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Abstract -This paper presents a novel approach to stabilize
video sequences digitally.  A 2.5D inter-frame motion model
is proposed so that the stabilization system can work in
situations where significant depth changes are present and
the camera has both rotational and translational movements.
An inertial model for motion filtering is proposed in order to
eliminate the vibration of the video sequences and to achieve
good perceptual properties. The implementation of this new
approach integrates four modules: pyramid-based motion
detection, motion identification and 2.5D motion parameter
estimation, inertial motion filtering, and affine-based motion
compensation. The stabilization system can smooth
unwanted vibrations of video sequences in real-time. We test
the system on IBM PC compatible machines and the
experimental results show that our algorithm outperforms
many algorithms that require parallel pipeline image
processing machines.

Keywords: tele-operation, video stabilization, motion
estimation, motion filtering, inertial model.

I.  INTRODUCTION

The goal of camera stabilization is to remove
unwanted motions from a dynamic video sequence.  It
plays an important role in many vision tasks such as tele-
operation, robot navigation, ego-motion recovery, scene
modeling, video compression and detection of
independent moving objects [1-6,9-10,13].  There are two
critical issues that decide the performance of a digital
video stabilization system.  One is inter-frame motion
detection.  The other is motion filtering.

The first issue depends on what kind of motion
model is selected and how image motion is detected. It has
been pointed out [1,5] that human observers are more
sensitive to rotational vibrations, and only camera rotation
can be compensated without the necessity of recovering
depth information.  Hansen et al.[2] used an affine model
to estimate the motion of an image sequence.  The model
results in large errors for rotational estimations if there are
large depth variations within images and the translation of
the camera is not very small.  Duric et al.[5] and Yao et
al.[6] dealt with this problem by detecting faraway-
horizon lines in images since the motion of a horizon line
is not affected by the small translation of the video camera.
They assumed that long straight horizon lines would exist
in common out-door images and it will have large

gradients in gray scale images. This assumption works
only if there is a horizontal line and the points around that
line are far away.  It will fail in many cases where the
horizon line is not very clear or just cannot be seen, or the
points along the horizon line are not so far away.

The second issue is critical for eliminating unwanted
vibrations while preserving the smooth motion.  The
algorithm in Hansen et al.[2] chose a reference frame at
first, and then aligned the successive frames to that frame
by warping them according to the estimated inter-frame
motion parameters.  The reconstructed mosaic image was
displayed as the result of stabilization.  This approach
works fine if there are no significant depth changes in the
field of view and/or the moving distance of the camera is
not long.  However, it will fail in cases involving panning
or tracking motion (e.g. Fig. 2), where accumulated errors
will override the real inter-frame motion parameters.
Duric et al.[5] assumed that camera carriers would move
in a steady way between deliberate turns. Thus they tried
to stabilize the video sequence by fitting the curves of
motion parameters with linear segments. The resulting
sequences would be steady during each line segment but
the moving speed would change suddenly between two
segments. Another problem in these approaches is that
image sequence is delayed for several frames in order to
get a better line fitting. Yao et al.[6] proposed a kinetic
vehicle model for separating residual oscillation and
smooth motion of the vehicle (and the camera).  This
model works well when kinetic parameters of the camera’s
carrier, such as vehicle’s mass, the characteristics of the
suspension system, the distances between front and rear
ends, and the center of gravity, are known and the camera
is bound to the vehicle firmly. However, in most cases,
either we do not know these parameters, or the camera
carrier is not a grounded vehicle and the camera is not
firmly bound to the carrier.

