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Abstract—We propose a content-based 3D mosaic (CB3M) 

representation for long video sequences of 3D and dynamic 
urban scenes captured by a camera on a mobile platform. In the 
first phase, a set of parallel-perspective (pushbroom) mosaics 
with varying viewing directions is generated to capture both the 
3D and dynamic aspects of the scene under the camera coverage. 
In the second phase, a segmentation-based stereo matching 
algorithm is applied to extract parametric representations of the 
color, structure and motion of the dynamic and/or 3D objects in 
urban scenes, where a lot of planar surfaces exist. Multiple pairs 
of stereo mosaics are used for facilitating reliable stereo 
matching, occlusion handling, accurate 3D reconstruction and 
robust moving target detection. We use the fact that all the static 
objects obey the epipolar geometry of pushbroom stereo, whereas 
an independent moving object either violates the epipolar 
geometry if the motion is not in the direction of sensor motion or 
exhibits unusual 3D structures otherwise. CB3M is a highly 
compressed visual representation for a dynamic 3D scene, and 
has object contents of both 3D and motion information. 
Experimental results are given for various real video sequences 
of large-scale 3D scenes. 
 

Index Terms— Multi-image registration, content-based video 
coding, image-based modeling, 3D scene representation 
 

I. INTRODUCTION 
n this paper we address the problems of visual 
representations for large amounts of video stream data, of 

dynamic three-dimensional (3D) urban scenes, captured by a 
camera mounted on a low-altitude airborne or a ground 
mobile platform. Applications include airborne or ground 
video surveillance for moving target extraction, automated 3D 
urban scene construction, airborne/ground traffic survey, and 
image-based modeling and rendering. For these applications, 
there are two major challenges. First, hours of video streams 
may be generated every time the mobile platform performs a 
data collection task. The amount of data is in the order of 100 
GB per hour for standard 640*480 raw (uncompressed) color 
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images. The huge amount of video data not only poses 
difficulties in data recording and archiving but is also 
prohibitive for users to retrieve, review or to process. Second, 
due to the 3D nature of urban scene observed by a moving 
platform, we will have to naturally and effectively handle 
obvious motion parallax and object occlusions in order to be 
able to detect moving objects of interest. Most of the existing 
change detection algorithms that assume a planar scene or 
stationary camera will fail in this situation. Compact scene 
representations and efficient video analysis algorithms are 
critical for modeling large-scale 3D man-made urban scenes 
with fine structures, textureless regions, sharp depth changes, 
and occlusions, as well as moving targets. In applications such 
as aerial surveillance and transportation planning during an 
emergency situation, information such as the location of an 
abnormal event, the speed, flow and density information of 
the traffic of the entire area, can be immediately calculated 
and transmitted back to a control center, by using a fly though 
over an area. In addition to the dynamic traffic information, 
context information about the static objects (buildings, roads 
and facilities) in the area can also be detected and provided in 
a highly compressed form. Critical information with large 
field-of-view coverage can be obtained in a timely and space-
efficient manner for immediate decision making. 

We propose a content-based 3D mosaic representation 
(CB3M) for long video sequences of such 3D and dynamic 
scenes. The motion of the camera has a dominant direction of 
motion (as on an airplane or ground vehicle), but 6 DOF 
motion is allowed. We have developed a two-phase procedure 
for this goal, as shown in Fig.1. In the first phase, a set of 
parallel-perspective (pushbroom) mosaics with varying 
viewing directions is generated to capture both the 3D and 
dynamic aspects of the scene under the camera coverage. 
Bundle adjustment techniques can be used for camera pose 
estimation, sometimes integrated with the geo-referenced data 
from GPS and INS when available. A ray interpolation 
approach called PRISM (parallel ray interpolation for stereo 
mosaicing) is used to generate multiple seamless parallel-
perspective mosaics under the obvious motion parallax of a 
translating camera. The set of the multi-view dynamic 
pushbroom mosaics, with a pair of stereo mosaics as the 
minimum sub-set, is a compact visual representation for a 
long video sequence of a 3D scene with independent moving 
targets. In this phase, the epipolar geometry of the multi-
perspective pushbroom stereo mosaics is also established to 
facilitate stereo matching and moving target detection in the 
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next phase. 
However, the 2D mosaic representation is still an image-

based one without object content representation. Therefore, in 
the second phase, a segmentation-based (“patch-based”) 
stereo matching approach is proposed to extract parametric 
representation of the color, structure and motion of the 
dynamic and/or 3D objects (i.e., the contents) in urban scenes, 
where a lot of planar surfaces exist. In our approach, we use 
the fact that all the static objects obey the epipolar geometry, 
i.e. along the epipolar lines of pushbroom stereo. An 
independent moving object (moving on a road surface), on the 
other hand, either violates the epipolar geometry if the motion 
is not in the direction of sensor motion, or exhibits unusual 3D 
structure otherwise, e.g., obviously hanging above the road or 
hiding below the road. Furthermore, multiple pairs of stereo 
mosaics and local/global spatial constraints are used for 
facilitating reliable stereo matching, occlusion handling, 
accurate 3D reconstruction and robust moving target 
detection. 

Based on the above two phases, a content-based 3D mosaic 
(CB3M) representation is created for a long video sequence. 
This is a highly compressed visual representation of a 
dynamic 3D scene. More importantly, the CB3M 
representation has high-level object contents. A scene is 
represented in parametric forms of planar regions with their 
3D, their boundaries, their motion, and their relations. 
Therefore it can be utilized for object recognition and 
indexing.  

There are three technical challenges in generating a content-
based 3D mosaic representation from a long image sequence. 
They are (1) robust and accurate camera orientation estimation 
for many video frames; (2) seamless video mosaic generation 
with obvious motion parallax; and (3) accurate 3D 
reconstruction for large-scale urban scenes. In our previous 

study [1], we have proposed the parallel ray interpolation for 
stereo mosaicing (PRISM) algorithm that can generate 
seamless mosaics under motion parallax, for static scenes. In 
another piece of work [2], we proved by theoretical analysis 
that with parallel-perspective stereo mosaic, depth error is 
constant in theory and is linearly proportional to depth in 
practice. We have also implemented practical methods in 
camera orientation estimation with external orientation 
measurements [3].  

Based on the previous work, we have made the following 
significant new contributions. First, we extend the previous 
work on stereo mosaics from static scenes to dynamic scenes, 
thus allowing the handling of independent moving objects. 
This is significant in low-altitude aerial video surveillance of 
urban scenes since traditional methods using change detection 
fail to work here due to motion parallax. We also show that 
the PRISM algorithm also works for dynamic scenes, which 
means we can re-use the code we have developed for stereo 
mosaics of static scenes.  

Second, an effective and efficient patch-based stereo 
matching method has been proposed to extract both 3D and 
motion information from stereo mosaics of urban scenes, 
which feature sharp depth boundaries and many textureless 
regions. This is a unified approach for both 3D reconstruction 
and moving target extraction. Furthermore, this method can 
produce higher-level scene representations rather than just 
depth maps, which leads to our highly compressed content-
based video representation. In addition, the new approach can 
also be used with other stereo geometry.  

Finally, we propose a highly compact video representation 
for long video sequence of dynamic 3D scenes - the content-
based 3D mosaic (CB3M) representation. We also perform 
thorough experimental analysis of the robustness, accuracy 
and efficiency of 3D reconstruction and representation using 
parallel-perspective stereo mosaics.  

The rest of the paper is organized as follows. Section II 
discusses some related work. In Section III, the mathematical 
framework of the dynamic pushbroom stereo is given, and 
then its properties for moving target extraction are discussed. 
In Section IV, technical issues of dynamic stereo mosaics in 
real-world applications are discussed, and multi-view 
pushbroom mosaics are proposed for image-based rendering 
and for extracting 3D structure and moving targets. In Section 
V, our multi-view pushbroom stereo matching approach for 
3D reconstruction and moving target extraction is provided. 
Then in Section VI, the content-based 3D mosaic 
representation is described. Experimental results of CB3M 
representation construction is given in Section VII. Section 
VIII gives concluding remarks and discusses some future 
research directions. 

 

II. RELATED WORK 
Mosaics have become common for combining and 

representing a set of images gathered by one moving camera 
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or multiple cameras. In the past, video mosaic approaches [4]-
[7] have been proposed for video representation and 
compression, but most of the work is for generating 2D 
mosaics instead of 3D panoramas, and using panning 
(rotating) cameras for arbitrary scenes or moving cameras for 
planar scenes, instead of traveling (translating) cameras 
typically used in airborne or ground mobile surveillance and 
3D scene modeling. In the latter applications, obvious motion 
parallax is the main characterization of the video sequences 
due to the self-motion of the sensors and obvious depth 
changes of the scenes.  

