing robot generates a new set of 

multiple solutions ( zt
[n ]) using Grunert’s algorithm to P3P. n 

is the number of solutions at time t. The weight of each 
particle is obtained based on the proximity of the predicted 
particle. We choose the radial basis function (RBF) kernel as 
weighing function (Eqn. 3), often used in non-parametric 
estimation techniques. The kernel generates a non-negative 
weight (ranging from 0 to 1), and is dependent on the 
Euclidean distance, a measure of proximity between the 

prediction particles xt
[m ] and the new estimate zt

[n ] from the 

camera sensor.  

w t
m  K(zt

[n ],xt
[m ])  exp

 zt
[n ]  xt

[m ] 
2 2
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Fig.3 provides a simulation result of the particle filter 
algorithm to determine the valid solution to P3P problem 
where the wall-climbing robot moves along a sinusoidal 
trajectory. At four instances, the pose of the camera is 
calculated by solving the P3P problem and applies the 
particle filter algorithm to identify, which is the valid solution 
at each instance.   

III. ERROR ANALYSIS OF VISION-BASED ALGORITHM 

In this section, we consider errors that affect the 
vision-based algorithm’s performance. There are two kinds of 
errors in the input that can affect the final solution: one is the 
pixel error in the images, which is usually Gaussian noise, 
and the other error is in the locations of the three control 
points. The second error simply cannot be tolerated as the 
Grunert’s algorithm does not perform well without accurate 
measurement of the distance between the control points. The 

pixel error stems from the Gaussian noise added to images. 
We simulate the pixel error by adding Gaussian random noise 
to the 2D image locations of three control points. We use 
Root Mean Square (RMS) estimation error to represent the 
difference between the true position and the estimated 
position, given by  

est  E
ˆ X  X 

2
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where ˆ X  ( ˆ x , ˆ y , ˆ z )  is the estimated position and 

X  (x ,y ,z )  is the true position, N is the number of 

simulation runs (N = 1000). The table 4 below provides RMS 
estimation error for varying pixel error and focal length of the 
camera. Table 4 indicates that the focal length is inversely 
proportional to the RMS estimation error and pixel error is 
directly proportional to the RMS estimation error.  
 

Focal Length Estimated Error () Estimated Error () 

Pixel Error: Gaussian noise with 2  = 3  
0.016m 0.0815 0.0407 
0.026m 0.0522 0.0260 
0.036m 0.0370 0.0178 
Pixel Error: Gaussian noise with 2  = 5 
0.016m 0.1072 0.0551 
0.026m 0.0641 0.0334 
0.036m 0.0481 0.0230 
Pixel Error: Gaussian noise with 2  = 10 
0.016m 0.1447 0.0712 
0.026m 0.0917 0.0462 
0.036m 0.0674 0.0338 

Table 1. Estimation error (mean and variance) of the solution to the 
P3P problem with varying focal length of the camera and pixel error  

 
Fig. 3. The solutions to the vision-based algorithm. Blue markers (, *, , o) indicate wall-climbing robot’s real position as it moves in an arbitrary trajectory 
and green markers (, *, , o) indicate invalid position at four instances. (+) indicates the three blinking LEDs on the ground robot. The wall-climbing robot 
movement can be seen following a sinusoidal wave in agreement to programmed input. 



  

IV. LASER SCAN FUSION USING ICP ALGORITHM 

The solution obtained from the vision-based algorithm is 
error-bound and therefore provides a good approximation of 
the real pose as described in Section II. The vision-based 
algorithm has two distinct advantages: 1) It runs extremely 
fast (it took about 0.001919 sec to execute in MATLAB 7.6.0 
on PC with Intel Core 2 CPU 6600 @ 2.4GHz); and 2) It 
provides an initial rough estimate to the ICP algorithm. 

A. Preprocessing Laser Scan Data 

We obtain (219683) 3D scan points from laser scanner on 
the ground robot and the wall-climbing robot. The time 
complexity of the ICP algorithm is O(n2), where n is the 
number of scan points. In addition, the laser scan data 
contains noisy data and outliers that inhibit ICP algorithm 
from converging to the global minimum. Hence, we 
employed denoising of the laser scan data. The noisy data 
may be seen as the smallest possible distance (0.19m) to 
maximum distance (4m) among the other laser scan points. 
We assume that the neighboring points do not change 
position drastically. We identify the outlier based on 
proximity to its nearest neighbors and remove the outliers if 
they are far away from its neighbors. Finally, we compute the 
transformation matrix using ICP algorithm [1]. Note that the 
ICP algorithm eliminates the need to perform camera/laser 
calibration. 