Real-time performance is also a basic requirement
for video stabilizers.  There are many researches on video
stabilization for military and tele-operation utilities as well
as applications in commonly known commercial
camcorders.  Hansen et al.[2] implemented an image
stabilization system on a parallel pyramidal hardware
(VFE-100), which is capable of estimating motion flow in
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a coarse-to-fine multi-resolution way.  The motion
parameters were computed by fitting an affine motion
model to the motion flow.  The stabilized output was given
in the form of a registration-based mosaic of input images.
Their system stabilized 128×120 images at 10 frames per
second with inter-frame displacement up to ±32 pixels.
Morimoto et al. [3] gave an implementation of a similar
method on Datacube Max Video 200, a parallel pipeline
image processing machine. Their prototype system
achieves 10.5 frames per second with image size 128×120
and maximum displacement up to ±35 pixels. Zhu et al.[1]
implemented a fast stabilization algorithm on a parallel
pipeline image processing machine called PIPE.  The
whole image was divided into four regions and several
feature points were selected within these regions. Each
selected point was searched in the successive frame in
order to find a best match using correlation method. The
detected motion vectors were combined in each region to
obtain a corresponding translation vector.  A median filter
was used to fuse four motion vectors into a plausible
motion vector for the entire image.  A low-pass filter was
then used to remove the high frequency vibrations of the
sequence of motion parameters. The system runs at 30
frames per second with image size 256×256 pixels and can
handle maximum displacement from -8 to 7 pixels.

In this paper we proposed a new digital video
stabilization approach based on a 2.5D motion model and
an inertial filtering model. Our system achieves 26.3
frames per second (fps) on an IBM PC compatible using
an Intel Pentium 133MHz microprocessor without any
image processing accelerating hardware.  The image size
is 128×120 and maximum displacement goes up to ±32
pixels. The frame rate reaches 20 fps by using Intel
PII/233MHz with MMX when image size is 368×272 with
maximum inter-frame displacement up to ±64 pixels.
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Fig. 1.  Coordinate systems of the camera and the image

II.  INTER-FRAME MOTION MODEL

In the rest of our discussion, we assume the scene is
static and all the motions in the image are caused by the
movement of the camera.  A reference coordinate system
O-XYZ is defined for the moving camera, and the optical
center of the camera is O (see Fig. 1).  W-UV is the image
coordinate system, which is the projection of O-XYZ onto
the image plane. The camera motion has 6 degrees of
freedom: three translation components and three rotation
components. In other words, it can be interpreted as that

the scene being viewed has 6 motion parameters since we
use the camera as the reference.  Considering only an
inter-frame case, we represent three rotational angles (roll,
pitch and yaw) by (α, β, γ) and three translation
components as (Tx, Ty, Tz).  A space point (x, y, z) with
image coordinate (u, v) will move to (x', y', z') in the next
time with the image point moving to (u', v').  Suppose the
camera focal length f is f' after the motion.  Under a
pinhole camera model, the relation between these
coordinates is [1,12]
















−
































=

















z

y

x

T

T

T

z

y

x

nml

kji

cba

z

y

x

    

     

    

 '

 '

 '

and










−++

−++
=

−++
−++

=

zfTnfmvlu

zfTkfjviu
fv

zfTnfmvlu

zfTcfbvau
fu

z

y

z

x

/

/
' ' 

/

/
 '' 

  (1)

If the rotation angle is small, e.g., less than 5 degrees, Eq.
(1) can be approximated as
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Let

 '/)/( fzfTfvus z−+β−γ= (3a)

we will have
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A. Affine motion model

From Eqs. (2) and (3) we have the following
observations:

<1>  Pure rotation. If the translations of the camera are
zero, the images will only be affected by rotation and the
effect is independent of the depths of scene points. When
the rotation angle is very small (e.g., less than 5 degrees),
camera rolling is the main factor of image rotation, and the
effect of the pitch and yaw can be approximated by 2D
translations of the image.
<2>  Small Translation and constrained scene. If image

points are of the same depth, or the depth differences
among image points are much less than the average depth,
small camera translation will mainly cause homogeneous
scaling and translation of 2D images.
<3>  Zooming . Changing camera focal length will only

affect the scale of images.
<4>  General motion. If depths of image points vary

significantly, even small translations of the camera will
make different image points move in quite different ways.
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For case <1>, <2> and <3>, a 2D affine (rigid)
inter-frame motion model can be used.
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where s is a scale factor, (Tu, Tv) is the translation vector,
and α is the rotation angle.  Given more than 3 pairs of
corresponding points between two frames, we can obtain
the least square solution of motion parameters in Eq. (4).
Since this model is simple and works in many situations, it
has been widely adapted [1-6].