To generate truly “3D mosaics” from video sequences of a 
traveling camera, we are particularly interested in the parallel-
perspective pushbroom stereo geometry [1], [8]. The term 
“pushbroom” is borrowed from satellite pushbroom imaging 
[9] where a linear pushbroom camera is used. Pushbroom 
stereo mosaics have uniform depth resolution, which is better 
than with perspective stereo, and the multi-perspective stereo 
with circular projection [10], [11]. Pushbroom stereo mosaics 
can be used in applications where the motion of the camera 
has a dominant translational direction. Examples include 
satellite pushbroom imaging [9], airborne video surveillance 
[1], image-based rendering with 3D reconstruction or 3D 
estimation [8], [12], 3D representations of ground route scenes 
[13]-15], under-vehicle inspection [16], [17], 3D 
measurements of industrial parts by an X-ray scanning system 
[18], and 3D gamma-ray cargo inspection [19]. Some work 
has been done in 3D reconstruction of panoramic mosaics [20, 
[21] with an off-center rotation camera, but the methods are 
limited to a fixed view-point camera instead of a moving 
camera, and usually the results are still low-level 3D depth 
maps of static scenes, instead of high-level 3D structural 
representations for both static and dynamic target extraction 
and indexing. On the other hand, layered representations [22]-
24] have been studied for motion sequence representations; 
however, the methods are usually computationally expensive, 
and the outputs are typically motion segmentation represented 
by affine planes instead of true 3D information. Efficient, 
high-level, content-based, and very low bit-rate 
representations of videos of 3D scenes and moving targets are 
still in great demand. 

Another class of related work is 3D reconstruction from 
stereo pairs. Stereo vision is one of the most important topics 
in computer vision, and recently a thorough comparison study 
[25] has been performed. Simple window-based correlation 
approaches do not work well for man-made scenes. In the 
past, an adaptive window approach [26] and a nine-window 
approach [27] have been used to deal with some of these 
issues. Recently, color segmentation has been used for 
refining an initial depth map to get sharp depth boundaries and 
to obtain depth values for textureless areas [28], and for 
accurate layer extraction [22]. Global optimization based 
stereo matching methods, such as belief propagation [29] and 
graph cuts [30], [31], can obtain accurate depth information, 
but these methods are computationally expensive. A complete 
system was presented in [32] for turning forward-looking 

stereo video from a moving car into a model from which a 
virtual drive-through of a city street can be rendered. The 
paper by Pollefeys, et al [33] describes a system for automatic, 
geo-registered, real-time 3D reconstruction from video of 
urban scenes using a multi-view stereo approach. Most stereo 
reconstruction papers are based on perspective stereo 
geometry, except a few papers [14],[20],[21] dealing with 
multi-perspective stereo images. 

 

III. DYNAMIC PUSHBROOM STEREO MOSAIC GEOMETRY 
Stereo mosaics of static scenes have been well-studied in 

the past. As a preparation, we give a brief description of the 
concept. Assume the motion of a camera is an ideal 1D 
translation, the optical axis is perpendicular to the motion, and 
the frames are dense enough. Then, we can generate two 
spatio-temporal images by extracting two columns of pixels 
(perpendicular to the motion) at the leading and trailing edges 
of each frame in motion. The geometry in this ideal case (i.e. 
1D translation with constant speed) is the same as the linear 
pushbroom camera model [9]. Therefore we also call this 
image representation pushbroom stereo mosaic 
representation. A generalized model under 3D translation [1] 
has extended the parallel-perspective stereo geometry to 
image sequences with 3D translation and further with 6 DOF 
motion (rotation + translation). Here, we will use the parallel-
perspective stereo geometry under 1D translation to introduce 
the new concept of the dynamic stereo mosaics. 

 

A. Dynamic Pushbroom Stereo Model 
For completeness, we start with the formulation of the 

pushbroom stereo mosaics in a static scene. Without loss of 
generality, we assume that two slit windows of two scanline 
locations have dyl and dyr offsets to the center of the image, 
respectively, and the distance between the two windows is the 
fixed “disparity” dy = dyl - dyr > 0 (in Fig. 2, dyl = dy/2, dyr = - 
dy/2). The "left eye" view (xl,yl) is generated from the front slit 
window dyl, while the "right eye" view (xr, yr) is generated 
from the rear slit window dyr. A static point P (X,Y,Z) can be 
viewed twice from the two slit windows, at the camera 
location L1 and L2, respectively. Then the parallel-perspective 
“pushbroom” model of the stereo mosaics thus generated can 
be represented by 
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where F is the focal length of the camera, H is the height of a 
fixation plane on which we want to align our stereo mosaics. 
Eq. (1) gives the relation between a pair of 2D points, (xl,yl) 
and (xr,yr), one from each mosaic, and their corresponding 3D 
point P (X,Y,Z). It serves a function similar to the classical 
pin-hole perspective camera model. From (1) the depth of the 
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point P can be computed as  
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where 
H
B

Fydb y
yy =∆+= is the "scaled" version (in pixels) of 

the “baseline” By, i.e., the distance between two camera 
locations, and 
∆ y = yr - yl (3) 
is the "mosaic displacement" in the stereo mosaics. We use 
“displacement” instead of “disparity” since it is related to the 
baseline in a two view-perspective stereo system. 
Displacement ∆y is a function of the depth variation of the 
scene around the fixation plane H. Since a fixed angle 
between the two viewing rays is selected for generating the 
stereo mosaics, the "disparities" (dy) of all points are fixed; 
instead geometry of optimal/adaptive baselines (by) for all the 
points is created.  Therefore, a stereo geometry with uniform 
depth resolution is achieved. More in-depth analysis on depth 
accuracy of stereo mosaics from real image sequences can be 
found in our previous paper [2]. In this paper, we focus more 
on the dynamic aspect of stereo mosaics, and algorithms for 
simultaneous 3D reconstruction and moving target detection 
in urban scenes.  

Interestingly, dynamic pushbroom stereo mosaics are 
generated in the same way as with the static pushbroom stereo 
mosaics described above. Fig. 2 also illustrates the geometry. 
A 3D point P (X,Y,Z) on a target is first seen through the 
leading edge (the front slit window) of an image frame when 
the camera is at location L1. As we have discussed, if the point 
P is static, we can expect to see it through the trailing edge 

(rear slit window) of an image frame when the camera is at 
location L2. However, if the point P moves during that time, 
the camera needs to be at a different location L’2 to see this 
moving point through its trailing edge. To simplify the 
equations, we assume that the motion of the moving point 
between two observations (L1 and L’2) is a 2D motion (Sx, Sy), 
which implies that the depth of the point does not change over 
that period of time. Therefore, the depth of the moving point 
can be calculated as 

y
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d
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where By now is denoted as the distance of the two camera 
locations (L1 and L’2 in the y direction).  Mapping this relation 
into the stereo mosaic notation in (2), we have 
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where (∆x, ∆y) is the visual motion of the moving 3D point P, 
which can be measured in the stereo mosaics. The vector (sx, 
sy) is the target motion represented in stereo mosaics. 
Obviously, we have sx =∆x. The above analysis only shows 
the geometry of a moving camera with 1D translational 
motion. A pair of generalized stereo mosaics can be generated 
when the camera undertakes constrained 6 DOF motion, 
similar to the case of static scenes [1]. 

B. Moving Object Extraction against Parallax 
We have made the following interesting observations about 

the dynamic pushbroom stereo geometry for 3D and moving 
target extraction when obvious motion parallax exists in 
videos of 3D urban scenes.  

(i) Stereo fixation. For a static point (i.e. Sx = Sy = 0), the 
visual displacements of the point with a depth H are (0,0), 
indicating that the stereo mosaics thus generated fixate on the 
plane of depth H. If the fixation plane is the ground plane, this 
fixation facilitates stereo matching and moving target 
detection since the major background( i.e., the ground plane) 
has been aligned. 

(ii) Motion accumulation. For a moving point (Sx ≠ 0 and/or 
Sy ≠ 0), the motion between two observations accumulates 
over a period of time due to the large distance between the 
leading and trailing edges in creating the stereo mosaics. This 
will increase the discrimination capability for slowly moving 
objects viewed from a relatively fast moving aerial camera. 
Typically, a moving object as recorded in a pair of stereo 
mosaics is originally viewed from two views that are many 
frames apart (Fig. 2).  

(iii) Epipolar constraints. In the ideal case of 1D translation 
of the camera (with which we present our dynamic pushbroom 
stereo geometry in this paper), the correspondences of static 
points are along horizontal epipolar lines in a pair of 
pushbroom mosaics, i.e., ∆x = 0. Therefore, for a moving 
target P, the visual motion with nonzero ∆x (i.e., the visual 
motion in the x direction) will identify itself from the static 
background in the general case, which implies that the motion 
of the target in the x direction is not zero (i.e., Sx ≠ 0). In other 
words, the correspondence pair of such a point will violate the 
epipolar line constraint for static points (i.e. ∆x = 0). Note that 
this represents the general cases of independent moving 
targets. 