V. EXPERIMENTAL RESULTS 

In our experiments, the wall-climbing robot operates on the 
ceiling and the ground mobile robot operates on the floor as 
shown in Fig. 6B. In the first instance, the wall-climbing 
robot takes burst images of the ground robot and is processed 
to obtain the locations of the three control points. The 
Grunert’s algorithm is used to compute multiple solutions of 
the pose of the overhead camera. In the second instance, the 
wall-climbing robot moves to a new position and takes 
another round of burst images of the ground robot and is 
processed. Grunert’s algorithm computes another set of 
solutions at the second instance. The particle filter algorithm 
picks the solution that is valid in both instances. Finally, the 
ground mobile robot and wall-climbing robot acquires a 3D 
laser scan of the indoor environment. 

We present the experimental results in the form of a laser 
point cloud. The red dots indicate the ground mobile robot’s 
laser scan and the blue dots indicate the wall-climbing robot’s 
laser scan. Fig. 4 indicates no transformation applied to the 
laser scans. The wall-climbing robot is inverted by 180 
about x or y-axis and anywhere between 0-360 about z-axis 
with respect to the ground mobile robot. The table top 
remains at the top since the two scans are displaced. With no 
P3P initialization, the ICP algorithm performs poorly (Fig. 5) 
and considers closest fit of the points without considering the 
rotation of 180 about the Y axis (inverted) between the two 
scans. It is possible to acquire an initial pose estimate of a 

robot using orientation sensors, but a good pose estimate 
between a ground robot and the wall-climbing robot is 
currently only possible with the vision localization presented 
here. Further, the ICP algorithm refines the transformation 
matrix based on the initial estimate provided by the 
vision-based algorithm. After applying the resulting 
transformation matrix, the two laser scans are fused very well 
(Fig. 6A). Translational error was negligible. Rotational error 
was small (1~2) in scan matching in one axis as seen in Fig. 
7B, which can be attributed to sensor noise.  It is not possible 
to provide quantitative measure by comparing closest points 
since we don’t know the corresponding points. However, the 
below table summarizes the ground truth and the ICP output 
with and without P3P initialization. 

 
Rotation Matrix - R Angles (deg) Translation (m) 

No Initialization 
 0.3327  -0.9429   0.0170 
 0.9429   0.3324  -0.0203 
 0.0135   0.0228   0.9996 

x  =  1.3066 
y  =  -0.7736 
z   =   70.5647 

-0.1279 
 0.1247 
-0.1742 

P3P Initialization 
-0.1418   0.9897  -0.0211 
 0.9899   0.1419  -0.0002 
 0.0027  -0.0208  -0.9998 

x  =  -178.8082 
y  =  -0.1547 
z   =   98.1520 

0.1166 
0.0897 
2.0160 

Ground Truth 
-0.1392   0.9903   0.0000 
 0.9897   0.1391  -0.0349 
-0.0346  -0.0049  -0.9994 

x  =  -179.7191 
y  =   1.9828 
z   =   98.0061 

-0.1000 
-0.0500 
1.9500 

Table 2. Experimental results showing relative pose between the 
ground robot and wall-climbing robot laser scans 

 
Fig.4. Unmatched scans from the wall-climbing robot (blue) and the ground 
mobile robot (red) shown in the coordinate frame of the laser scanner 

 
Fig.5. shows matched scans using just ICP algorithm with no P3P 
initialization. The scans are still inverted by 180 about Y axis in a right hand 
coordinate system 



  

      
 (A)     (B) 
Fig. 6A. Transformation  (R, T) obtained from vision-based algorithm brings the two laser scans matched accurately. 6B shows the experimental setup 

 
 

 
(A) 

 
(B) 

Fig. 7A shows the side view of the matching scans after applying 
transformation result (obtained from ICP algorithm initialized by the 
vision-based algorithm) 7B shows a top view of the same. 

VI. CONCLUSION 

This paper presents an integrated approach and real 
experimental demonstration for constructing a complete 3D 
laser map. The transformation matrix between the 
wall-climbing robot and the ground robot is obtained by 
solving the P3P problem applied to the dual-robot system. We 
also introduced a particle filter algorithm that identifies the 
valid solution to the P3P problem. Our contribution is two 
fold. First, we are the first to use a ground mobile robot and 
the wall-climbing robot to construct complete 3D maps in real 
time, which preserve most details of ceiling, ground and 
furniture top surfaces in an indoor environment. Second, we 
use a vision-based algorithm to determine the relative pose 
between the wall-climbing robot and the ground robot, and 
serves as a good initial estimate of the transformation matrix 
for the ICP algorithm to compute transformation between the 
two laser scans. Our approach leads to improvements in speed 
and accuracy in fusing 3D laser scans in multi-robot systems. 
We are further extending our work to build indoor maps using 
vision-based algorithm in a dynamic dual-robot system. 
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