B. The 2.5D motion model

Although the affine motion model in the previous
section is simple in calculation, it is not appropriate for the
general case (<4>), where depths of scene points change
significantly and the camera movement is not very small.
It is impossible to estimate motion without the depth
information. However, recovering surface depth in a 3D
model is too complicated and depth perception itself is a
difficult research topic.  We aim at a compromise solution
involving depth information at estimation points only.

Careful analysis of Eqs. (1), (2) and (3) reveals the
following results.

(1)  Dolly movement. If the camera moves mainly in Z
direction, the scale parameters of different image points
depends on their depths (Eq. (3a)).

(2)  Tracking movement. If the camera moves mainly in
X direction, different image points will have different
horizontal translation parameters related to their depths.
Similarly, if the camera moves mainly in Y direction,
different image points will have different vertical
translation parameters corresponding to their depths (Eq.
(3)).

(3)  Rotational/zooming movement. Panning, tilting,
rolling, zooming and their combinations generate
homogeneous image motion (Eq. (3)).

(4)  Translational movement. If camera does not rotate,
we have a direct solution of relative camera translation
parameters and scene depths (Eq. (1) or (2)).

(5)  General movement. If camera moves in arbitrary
directions, there is no direct linear solution of these motion
parameters. This is the classic “structure from motion
(SfM)” problem [7,8,9] and will not be addressed here.

Case (1) (2) and (3) cover the most common camera
motions: dolly (facing front) tracking (facing side),
panning/tilting/rolling (rotation), and zooming movement.
We proposed a 2.5D inter-frame motion model by
introducing a depth-related parameter for each point.  It is
an alternative between 2D affine motion and the real 3D
model.

The model consists of three sub-models: dolly, H-
tracking and V-tracking models. For dolly movement
(involving rotation and zooming, i.e. case (1) with case
(3)), we have Tx ≈ 0, Ty ≈ 0, hence the 2.5D dolly model is





−α−=⋅
−α+=⋅

viiii

uiiii

Tuvvs

Tvuus

 '

 '
   (i=1..N)  (5)

For horizontal tracking movement (involving panning,
rolling and zooming), we have Tz ≈ 0, Ty ≈ 0.  The 2.5D
H-tracking model is
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Similarly, for vertical tracking movement (involving
tilting, rolling and zooming), we have Tz≈ 0, Tx≈ 0. The
2.5D V-tracking model is
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In most situations, the dominant motion of the camera
satisfies one of the 2.5D motion models. It should be
noticed that in case (5), (6a) and (6b), there are N+3
variables in 2N equations. Different N variables contribute
to the solution in each case, i.e. si for depth-related scale,
Tui for depth-related horizontal translation and Tvi for
depth-related vertical translation, respectively.

III.  MOTION DETECTION AND CLASSIFICATION

A. A numerical method for parameter estimations

If there are more than three (N ≥ 3) correspondences
between two frames, the least square solution can be
obtained for any of three cases mentioned above. Since the
forms of equations are quite similar in three cases, we take
the 2.5D dolly motion model as an example. By
dedicatedly arranging the order of the 2N equations, we
have the following matrix from Eq. (5):

bAx = (7)

where
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We can solve Eq. (7) by a QR decomposition using the
Householder transformation.  Because of the special form
of Matrix A, the Householder transformation can be
realized efficiently in both the time and space:
Householder transformation for the first N columns only
requires 8N multiplies, N square root operations and 4N
additions. Then the general Householder transformation
for the last three columns is only performed on an N×3
dense sub-matrix. It is interesting to note that this
approach requires less computation than that of 2D affine
model with a 2N×4 dense matrix. Moreover A can also be
stored in a 2N×4 array. We have also found that this
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method is numerically stable, since in most cases Eq. (7)
has a condition number less than 500. Notice that the
condition number of the equation for 2D affine model is
between 150 and 300. A detailed discussion and numerical
testing result of this model can be found in [12].