(iv) 3D constraints. Even if the motion of the target 
happens to be in the direction of the camera’s motion (i.e., the 
y direction), we can still discriminate the moving target by 
examining 3D anomalies. Typically, a moving target (a 
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Fig. 2.  Dynamic pushbroom stereo mosaics 
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vehicle or a human) moves on a flat ground surface (i.e., road) 
over the time period during which it is observed through the 
leading and trailing edges of video images with a limited field 
of view. We can usually assume that the moving target shares 
the same depth as its surroundings, given that the distance of 
the camera from the ground is much larger than the height of 
the target. A moving target in the direction of camera 
movement, when treated as a static target, will show 3D 
anomaly - either hanging up above the road (when it moves to 
the opposite direction, i.e., Sy < 0), or hiding below the road 
(when it moves in the same direction, i.e., Sy > 0). Note this is 
only the special case of independent moving targets. 

After a moving target has been identified, the motion 
parameters of the moving target can be estimated. We first 
estimate the depth of its surroundings and apply this depth Z 
to the target, then calculate the object motion sy using (5), and 
(Sx, Sy) using (6), knowing the visual motion (∆x, ∆y) 
measured in the stereo mosaics. 

 

IV. REAL-WORLD ISSUES AND MULTI-VIEW MOSAICS 
In real applications, there are three sets of challenging 

problems. These include camera motion estimation in practical 
cases, mosaic generation with more general camera motion, 
and occlusion and stereo matching issues in a pair of stereo 
mosaics. For some issues, we will give very brief discussions 
and point to related work. More details will be given for 
dynamic stereo mosaic generation, and multi-view pushbroom 
mosaics for dealing with occlusions, stereo matching and 
moving target detection.  

A. Camera Orientation Estimation 
The first problem is that the camera usually cannot be 

controlled with ideal 1D translation and camera poses are 
unknown; therefore, camera orientation estimation (i.e., 
dynamic calibration) is needed. In our previous study on an 
aerial video application, we used external orientation 
instruments, i.e., GPS, INS and a laser profiler, to ease the 
problem of camera orientation estimation [1]-[3]. More 
general approaches are bundle adjustment techniques [34] for 
estimating camera poses of long image sequences, which is 
one of the challenging issues of our stereo mosaic approach, 
and of video sequence analysis in general. In this paper, we 
focus on other technical issues of the problem, and use an 
ideal 1D camera translational model to show the principle of 
the dynamic pushbroom stereo mosaics. In our experimental 
analysis, we either assume that the extrinsic and intrinsic 
camera parameters are known at each camera location, as in 
theoretical analysis, or use a simplified version of camera 
orientation estimation, in which only four camera parameters 
are used. The four parameters are translation components in 
the X and Y directions, a heading angle, and a scaling factor. 
An underlying assumption in the practical treatments is that, 
(i) if the translational component in the Z direction is much 
smaller than the distance itself, we use a constant scaling 
factor in the interframe motion estimation and image 

rectification for each frame to compensate for the Z 
translation; and (ii) the rolling and tilting angles are small so 
they are combined into the translations in the X and Y 
directions. The mosaics from real video sequences are 
generated from such a camera orientation estimation model. 
We have found that 3D perception is compelling and 3D 
reconstruction results are reliable with such treatments, and 
the results could still be useful for image-based rendering and 
automated target detection.  

B. Stereo Mosaicing for Dynamic Scenes 
The second problem is to generate dense parallel mosaics 

with a sparse, uneven, video sequence, under a more general 
motion, and for a complicated 3D scene. For the case of static 
scenes, we have proposed a parallel ray interpolation for 
stereo mosaics (PRISM) approach [1] for generating a 
generalized stereo mosaic representation for static scenes, 
under constrained 6 DOF motion. At the first look, the 
approach might not be applicable to dynamic scenes. But a 

careful study shows that the PRISM approach designed for 
static scenes also works for dynamic scenes. 

Fig. 3 illustrates the basic idea of the PRISM algorithm in 
generating one forward-looking dynamic pushbroom mosaic 
(left mosaic with slit window location dyl). In the figure, (Tx1, 
Ty1, Tz1) and (Tx2, Ty2, Tz2) denote two consecutive camera 
locations, at time t1 and t2, respectively. From each of the two 
frames, only one scan line (the fixed line) can be directly used 
for the mosaic since it is generated from the correct viewing 
direction. For any other point P between these two fixed lines, 
its parallel-perspective projection needs to be interpolated 
from its matching pair in the two frames, (x1, y1) and (x2, y2), 
respectively. If the point P is a static point, the triangulation 
gives its correct 3D location P(X,Y,Z), and its backprojection 
gives the necessary parallel view as seen from the 
“interpolated” camera location (Txi, Tyi, Tzi), where 

Tyi = Ty1 +
y1 − dyl

y1 − y2

(Ty2 − Ty1),

Txi = Txl ,
Tzi = Tzl

 (7) 

(assuming Tx1 = Tx2 and Tz1 = Tz2 under the ideal 1D camera 
motion case). However, for a moving point (from 3D 
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Fig. 3.  Ray interpolation for a dynamic scene  
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positions Pt1 to Pt2), the triangulation does not give us its right 
3D coordinates, but the back-projection will create an image 
of the moving point Pti that should be seen at the 
“interpolated” time ti , i.e. at camera location (Txi , Tyi , Tzi), 
which is a linear interpolation between time t1 and t2. This 
naturally gives a linear pushbroom scan of the moving point. 
Under the linear motion assumption, the mosaic coordinates of 
the pair of point are  

yi =
F
H

Tyi + dy1,

xi = x1

 (8) 

This is an important finding since the mosaicing algorithms 
developed for static scenes can be directly applied to dynamic 
scenes. In principle, the PRISM approach needs to match all 
the points between the two overlapping slices of the 
successive frames to generate a complete parallel-perspective 
mosaic. In an effort to reduce the computational complexity, a 
fast PRISM algorithm [1] has been designed, based on the 
proposed PRISM method. It only requires matches between a 
set of control point pairs in two successive images, and the 
rest of the points are generated by warping a set of 
triangulated regions defined by the control points in each of 
the two images. The proposed fast PRISM algorithm can be 
easily extended to use more feature points (thus smaller 
triangles) in the overlapping slices so that each triangle really 
covers a planar patch or a patch that is visually 
indistinguishable from a planar patch. 

C. Multi-view Pushbroom Mosaics for Dynamic Scenes 
Finally, 3D reconstruction and motion detection from two 

widely separated stereo mosaics raise challenging issues. A 
pair of stereo mosaics (generated from the leading and trailing 
edges) is a very efficient representation for both 3D structures 
and target movements. However, there are two remaining 
issues. First, stereo matching will be difficult due to the 
largely separated parallel views of the stereo pair, resulting in 
large perspective distortions and varying occlusions. Second, 
for some unusual target movements, e.g. moving too fast, 
changing speed or direction, we may either have two rather 
different images in the two mosaics (if changing speed), or we 
see the object only once (if changing direction), or we never 
see the object (if it maintains the same speed as the camera 
and thus never shows up in the second edge window).  

Therefore, we propose to generate multi-view mosaics 
(more than 2), each of them with a set of parallel rays whose 

viewing direction dyk is between the leading and the trailing 
edges, dy0 and dyK, respectively (Fig. 4, k = 0, 1, …, K). The 
multiple mosaic representation is still efficient. Moreover, 
there are three benefits of using them. First, multiple 
pushbroom mosaics can be used for image-based rendering 
with stereo viewing in which the translation across the area is 
simply a shift of a pair of mosaics, and the change of viewing 
directions is simply a switch between two consecutive pairs of 
mosaics. Second, it eases the stereo correspondence problem 
in a way similar to multi-baseline stereo [35], particularly for 
more accurate 3D estimation and occlusion handling. In the 
stack of pushbroom mosaics, different sides of a 3D object 
will be represented in mosaics with various viewing angles. 
Each of these mosaics with parallel projections views the 
scene from a unique parallel viewing direction, thus captures 
surfaces of 3D objects visible from that direction. In the next 
section, we will discuss in details a new method to extract 
both 3D structures and moving targets from multiple dynamic 
pushbroom mosaics. We will also discuss the possibility of 
extracting and representing occluded regions in Section VI. 
 

(a)    (b)  
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B0

dy

F

A 

B 

A’

B’
 

 
Fig. 5. Height from dynamic stereo: (a) an infeasible pair; (b) a feasible pair 
 

Third, multiple mosaics can also facilitate 3D estimation of 
moving targets, and increase the possibility to detect moving 
targets with unusual movements and also to distinguish the 
movements of the specified targets (e.g., ground vehicles) 
from those of trees or flags in wind. Here we want to briefly 
discuss how multi-view mosaics can be used to estimate the 
3D structure of a moving target on the ground. In order to 
estimate the height of a moving target from the ground, we 
will need to see both the bottom and the top of an object. A 
pair of pushbroom mosaics with one forward-looking view 
and the other backward-looking view exhibits obvious 
different occlusions; in particular, the bottom of a target (e.g., 
a vehicle in Fig. 5a) can only seen in one of the two views. 
However, any two of the multi-view pushbroom mosaics, if 
both with forward-looking (or backward-looking) parallel 
rays, will have almost the same occlusion relation to satisfy 
the condition for height estimation.  

Fig. 5b illustrates the case of a pair of backward-looking 
pushbroom stereo mosaics. Point A and B are two points on a 
target (vehicle), one on the top and the other on the bottom. 
Both of them are first seen in the mosaic with parallel rays of 
a smaller oblique angle, and then seen in the mosaic with 
parallel rays of a larger oblique angle. The distance between 
the two different rays within an image frame is still defined as 
dy. The visual motion in the y direction is ∆yh and ∆y0, 
respectively, and can be measured in the stereo pair. Between 

 
 
 
 
 
 
 

motion direction

Multi-view 
stereo viewing 

Multi-view 3D 
reconstruction 

Mutli-view mosaics from a single moving 
camera. Seven mosaics are shown with 7 

different viewing directions.  

a perspective 
frame dy0dy1dyK … 

I0 
I1 IK 

 
Fig. 4. Multi-view pushbroom mosaics 
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the two parallel views, let us assume the motion of the target 
is Sy in 3D space and sy in the mosaiced images. Then the 
depths of the points on the top and on the bottom are 
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respectively. Depth Z0 of the bottom point could be obtained 
from the surroundings (ground) of the target. Then, the object 
motion sy (and therefore Sy) can be calculated using (10). 
Finally, the depth of the point on the top, Zh, can be estimated 
using (9), given the known visual motion of that point, ∆yh, 
and its independent motion component sy obtained from the 
bottom point B. 
 

V. 3D AND MOTION CONTENT EXTRACTION 
Using the advantageous properties of multi-view mosaics, 

we propose a unified approach that consists of four stages to 
perform both stereo matching and motion detection. First, in a 
set of pushbroom mosaics, I0, I1, …, IK, generated from a 
video sequence, at slit window locations dy0, dy1, …, dyK (see 
Fig. 4), the leftmost mosaic I0 at the location dy0 is used as the 
reference view, therefore color segmentation is performed on 
this mosaic, and the so called natural matching primitives 
(explained below) are extracted. Multiple natural matching 
primitives are defined with each homogeneous color image 
patch, which approximately corresponds to a planar patch in 
3D. The representations are effective for both static and 
moving targets in man-made urban scenes with objects of 
largely textureless regions and sharp depth boundaries. Then 
matches of those natural matching primitives are searched in 
the rest of the mosaics, one by one. After matching each stereo 
pair, a plane is fitted for each patch, and its planar parameters 
are estimated. Second, multi-view matches are performed, and 
therefore multiple sets of parametric estimates for this planar 
patch are obtained. The best set is selected as the final result 
by comparing match evaluation scores. Third, local and global 
spatial constraints are also explored to improve the robustness 
of the 3D estimation. Finally, moving targets are detected after 
the “3D alignments” of the scene. 

A. Patch-based stereo matching 
Stereo matching is applied first on a pair of stereo mosaics. 

Let the leftmost (i.e., reference) mosaic and the second mosaic 
be denoted as I0 and I1, respectively. First, the reference 
mosaic I0 is segmented into homogeneous color image 
patches. In our current implementation, the mean-shift-based 
approach [36] is used; but other segmentation methods can 
also be used for this purpose. In practice, over-segmentation 
(into small patches) is undertaken for ensuring homogeneity 
of each patch to enable accurate 3D recovery; however, a 
segmentation with larger patches will result in higher 
compression ratio of the video sequence.  

The segmented image consists of image regions (patches), 
{Ri, i =1, …, N}, each with a homogeneous color ci and is 
assumed to be a planar region in 3D space. All the 
neighboring patches, {Rij, j =1, …, J}, are also recorded for 
each patch Ri, The boundary of each patch, bi, is extracted as 
a closed curve. Then we use a line fitting approach to extract 
feature points on the boundary for stereo matching. The 
boundary of each patch is first fitted with connected straight-
line segments using an iterative curve splitting method. The 
connecting points between line segments are defined as 
interest points, pil, = 1, …, L, around which the natural 
matching primitives are defined.  

For each interest point, the best match between the 
reference and target mosaics is searched within a preset search 
range. Instead of using the conventional window-based match, 
we define the so-called natural matching primitives (Fig. 6) to 
conduct a sub-pixel stereo match. Note that the natural 
matching primitives around the detected interest points, 
instead of line segments or the patches, are the features to be 
matched. We define a region mask Wl of size w×w centered at 
each interest point pil = (x,y) ∈Ri, such that 
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The size w of the mask is adaptively changed depending on 
the actual size of the region Ri. In order that a few more pixels 
(1-2) around the region boundary (but not belonging to the 
region) are also included so that there are sufficient salient 
image features to match, a dilation operation is applied to the 
mask Wl to generate a region mask covering pixels across the 
depth boundary. Fig. 6 shows four such windows for the four 
interest points for the top region of the box. Note the yellow-
shaded portions within each rectangular window, i.e., the 
natural matching primitives, indicating that the pixels for 
stereo matching cover the depth boundaries. They are called 
“natural matching primitives”, because these primitives define 
the natural structures of the salient visual features, in terms of 
sizes, shapes and locations. Each natural matching primitive in 
the reference image is defined by its location (x,y) on the 
patch’s boundary bi, and the pixels belonging to the patch, 
which is represented by the size of a rectangular window and 
the mask (together they form a “natural” window as a yellow 
region in Fig 6). To this point, the attributes of each region 
(patch) Ri can be summarized as: 

NiLlWJj liljiiii ,...,1}),,...,1,,{},,...,1,{,,( ==== pRbcR  (12) 

which includes its color, boundary, J neighboring regions, L 
interest points and the corresponding masks. 
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Fig. 6. Natural matching primitives 
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The weighted cross-correlation, based on the natural 
window centered at the interest point (x, y) in the reference 
mosaic, is defined as  
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Note that we still carry out correlation between two color 
images but only for those interest points on each region 
boundary, and for each interest point, the calculation is only 
carried out on those pixels within the region and on the 
boundaries. A sub-pixel search is performed in order to 
improve the accuracy of 3D reconstruction; and a match is 
marked as reliable if it passes the crosscheck (e.g., as in [27]), 
i.e. the matches from the reference to the target and from the 
target to the reference are consistent. For the simplicity of 
representation, we still use (12) to represent the region Ri, 
with a note that the number (L) of reliable interest points used 
in the following steps may be smaller than the total number of 
interest points.

 The matching process consists of the following two steps. 
Step 1: local match. For each interest point, in order to find 

a reliable corresponding point, the natural matching strategy is 
carried out with a multi-scale approach, in that the search 
ranges and search steps are changed adaptively (from large to 
small). First, the natural matching strategy is applied to each 
interest point pil (l=1...,L) of a region (patch) Ri (i=1,…, N) in 
the reference I0, within preset (large) search range (Sh, Sv ) in 
both the horizontal (y) and vertical (x) directions, and a preset 
(large) search step s. Note that the pushbroom stereo geometry 
produces image displacement in  the y direction, but to 
account for camera calibration and orientation estimation 
error, a search within a much smaller range in the x direction 
is also performed. If a reliable match is obtained, and a new 
set of parameters (Sh, Sv and s) are calculated based on the 
first run (i.e., the search range is narrowed to neighborhood of 
corresponding point with a finer step, therefore Sh, Sv and s 
are reduced). Then, the natural matching is applied again, with 
the updated parameters. The same procedure is carried out 
recursively until convergence, i.e., s become a fraction 
(therefore match results are sub-pixel accurate). Usually the 
match procedure converges in three iteration steps. 

Step 2: Surface fitting. Assuming that each homogeneous 
color region Ri is planar in 3D, then a 3D plane can be 
generated as 
 aiX+biY+ciZ=di  (14) 
which is represented in the camera coordinate system as 
shown in Fig. 2. A 3D plane is fitted to each region after 
obtaining the 3D coordinates of the interest points of the 
region using the pushbroom stereo geometry (in (1) and (2)).  