B. Motion detection and classification

The detection of the image velocities is the first step
in motion estimation. Instead of building a registration
map between two frames for distinguished features, like in
[6], the image velocities of the representative points are
estimated by a pyramid-based matching algorithm applied
to the original gray-scale images.  The algorithm consists
of the following steps:

(1)  Building the pyramids for two consecutive images;
(2)  Finding the image velocity for each small block

(e.g. 8×8, 16×16) in the first frame by using a coarse-to-
fine correlation matching strategy; and

(3)  Calculating the belief value of each match by
combing the texture measurement and the correlation
measurements of the block. This step is important because
the value is used as a weight in the motion parameter
estimation.

Near points
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Far scene pints
move slower

Camera Moving direction

Sky

(a) One frame of a testing sequence
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Fig. 2.  Estimation errors using different motion models

Fig. 2 shows the result of rotation angle estimation
for one of the testing sequences, where 2D affine model,
2.5D dolly model and 2.5D H-tracking model of our
approach are used for comparisons. The original sequence
was taken by a side-looking camera that is mounted on a
moving-forward vehicle. The vibration is mainly camera
rolling.  The accumulated rolling angle (global rotation) is
approximately zero. The motion satisfies the horizontal
tracking model.  Motion vectors in Fig. 2(a) shows that
image velocities are quite different due to the different

depths of the scenes. The curves in Fig. 2(b) are the
accumulated inter-frame rotation angles estimated by
three models respectively.  False global rotation appears in
the affine model.

An important issue in our 2.5D motion model is the
correct selection of the motion model (dolly, H-tracking or
V-tracking).  False global rotation is also derived if an
improper motion model is applied, as shown in Fig 2(b)
where the dolly model is a wrong representation for the
type of the movement.  The classification of the image
motion is vital.  In the simple way, the motion model can
be selected by a human operator since the qualitative
model class can be easily identified by a human observer,
and the type of the motion within a camera snap usually
lasts for certain time period. The selection of motion
models can also be made automatically by the computer.
Careful investigations of the different cases of camera
movements indicate that the motion can be classified by
the patterns of image flows [14], or the accumulated flows.
Dolly (and/or zooming), H-tracking (and/or panning), V-
tracking (and/or tilting) and rolling movements result in
four distinctive flow patterns. It is possible to classify
them automatically although the discussion will go beyond
the scope of this paper.

IV.  MOTION FILTERING

The second vital stage of video image stabilization is
the elimination of unwanted high frequency vibrations
from the detected motion parameters. The differences
between smoothed motion parameters and original
estimated motion parameters can be used to compensate
the images in order to obtain the stabilized sequence.
Removing vibrations (high frequency) is virtually a
temporal signal filtering (motion filtering) process with
the following special requirements.

• The smoothed parameters should not be biased from
the real gentle changes. Bias like phase shift,
amplification attenuation may cause undesired results.

• The smoothed parameters should comply with the
physical regularities. Otherwise, the result will not
satisfy human observers.

  c(t)
p x(t)

m f(t)

Camera

k

Carrier

Fig. 3.  Inertial motion filtering

Based on the above considerations, we proposed a
generic inertial motion model as the motion filtering
model. This filter fits physical regularities well and has
little phase shift in a large frequency range. The only
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requirement is to set some assumptions of sequence’s
dynamics. In the context of image stabilization, we should
make it clear that which kind smooth motion needs to be
preserved, and what vibration (fluctuation) needs to be
eliminated. There are some differences for three kinds of
motions in our model.

For the dolly movement, the smooth motion is
mainly translation along the optical direction, possibly
with deliberate zooming and rotation of 1 to 3 degrees of
freedom. The fluctuations are mainly included in three
motion parameters: α, Tu and Tv (Eq. (5)), which may be
caused by bumping and rolling of the carrier (vehicle).
The depth-related scale parameter si for each image block
is related to the zooming and dolly movement and the
depths of the scene.  In order to separate the depth
information from the motion parameter, we calculate the
fourth motion parameter by

 
1

∑
=

=
N

i
iss (8)

The fluctuation caused by dolly and zooming will be
extracted from this parameter.