We use a standard RANSAC method [37] to fit planes. In 
our implementation, a plane is fitted by randomly selecting 
three reliable interest points, and then using the plane 
parameters, all reliable interest points are warped from the 
reference view onto the target view. For each reliable interest 
point, the distance between the warped interest point and its 

corresponding target point (from local match) is calculated, 
and if the distance is less than 1 pixel, the point is claimed to 
be a supporter to the fitted plane. The total number of 
supporters is denoted as C, and the RANSAC process stops if 
C/L is larger than 65%, where L is the total number of reliable 
interest points. The number of the random selections of three 
points is set to Nmax = 50. In other words, the RANSAC 
process will stop either at 50 iterations or when the number of 
the supporters exceeds 65% of total reliable points. Then the 
best set of the plane parameters is selected as the initial 3D 
estimation of the planar patch. In the latter case, the region is 
marked as a reliable patch (in 3D estimation), therefore an 
unreliable patch at this point is the one whose number of 
reliable interest points is smaller than 3, or the total number of 
the plane supporters does not exceed the required percentage 
(i.e. 65% in our experiments). In the end, there are three 
categories of patches: those with a reliable plane estimation 
under the plane fitting criterion (Ci=2) , those with unreliable 
plane estimation (Ci=1), and those without any plane 
estimation (Ci=0). At this point, each patch’s representation 
can be updated as  
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The plane parameter set Θi exists if Ci ≠0. All the patches will 
go to the next stage for further processing. 

Fig. 7 shows a real example of a natural-window-based 
stereo matching result for a static object (the roof of a 
building). The 19 interest points that are detected and their 
correspondences are marked on the boundaries in the left and 
right images (cropped from the reference and target mosaics), 
respectively. One mismatch and a small error in match are 
also indicated on the images. Fig. 8 shows the results of fitting 
and back-projection of the fitted region onto the right image. 
The 15 seed interest points (out of 19) used for planar fitting 
are indicated on the left image as squares. Both the mismatch 

     mis-match

error in match
a b 

 
Fig. 7. An example of region matching results. The matches are marked as
“X”, with corresponding colors. 

     mis-match fixed 

error in match refined 
a b 

 
Fig. 8. An example of surface fitting results. Both the mismatch and the small 
error in the initial match are fixed. 
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and the small error in the initial match are fixed. 
Before we go to the next stage, we want to summarize the 

advantages of the patched-based natural matching primitives 
for stereo matching. First, treated separately, natural matching 
primitives on a patch represent the most salient visual features 
of the patch, and only contain pixels on that patch. Therefore, 
more accurate matches can be found for the patch that is 
textureless within and has a sharp depth boundary around. 
Second, taken together, more accurate and more robust results 
can be expected since these natural matching primitives are 
fitted on a single planar surface. Finally the algorithm is very 
efficient since only interest points of a region are matched in 
order to obtain the 3D of all the points within the region. 

B. Refining Plane Parameters with Multiple Mosaics 
After the above stereo matching is applied to the first pair 

of stereo mosaics, I0 and I1, initial estimations of the 3D 
structure of all the patches (regions) in the reference mosaic 
are obtained. Further matches between the reference mosaic I0 
and each of the rest of the mosaics, I2, …, IK , are then 
conducted. The initial visual displacement of each interest 
point on a patch is predicted from the result of this point 
estimated from the first stereo pair. From (2), we know the 
visual displacement ∆y is proportional to the selected 
“disparity” (dy) for a pair of stereo mosaics for any static 
point, i.e.,  

yd
H
Zy )1( −=∆  (16) 

Therefore, the visual displacement of the interest point in 
consideration can be predicted except when the point is on a 
moving object, which will be reconsidered in the moving 
target detection stage. Assume that the visual displacement for 
an interest point is ∆y1 between I0 and I1, where dy =dy0-dy1, 
then between I0 and Ik, where dy=dy0-dyk, the predicted visual 
displacement is 
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For refining the initial estimates of visual displacements, 
the two-step algorithm in Section V.A is modified to obtain 
new plane parameters for each pair of stereo mosaics, with a 
very good initial estimation to start with to reduce the search 
range.  

From the K pairs of stereo mosaics, up to K sets of plane 
parameters Θik = (aik, bik, cik, dik), k=1,…,K, are obtained for 
each region (patch) in the reference mosaic (some regions 
have fewer than K sets of available plane parameters due to 
insufficient interest points, or unreliable plane fitting). In 
order to obtain the most accurate plane parameters for each 
planar patch, the following steps are performed. First, for each 
pair of stereo mosaics, the patches in the reference mosaic are 
warped to the target mosaic in order to compute a color sum 
of square differences (SSD) for each region, between warped 
and original target images. Generalizing (1) to K views, and 
with 3D planar parameter estimation, we have 
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where the subscript i is dropped for simplifying the notations. 
Given a point p (x0,y0) ∈ Ri in the reference view I0, its 3D 
coordinates (X,Y,Z) can be calculated using (18), with k =0. 
Then again, using (18), the coordinates of the corresponding 
point in the kth view (k=1, 2,…, K), pk (xk,yk), can also be 
obtained. We use a function Ψk to represent the above 
geometric transformation from the 0th view to the kth view: 

)(pp kk
Ψ=  (19) 

Then the color SSD of the kth interest point of the region Ri 
can be calculated as  
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where I0 and Ik are the color vectors in the reference and the 
kth target views. Then, among all the estimates for each patch, 
the set of plane parameters with the least SSD value is 
selected as the best plane estimate. With multi-view 
refinements, the plane parameters and their categories in (15) 
are updated; some regions under the categories Ci = 0 or 1 
may be upgraded into the category Ci = 2 under both the plane 
fitting criterion and multi-view refinement. 

Note that using the knowledge of plane structure (i.e., 3D 
orientation), the best angle to view the region can be 
estimated, where the viewing direction of the selected mosaic 
(among all the possible viewing directions) is the closest to 
the plane norm direction. For example, for the side of a 
building that faces the right (refer to Fig. 2), the best match 
could be obtained from the first pair of stereo mosaics. If the 
view angle is equal to or greater than 90 degrees (relative to 
the plane norm), the region will not be visible. Incorporating 
this information, the SSD calculations are only carried out for 
those patches between the reference and target mosaics if the 
plane norms have less than 90-degree view angles from the 
viewing directions of the mosaics. 

C. Plane Updating Using Local and Global Constraints 
After the plane parameters with the smallest SSD value 

have been obtained for each region Ri, we will have a close 
look at the best SSD of each region within category Ci = 2, 
under both the plane fitting criterion and multi-view 
refinement. If the SSD value is greater than a preset threshold 
Ti, then the patch is moved to the unreliable category (Ci = 1) 
under plane fitting, multi-view refinement and SSD 
evaluation, therefore the attributes in (15) are further updated. 
Note that the SSD of the region Ri is calculated as the sum of 
all the pixels of 3 color components in the region, therefore 
the threshold Ti is defined as 
Ti = Qi × 3 × D2 (21) 
where Qi is the total number of pixels in the region Ri, and D 
is the threshold of the difference between two corresponding 
components. In our experiments, we set D = 16 pixel levels of 
512 possible differences. We have found that some small 
regions around larger regions, corresponding to a surface (or 
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part) of a 3D object, are generated by color segmentation, and 
are either marked as unreliable or without plane estimation. 
Therefore, we use two methods to update the plane parameter 
estimations: neighbor patch supporting and global scene 
constraints. 
 
Neighbor patch supporting 

In the neighborhood supporting strategy, we perform a 
modified version of the neighboring plane parameter 
hypothesis algorithm [30] to infer better plane estimates. 
Based on our region categorization, two main modifications 
are made: (a) the parameters of a neighboring region are 
adopted only if the region is marked reliable; and (b) the best 
neighboring plane parameters are accepted only when the 
match evaluation cost (SSD) using the parameters is less than 
the threshold Ti for the ith region Ri. Our neighbor supporting 
algorithm has the following steps. 

(i). Select reliable regions {Ri,j1, R i,j2,…, R i, jM}from the set 
of neighboring regions {Rij, j =1,2,…J } for the current region 
Ri, including the current region, therefore M<= J+1. 

(ii). Apply the parameter set Θjm (m=1, 2, …M) to the 
region Ri, to calculate the corresponding SSDi,jm(m=1, 2, 
…M), using (20). 

(iii). Select the parameter set Θjm(1 <= m <= M) that gives 
the smallest SSD, for the current region. 

With the neighborhood supporting, a un-estimated (Ci = 0) 
or un-reliable region (Ci = 1) can be upgraded to a reliable 
region (with Ci = 2) if its best SSD is smaller than the 
threshold Ti; the plane parameters of most of the regions can 
be refined no matter what categories they initially were. 
Further, if the neighboring regions share the same plane 
parameters, then they are then merged into one reliable region. 
This step is performed recursively until no more merges 
occur. We prefer to have false negatives than false positives, 
and the former will be handled in the next stage – moving 
object detection.  
 
Global scene constraints 

We have also explored global scene constraints to improve 
the robustness of 3D reconstruction for highly cluttered urban 
scenes, where a lot of small patches are generated. In a typical 
urban scene, many surfaces such as facades, rooftops, roads, 
etc., share the same plane directions. Therefore, in applying 
the global scene constraints, after an initial pass of plane 
parameter estimation with multiple views, the top several 
dominant plane directions are obtained by a simple clustering 
algorithm on those reliable regions. Then the following two 
steps are performed.  

(i) For those regions that either are marked as unreliable 
(due to plane fitting or SSD evaluation), or do not obtain 
sufficient good local matches (L<3), the parameters of the 
dominant planes can be used to guide the search and the 
refinement of their matching and plane fitting steps. Since 
each plane only has 4 parameters (a, b, c and d), and the norm 
of each dominant plane provide 3 of them (i.e., a, b and c), the 
rest of the job is simply to compute the variable d. Therefore, 

for each region with at least one reliable local match among 
the detected interest points, we plug this reliable match into 
the plane equation using each of these domination plane 
norms, to obtain possible estimations of d. Then, we compute 
the SSD of the corresponding patch pair (i.e. the warped 
reference patch and the original target patch) based on each 
estimate of the parameter d, and finally select the one with the 
smallest SSD score as the result. 

(ii) After applying the global scene constraints, 
neighborhood hypothesis (as discussed above) is applied to all 
the regions to generate more reliable and accurate 3D 
estimation results. Experimental results on plane merging and 
local/global scene constraints will be shown in Section VII, 
with both simulated and real video sequences. 

D. Moving Object Detection 
After the plane merging stage, most of the small regions are 

merged together and marked as reliable. Moving object 
patches that move along epipolar lines should also obtain 
reliable matches after the plane merging step, but they appear 
to be “floating” in air or below the surrounding ground, with 
depth discontinuities all around it. In other words, they can be 
identified by checking their 3D anomalies (Section III.B, 
observation (iv)). This is mostly true for aerial video 
sequences, where ground vehicles and humans move on the 
ground. For ground video sequences, the multiple mosaic 
approach discussed in Section IV can be applied. This remains 
our future work. 

In general cases, most of the moving targets are not exactly 
on the direction of the camera’s motion, therefore, those 
regions should have been marked as unreliable in the previous 
steps. Regions with unreliable matches fall into the following 
two categories: (i) moving objects with motion not obeying 
the pushbroom epipolar geometry; (ii) occluded or partially 
occluded regions, or regions with large illumination changes. 
For regions in the second category, their SSDs in stereo 
matching evaluation are always very high. The regions in the 
first category correspond to those moving objects that do not 
move in the direction of camera motion; therefore they do not 
obey the pushbroom stereo epipolar geometry. Therefore, for 
each of these regions, we perform a 2D-range search within its 
neighborhood area. If a good match (i.e., with a small SSD) is 
found within the 2D search range, then the region is marked 
as a moving object. We can also take advantage of the known 
road directions, to more effectively and more reliably search 
for matches of those moving vehicles. The road directions can 
be derived from 3D reconstruction results, e.g., in a city scene, 
the norm directions of the two dominant planes of the building 
façades surrounding the ground area on which the moving 
objects reside. 

In the current implementation of moving target detection 
(ground vehicles) from aerial images, large occluded regions 
are still not processed properly and consequently confuse the 
moving target detection as described above. Therefore, the 
size of each region is also taken into account to classify it as a 
moving target. Only if the region size is less than 300 pixels, it 
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goes through the moving target detection procedure.  
The moving target detection steps are summarized as 

follows. 
(i) For all reliable regions with less than 300 pixels, the 3D 

anomaly condition is checked. If one of the following 
conditions is satisfied, then a region Ri goes through 2D 
region search to find its motion parameters (Sx, Sy), and is 
marked as a moving target if the SSD is smaller than the 
preset threshold Ti: the height of the region Ri is 20 meters 
higher than the average height of the neighboring regions 
{Rij}; or the height of the region Ri is 10 meters lower than 
the average height of the neighboring regions. 

(ii) For all unreliable regions with less than 300 pixels, the 
epipolar constraint is applied. Each region Ri in this class goes 
through 2D neighborhood search to find its motion parameters 
(Sx, Sy), and is marked as a moving target if the SSD is 
smaller than the preset threshold Ti. 

At the end of all the four stages, a region Ri is represented 
as the following form: 
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where Ci is redefined as reliable static region (Ci = 2), moving 
target (Ci=1), and unreliable region (Ci=0), mi is the motion 
vector if the region is a moving target. Note that we have 
removed the interest points and natural matching primitives 
from each region in (22), which are only used during the 3D 
estimation process. And more precisely, the number of 
neighboring region for the region Ri is noted as Ji (i=0,…, N).  
 

VI. CB3M: CONTENT-BASED 3D MOSAICS 
The output of the two-phase processing – pushbroom 

mosaicing and content extraction, is a content-based 3D 
mosaic (CB3M) representation. It is a highly compressed 
visual representation for very long video sequences of a 
dynamic 3D scene. In the CB3M representation, the 
panoramic mosaics are segmented into planar regions, which 
are the primitives for content representation. Each region is 
represented by its mean color, region boundary, plane normal 
/ distance, and motion direction / speed if it is a dynamic 
object. Relations of each region with its neighbors are also 
built for further object representations (such as buildings, road 
networks) and automatic target recognition. 

A. Basic Content-Based 3D Mosaic Representation 
In our current basic implementation, a content-based 3D 

mosaic (CB3M) representation is a set of video object (VO) 
primitives (i.e., patches, e.g. in Fig. 9) that are defined as  
CB3M = {Ri, i =1, …, N} (23) 
where Ri is defined in (22). As a summary, they are explained 
below: (i) N is the number of VOs, i.e., “homogeneous” color 
patches (regions); (ii) ci is the color (3 bytes) of the ith region;  
(iii) bi is the 2D boundary of the ith region in the left mosaic, 
chain-coded as bi = {(x0, y0), Gi, b1, b2 , … bGi}, where the 
starting point (x0,y0) uses 4 bytes, and each chain code uses 3 

bits. Gi is the number of boundary points (which needs 4 bytes 
each) and G = ∑Gi is the total for all regions; (iv) {Rij, j 
=1,…, Ji} is the list of the labels of neighboring regions of the 
ith region, each needs 4 bytes (assuming on average the 
number of neighboring regions for each region is J, i.e. J = 
(1/N) ∑Ji ); (v) Ci = 2, if the region is a static patch with 
reliable plane parameters (see (vi)); Ci = 1, if the region is a 
moving target (therefore with mi, see (vii)); Ci = 0, otherwise 
(unreliable, maybe occluded regions). (vi) Θi = (ai, bi, ci, di) 
represents the plane parameters of the region in 3D, 4 bytes 
for each parameter; and (vii) mi represents the M motion 
parameters of the region if in motion (e.g. M =2 for 2D 
translation (Sx, Sy) on the ground). Therefore the total data 
amount is (without counting Ci) 

 Ncolor+ Nboundary+ Nneighbor + Nstructure+ Nmotion  
 = 3N + (8N+3G/8) + 4JN + 4*4N+4M*Nm  

 = (27+4J)N+3G/8+4MNm (bytes)                          (24) 
when each of the motion and structure parameters needs 4 
bytes. In the above equation, Nm is the number of moving 
regions (which is much smaller than the total region number 
N). Note that the VO primitives are those patches before 
region merging in order to preserve the color information.  

The CB3M representation provides the following benefits 
for many applications, such as urban transportation planning, 
aerial surveillance, robot navigation and urban modeling. A 
long image sequence of a scene from a fly-through or drive-
through is transformed in near real time into a few large FOV 
panoramic mosaics. This provides a synopsis of the scene 
with all the 3D objects and dynamic objects in a single view. 
The 3D contents of the CB3M representation provide three-
dimensional measurements of objects in the scene. Since each 
object (e.g. a building) has been represented into 3D planar 
regions and their relations, further object recognition and 
higher-level feature extraction are made possible. The motion 
contents of the CB3M representation provide dynamic 
measurements of moving targets in the scene. Finally, the 
CB3M representation is highly compressed. Usually a 
compression ratio of thousands to ten thousands can be 
achieved. This saves space when a lot of data for a large area 
need to be archived.  

B. Representing Occlusion and Higher Level Objects 
Since the basic CB3M representation is a set of planar 

patches with shape and appearance properties, it can be 
naturally extended to represent relations between regions, and 
occluded regions that are not visible or only partially visible in 
a single reference mosaic used as the base image of the basic 

 Θ 
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m 
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Fig. 9. Content-based 3D mosaic representation. 
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CB3M representation. In the current implementation, only 3D 
parametric information of planar patches in the reference 
mosaic is obtained. Since different visibilities are shown in 
mosaics with different viewing directions, we want to extend 
the approach presented in Section V to produce multiple depth 
maps with multiple reference mosaics and then integrate the 
results by performing occlusion analysis. The neighboring 
regions of each patch have been extracted in the patch and 
interest point extraction step. This lays a solid foundation for 
object recognition and occlusion handling, which will be our 
future work. Then an extended content-based 3D mosaic 
representation can be generated by inserting the occluded 
regions in the basic CB3D representation, similar to the 
layered representation we have proposed in [14]. In the end, 
the extended CB3M representation will have the following 
three components:(i) A base layer that consists of a set of 
planar patches corresponding to the reference mosaic; (ii) A 
set of occluded patches that are not visible in the reference 
mosaic, but are visible in other views, together with the 
corresponding viewing direction information for these 
patches; and (iii) All the neighboring regions of each patch, 
including the base patches and occluded patches. 