For the H-tracking movement, the smooth
translational component is included in parameter Tui,
which is depth related. Apart from three affine parameters
s, α and Tv, we separate the depth information by
averaging the horizontal components of all image blocks
and obtain the fourth motion parameters by
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i
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A more detailed discussion can be found in [13]. Similarly
four motion parameters s, α, Tu and Tv can be obtained in
the case of V-tacking movement.

Since four motion parameters are almost
independent of each other, we can treat them separately.
For example, Fig. 3 is the schematic diagram of an inertial
filter where c(t) is carrier’s displacement (actual motion ),
x(t) is camera’s displacement (desired smooth motion)
when the camera is “mounted” on an inertial  stabilizer , m
is the mass of the camera, k is elasticity of a spring, p is the
damping parameter, and e(t) is a controllable feedback
compensator. For deducting simplicity we assuming e(t) =
0 at first, then the kinematic equation can be written as
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In fact, it can be considered as a forced oscillation device.

The intrinsic oscillation frequency is 
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When sampling rate 1/T (i.e. frame rate) is much higher
than fn, we can directly write the discrete form of Eq. (10)
as a differential equation
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and the feedback e(n) is included. This is actually a 2nd
order digital filter.  By choosing suitable values for these
parameters, high frequency vibrations can be eliminated.
For example, if frame frequency is 25Hz, and high
frequency vibrations have frequency fv  larger than 0.5Hz,
we can choose the termination frequency fT = 0.3Hz.
Assuming that k = 1, ξ = 0.9, we have fn = 0.1288, m =
1.5267, and p = 2.2241. Compared to the 2nd order
Butterworth low-pass filter (LPF) that has fT = 0.3Hz, the
inertial filter has a similar terminating attribute but with
much less phase delay. Fig. 4 shows the comparison
results.
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Fig. 4.  Frequency response of inertial filter and Butterworth LPF

For a better tuning in filter response and reduction of
phase shift, proper feedback compensations are added.
Negative feedback can reduce phase shift but will increase
the bandwidth of the filter. An effective way is to use
threshold-controlled feedback: if |x(n-1)-c(n-1)| is greater
than a predefined value T, the feedback e(n) is turned on
till the error value becomes less than 0.5T. Fig. 5 is the
experimental results on real video sequence images. The
feedback function is

e(n) = -0.005 (x(n-1)-c(n-1)) 

and threshold  T is 6% of |c(n-1)|.
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Fig. 5.  Comparison of different filtering methods

1998 IEEE International Conference on Intelligent Vehicles 333



V. EXPERIMENTAL RESULTS

We have implemented a stabilization system based
on the 2.5D motion model and inertial motion filtering.
Our system consists of four modules as shown in Fig. 6.
Feature matching is performed by multi-resolution
matching of small image blocks. Reliability of each
matched block is evaluated by accumulating gray scale
gradient values and the sharpness of a correlation peak
because areas without strong texture (such as sky, wall and
road surface) may have large matching errors. The
evaluation value of each image block is use as a weight of
a corresponding equation pair (e.g. Eq. (5)) when they are
used in solving inter-frame motion parameters. Calculated
inter-frame motion parameters are then accumulated as
global motion parameters related to the reference frame
and they are passed through the inertial filter. The
differences of filtered motion parameters and original ones
are used to warp current input frame to obtain the
stabilized output.

Pyramid based

feature matching

Motion estimation Motion filtering

Affine image

warping

Input Image
Sequence

Output Image
Sequence

Motion vectors
& evaluations

Global inter-
frame motion

Filtered global
motion

Fig. 6.  Diagram of the stabilization system

  
Fig. 7. Key frames of testing sequences (a) Dolly movement with
severe vibration; (b) Tracking movement with rolling vibration

Table 1  Execution time of each stage

CPU image
(pixels)

block
(pxls)

match
(ms)

motion
(ms)

warp
(ms)

rate
(f/s)

486/66 128×120 16×16 95 4 54 6.54
486/66 368×272 20×20 468 17 333 1.22
P5/133 128×120 16×16 25 1 12 26.32
P5/133 368×272 20×20 122 3 77 4.95
PII/233 368×272 16×16 25.5 1.5 23 20.0