With these three components, and the corresponding 
viewing direction information, the extended content-based 3D 
mosaic representation can be easily converted into other 
representations, such as digital elevation maps, and can be 
used for image-based rendering since both the 
shape/appearance information and the viewing information are 
available. Furthermore, developing higher-level 
representations that group the lower-level natural patches into 
objects (e.g., vehicles, buildings, roads, humans), is also 
possible, for applications such as automated target recognition 
and 3D model indexing.  

 

VII. EXPERIMENTAL RESULTS AND ANALYSIS 
The proposed approach for the content-based 3D mosaic 

representations was applied to multi-view pushbroom mosaics 
generated from both simulated and real world video sequences 
of both indoor and outdoor scenes. With simulated video 
scenes, we have performed evaluations on the accuracy of 3D 
and motion estimation using multiple pushbroom mosaics, 
with ground truth data [38]. Here we only present two real-
world examples: the flyover of a campus scene, and the 
flyover of a New York City (NYC) scene. For more 
experimental results and more detailed analysis, please refer to 
[38]. Finally, we will provide some analysis on computation 
time in both stereo mosaicing and content extraction. 

A. Results on a Campus Scene 
The first real video sequence we tested our approach on is 

for a campus scene captured by a camera on a light airplane 
flying about 300 meters above the ground. The camera was 
calibrated using some ground truth data. The image resolution 
is 640*480. Nine mosaics were generated from the 1000-
frame aerial video. Fig. 10a shows a pair of stereo mosaics 

(embedded in red and green-blue channels, respectively) from 
the nine mosaics, and two close-up windows are marked in the 
stereo mosaics, which include both various 3D structures and 
moving objects (vehicles). Fig. 10b is the “height” map 
(corresponding to the reference mosaic) using the proposed 
method. Fig. 10c and Fig. 10d, Fig. 10e and Fig. 10f show the 
images of the two close-up windows and the corresponding 
“height” maps. Note that the sharp depth boundaries are 
obtained for the buildings with different heights and various 
roof shapes. The average heights of the buildings marked as 
A, B, C, D and E in Fig. 10d and Fig. 10f are 11.5m, 5.8m, 
5.4m, 14.9m and 7.8m, respectively. The long building (D) 
has a slanting roof (left side is higher). Even though we have 
not conducted an accurate evaluation due to the lack of 
ground truth data, these estimations are consistent with the 
real heights of these buildings. The moving objects that have 
been detected across all the nine mosaics are shown by their 
boundaries (in red). Those vehicles that are not detected by 
our algorithm are marked by rectangular bounding boxes; they 
are either stationary (as those in the boxes 2 and 3), or 
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Fig. 10. 3D and motion from multi-view stereo mosaics of an aerial video
sequence. (a) A pair of stereo mosaics from the total nine mosaics; (b) height
map of entire mosaic; (c) close-up of the 1st window marked in (a); and (d)
the height map of the objects inside that window, with the detected moving
targets marked by their boundaries and those not detected by rectangular
boxes; (d) close-up of the 2nd window marked in (a); and (f) the height map
of that window.  

 

 
Fig. 11. Content-based 3D mosaic representation of an aerial video sequence.
Only a window is shown, with some of the regions labeled by their
boundaries and plane parameters (a,b,c,d), and the detected moving targets
marked by their boundaries and motion vectors (sx,sy).  
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deformed differently across the mosaics due to the changes of 
motion in velocities (as in the box 1) and directions (as in the 
box 4). 

The CB3M mosaic (of the first window in Fig. 10a) is 
shown in Fig. 11, with a color value, a boundary, plane 
parameters and a motion vector (if in motion) for each patch 
(region). We examine the compression of the real video 
sequence from two steps: stereo mosaicing and then content 
extraction. For the real image sequence, we have 1000 frames 
of 640*480 color images, so the raw data amount is 879 MB. 
The size of a pair of stereo mosaics (Fig. 10a) is 
4448*1616*2, which uses 41MB of storage (without 
compression and with more than half empty space due to the 
fact that the mosaics go in a diagonal direction). The two 
mosaics in high-quality JPEG format are 2*560 KB; therefore, 
a compression ratio of about 800 is achieved for the stereo 
mosaics (the first step). If all the nine mosaics are saved for 
mosaic-based rendering, then the data amount is 9*560KB so 
the compression ratio will be 179. 

Then after color segmentation, 3D planar fitting and motion 
estimation, we obtained the CB3M representation of the video 
sequence, with the total number of the natural regions N = 
6,112 and the total number of boundary points G = 420,445. 
The total amount of data in its CB3M representation is 316 
KB (with a header). This real file size is consistent with the 
estimation of data amount using (24), which is about 315 KB. 
The data amount is reduced to 90 KB with a simple lossless 
WinZip compression on the CB3M data; therefore, the 
compression ratio is about 10,001. Note that the CB3M 
representation in Fig. 11 consists of regions corresponding to 
rather large object surfaces in order to rapidly obtain robust 
3D structures. However, fine details are not preserved. In our 
previous experiments, we over-segmented the reference 
mosaic so that finer details of the scene can be coded. In that 
case the compression ratio was still over 2000. 

B. Results on an NYC Scene 
The NYC mosaics were generated from a video sequence 

from an NYC HD (high-definition) aerial video dataset we 
ordered from http://www.artbeats.com/prod/browse.php. The 
video clip, NYC125H2, has about 25 seconds, or 758 frames 
of high-definition progressive video (1080*2000). Rooftops 
and city streets are seen as the camera looks ahead and down 
in a close flight just over One Penn Plaza and beyond in New 
York City. Yellow taxicabs make up a noticeable percentage 
of the vehicles traveling the grid of streets in this district of 
mostly lower-rising buildings, but there are a few high-rise 
buildings. You may view the low-resolution version of the 
video following the link we have provided above. Our main 
task is to recover the full 3D model of the area automatically, 
with cluttered buildings of various heights, from less than ten 
to more than a hundred meters. Fig. 12 shows one of the four 
multi-view mosaics generated and used for 3D reconstruction 
and moving target detection. The mosaic that is shown here 
has been turned 90 degrees, therefore the camera moves in the 
direction from the left to the right in the mosaic. The size of 

the mosaic is 4816 (W) x 2016 (H). The camera slightly tilted 
to the up-right side so the ground plane in the mosaic is not 
leveled. You can clearly see this effect in the depth maps in 
Fig. 13. 

This data set is very challenging due to the cluttered 
buildings and complex micro-surface structures that produce a 
lot of small homogeneous color patches after color 
segmentation. The regions with low-rising buildings (the 
right-hand side of the mosaic) do not have salient visual 
features and sufficient disparity for reliable depth estimation. 
So in this example, we also applied the Manhattan world 
geometric constraint [39] to further refine the 3D 
reconstruction results. As shown in Fig. 12, most of the planes 
(roads, rooftops and facades of buildings) are either 
perpendicular or parallel to each other, therefore, they consist 
of three orthogonal domination plane directions. In our 
experiments, among all of the regions that have successfully 
obtained plane-fitting results from multi-view mosaics, those 
with reliable matches are used to automatically vote for the 
three domination planes. The three plane norms are [5.544, 
1.360, 1.000], [-0.792, 3.837, 1.000] and [-0.026, -0.318, 
1.000]. A simply cross-product check verifies they are almost 
orthogonal to each other (The angles between them are 85.52o, 
86.03o and 92.69o). The information of these three domination 
plane directions is very useful in both refining the 3D 
reconstruction and extracting moving targets. For this, the 
two-step strategy in using the global scene constraints 
discussed in Section V.C is applied. Then, the rest of the 
regions, i.e. the “outliers”, go through the moving object 
detection test. We use the same method as presented in 
Section V.D, and for this NYC data, we take advantage of the 

 
Fig. 12.  A 4816 (W) x 2016 (H) mosaic from a 758-frame high-resolution 
NYC video sequence. The Manhattan world geometric constraint is 
illustrated on the mosaic.  The two rectangular windows include cars running
in two one-way roads, respectively. 
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Fig. 13. Depth from four pushbroom mosaics.  Within the two windows. 
Moving targets are detected as “outliers”.  
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known road directions, to more effectively and more reliably 
search for matches of those moving vehicles. The road 
directions are derived from the two dominant planes of the 

building façades (the third one is for the ground and rooftops). 
 Fig. 13 shows the 3D reconstruction results of the NYC 

video data, represented in the leftmost mosaic - the reference 
mosaic. The figure shows the height map generated from 
multi-view mosaics. For the improvements of depth estimation 
using multiple views over two views, please refer to [38]. Due 
to the lack of flight and camera parameters, we roughly 
estimate the main parameters of the camera (i.e., the height of 
the flight and the camera’s focal length) from some known 
buildings. However, this gives us a good indication of how 
well we can obtain the 3D structure of this very complex 
scene. For example, the average heights of the three buildings 
at One Penn Plaza (marked as A, B and C in Fig. 13) are 
105.32 m, 48.83 m, and 19.93 m, respectively. Our approach 
handles scenes with dramatically varying depths. Readers may 
visually check the heights of those buildings with 
GoogleEarth. Note that the camera was not pointing 
perpendicularly down to the ground and therefore the 
reconstructed ground is tilted. This can be seen from the 
colors of the ground plane. 