Programs are written in C and have been executed on
IBM PC compatibles with Intel 80486DX2/66MHz,
Pentium/133MHz, and PII/233MHz (with MMX) CPUs
respectively. The execution time for each module is listed
in Table 1. Notice that MMX instructions are only used in
the matching module of the last implementation. Further
potentials of optimization are to be further investigated,
e.g. in the warping module. Fig. 7 shows images from

several testing sequences.  Some stabilization results are
available on the Internet (http://vision.cs.tsinghua.
edu.cn/~zzg/stabi.html� or http://www.cse.unsw.edu.au/
~vip/vs.html).

VI.  CONCLUSION

We present a new video image stabilization scheme
that is featured by a 2.5D inter-frame motion model and an
inertial model based motion filtering method. Our
empirical system on an Intel Pentium 133MHz PC
performs better than other existing systems that require
special image processing hardware. Implementation in
Intel PII/233MHz PC with MMX technology achieves
near real-time performance for 368x272 image sequences.
Besides the most obvious applications such as video
enhancement and tele-operation, the method has also been
applied to several other vision tasks, such as 3D natural
scene modeling and surveillance [2, 6, 13].

Automatic selection of optimal inter-frame motion
models and inertial filter parameters based on input
images need further research.

VII.  REFERENCES

[1] Z. G. Zhu, X. Y. Lin, Q. Zhang, G. Y. Xu, D. J. Shi, “Digital
image stabilization for tele-operation of a mobile robot,” High
Technology Letters, 6(10):13-17, 1996 (in Chinese).

[2] M. Hansen, P. Anadan, K. Dana, G. van de Wal, P. Burt, “Real-
time scene stabilization and Mosaic Construction”, Proc of IEEE
CVPR, 1994, 54-62.

[3] C. Morimoto, R. Chellappa, “Fast electronic digital image
stabilization”, Technical Report of CVL, 1995, University of
Maryland.

[4] Q. Zheng, R. Chellappa, “A computational vision approach to
image registration”, IEEE Transactions on Image Processing,
1993, 2(3):311-326.

[5] Z. Duric, A. Rosenfeld, “Stabilization of image sequences”,
Technical Report CAR-TR-778, July, 1995, University of
Maryland.

[6] Y. S. Yao, R. Chellappa, “Electronic stabilization and feature
tracking in long image sequences”, Technical Report CAR-TR-
790, Sept. 1995, University of Maryland.

[7] A. Azarbayejani, A. P. Pentland, “Recursive estimation of
motion, structure, and focal length”, IEEE Trans Pattern
Recognition and Machine Intelligence, 1995, 17(6):562-575.

[8] A. Shashua, “Projective structure from uncalibrated images:
structure from motion and recognition”, IEEE Trans Pattern
Recognition and Machine Intelligence, 1994, 16(8):778-790.

[9] J. Oliensis, “A linear solution for multiframe structure from
motion”, Technical report of University of Massachusetts, 1994,
University of Massachusetts.

[10] M. Irani, B. Rousso, S. Peleg, “Recovery of ego-motion using
image stabilization”, Proc of IEEE CVPR, June, 1994: .454-460.

[11] C. Morimoto, P. Burlina, R. Chellappa, and Y.S. Yao,  “Video
Coding by model-based stabilization”, Technical Report of CVL,
1996, University of Maryland.

[12] Z. G. Zhu, G. Y. Xu, Jesse S. Jin, Y. Yang, “A computational
model for motion estimation”, Symposium on Image, Speech,
Signal Processing, and Robotics, Hong Kong, Sep. 3-4, 1998.

[13] Z. G. Zhu, G. Y. Xu, X. Y. Lin, “Constructing 3D natural scene
from video sequences with vibrated motions”, IEEE VRAIS’98 ,
Atlanta, GA, March 14-18,1998:105–112

[14] C. Fermuller, “Passive navigation as a pattern recognition
problem”, Int. J. Computer Vision, 1995, 14:147-158.

1998 IEEE International Conference on Intelligent Vehicles 334