 The moving objects (vehicles) create “outliers” in the 
height map, as can be clearly seen on the height map (the 
brighter the color is, the higher the object is). For example, on 
the one-way road indicated in the first window in Fig. 12, 
vehicles moved from the right to the left in the figure, 
therefore, their estimated heights are much higher than the 
ground if assumed static. On the other hand, on the one-way 
road indicated in the second window in Fig. 12, vehicles 
moved from the left to the right in the figure, therefore, their 
estimated heights are much lower than the ground if assumed 
static). After further applying the knowledge of road 
directions that are obtained from a dominant plane clustering 
procedure, moving targets are searched and extracted. In Fig. 
14, all of the moving targets (vehicles) are extracted, except 
the three circled in the figure. These three vehicles are merged 
with the road in color segmentation. Other vehicles that are 
not detected were stationary; most of them are on the 
orthogonal roads with red traffic signals on for stop, and a few 
were parked on these two one-way roads. 

C. Computation Time Analysis 
The two-phase CB3M construction is also efficient in 

computation time. The following statistics were obtained 
when our program was run on a PC with Windows XP, an 
Intel Core 2 Duo 2.0GHz CPU, 4M cache, 3GB memory, 
800MHz FSB (BUS). Most of the computation time in the 
first phase (stereo mosaicing) was spent on orientation 
estimation using a pyramid-based image registration method, 
and stereo mosaicing based on the PRISM algorithm. For a 
typical video sequence with a resolution of 640*480, the 
speed of the first phase was about 5 Hz (5 frames per second). 
More analysis on time complexity of image registration can be 

found in [3].  
Since this paper is mainly focused on the second phase, we 

will provide more information for this phase. In this phase, 
most of the computation time is spent on two steps: 
segmentation (a pre-processing step to segment the reference 
image) and matching (the following step of matching multi-
view pushbroom mosaics). The segmentation step was 
implemented using the mean shift algorithm [36] and a 
toolbox provided by the authors, and the matching step was 
implemented by us in C++. Table I lists the time performance 
for the two video sequences presented in this paper: the 
campus scene and the NYC scene. For each sequence, the 
effective size of each mosaic (denoted as M), the number of 
patches produced in the reference mosaic after segmentation 
(denoted as N), the search ranges in both the direction of the 
camera motion, and the perpendicular direction (denoted as Sh 
and Sv), the number of pairs of pushbroom mosaics (denoted 
as K) used in each case, and the times spent in both 
segmentation and matching are listed in the table. Note that in 
the table, the sizes of the mosaics are the effective sizes that 
count the real scene pixels, excluding those pixels that are 
blank in the borders (this is particularly obvious for the 
campus scene since the mosaics run in a diagonal direction).  

Apparently, among the two steps (segmentation and 
matching), much longer time is spent on multi-view stereo 
matching, which includes the correlation step in local 
matching (Section V.A), and image warping in match 
evaluation (i.e., SSD) in the multi-view refinement (Section 
V.B) and plane updating using global and local constraints 
(Section V.C). Since both local match and image warping are 
based on patches over multiple mosaics, the match time is 
therefore a function of the number of patches N, number of 
pairs of mosaics K, and complexity of the scene (leading to 
various numbers of interests points). Roughly, the time 

  

 
Fig. 14. Moving target detection using the road direction constraint. In the
figure (a) and (b) are the corresponding color images and height maps of the
1st (bottom-left) and 2nd (top-right) windows in Fig. 12, with the detected
moving targets painted in red. The two circles show the three moving targets
that are not detected. The arrows indicate the directions of the roads along
which the moving targets are searched.  

TABLE I.  
COMPUTATION TIME ANALYSIS 

 
Clips Effective 

Size of 
mosaic (M)

# of 
patches
(N) 

# of 
mosaic 
pairs 
(K) 

Search 
Range 
(Sh,Sv) 

Segmentation 
time (Ts in 
seconds, and 
Ts/N in ms) 

Matching time 
(Tm in seconds, 
and Tm/(NK) in 
ms) 

     Ts Ts/N Tm Tm/(NK)

Campus 3900x700 15298 8 (8, 7) 44 2.88 5973 48.81 

NYC 3700x2000 37166 3 (30, 8) 330 8.88 9420 84.49 
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complexity for patch-based multi-view local match and 
warping can be estimated as  
T = O(NKShSv) +O(SK) (25) 
where the first term is for local match, which is proportional 
to the number of patches, the number of mosaic pairs and the 
search area, while the second term is for the image warping, 
which is proportional to the effective size of the mosaic (since 
all the pixels need to be warped to estimate the goodness of 
stereo match), and the number of mosaic pairs. 

The last two columns of Table I are the real time spent in 
segmentation and matching (in seconds), respectively, and the 
average time (in ms) spent per patch for segmentation, and per 
patch per pair of mosaics for stereo match. In particular, the 
average times in match per patch in the two examples are 
comparable, which are roughly speaking only functions of the 
corresponding search ranges. Note that we have not optimized 
the code for computational efficiency for correlation and 
warping, which could be implemented using look-up-table and 
integer iteration techniques that will greatly improve the time 
performance. 

 

VIII. CONCLUDING REMARKS 
In this paper we propose to construct a content-based 3D 

mosaic representation (CB3M) for long video sequences of 
3D and dynamic scenes captured by a camera on a mobile 
platform. In the first phase, multiple parallel-perspective 
(pushbroom) mosaics are generated to capture both the 3D 
and dynamic aspects of the scene under the camera coverage. 
In the second phase, a multi-view, segmentation-based stereo 
matching approach is applied to extract parametric 
representation of the color, structure and motion of the 
dynamic and/or 3D objects, and to represent them as planar 
surface patches.  

The content-based 3D mosaic (CB3M) representation is a 
highly compressed visual representation for very long video 
sequences of dynamic 3D scenes. The compression of a video 
sequence comes from both steps: stereo mosaicing and then 
content extraction. For both simulated and real image 
sequences of large-scale cultural scenes with many man-made 
buildings and vegetations, with more than 1000 frames of 
640*480 color images, a compression ratio of thousands to ten 
thousands is achieved. More importantly, the CB3M 
representation has object contents represented, which provides 
the following benefits for many applications, such as urban 
transportation planning, aerial surveillance and urban 
modeling. The panoramic mosaics provide a synopsis of the 
scene with all the 3D objects and dynamic objects in a single 
view. The 3D contents of the CB3M representation make 
further object recognition and higher-level feature extraction 
possible. The motion contents of the CB3M representation 
provide dynamic measurements of moving targets in the large-
scale scene.  

We will continue to work on two directions in advancing 
and extending the technologies proposed in this paper. First, 

in the CB3M representation presented in this paper many 
details and practical issues have not been considered. More 
experiments are needed with both simulated and real video 
sequences to evaluate the coding and compression capabilities 
of this representation. Second, in order to use the CB3M 
representations for real applications, further enhancements are 
also needed. For example, in the current implementation, only 
3D parametric information of planar patches in a single 
reference mosaic is obtained. Since different visibilities are 
shown in mosaics with different viewing directions, we want 
to extend the approach presented in the paper to produce 
multiple depth maps with multiple reference mosaics and then 
integrate the results by performing occlusion analysis. Third, 
developing higher-level representations that group the lower-
level natural patches for physical objects may also be very 
useful for many applications. For example, the neighboring 
regions, which have been extracted in the patch and interest 
point extraction stage, and which are important in object 
recognition and occlusion handling in image rendering, are 
not represented in the current model. Finally, in our 
experiments, we only handled those moving objects that move 
on a ground plane. This is mostly valid for aerial videos, but 
for ground video sequences captured on a ground vehicle for 
scenes with other moving vehicles and humans, the method 
proposed at the end of Section IV should be applied. This also 
requires further analysis of relations of object regions 
(patches).  

Second, we would like to generalize the pushbroom stereo 
mosaicing approach with more general camera motion. For 
example, we are working on stereo mosaicing with circular 
camera motion, and we have derived a geometric model for 
such a case. In the long term, we would like to combine 
pushbroom stereo mosaicing techniques in linear and circular 
motion cases, and generalize them to situation with more a 
general camera motion path. We also realize that camera 
orientation estimation with many video frames is still a 
challenging issue, and we hope that the results of this paper 
will stimulate more interests in the research and development 
of this problem. 
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