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Abstract 

 This paper presents a unified approach to automatically build dynamic and multi-resolution 360° 
panoramic (DMP) representations from image sequences captured by hand-held cameras mainly 
undertaking rotation and zooming for natural scenes with moving targets. A simple (yet stable) rigid 
motion model and a closed-loop-based mosaicing algorithm are proposed to generate cylindrical 
mosaics automatically. Multi-resolution representations are built for interesting areas by separating 
zooming sub-sequences from a pan/zoom sequence. Moving objects are detected and separated from 
images based on motion information, and then more accurate contours are extracted using a modified 
active contour algorithm. The DMP construction method is fast, robust, and automatic, achieving 5 
frames per second for image sequences with 384×288 color images on a Pentium III 800 MHz PC.  
The construction of the DMP representation can be used in virtual reality, video surveillance, and 
very low bit-rate video coding. 

 

Keywords: Panoramic representation, video mosaicing, multi-resolution, moving object extraction 
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1. Introduction 

Panoramic representations of visual scenes have a wide application scope, including virtual reality 
(VR), interactive 2D/3D video, tele-conferencing, content-based video compression and manipulation, 
and full-view video surveillance.  A wide field of view (FOV) lens, e.g. a fish-eye [1] or panoramic 
lens [2-6], can be a solution for obtaining panoramic views. However, in addition to the high cost of 
these specially designed image sensors, images obtained by such sensors have substantial distortions, 
and mapping an entire scene into the limited sensor target of a standard video camera compromises 
image quality. Constructing a panoramic representation by mosaicing image sequences captured by 
ordinary cameras, on the other hand, meets the requirements of the aforementioned applications for 
high image resolution. However very few of the current algorithms and systems are able to properly 
detect and represent foreground objects and to efficiently deal with large zoom effect. This motivates 
our work described in this paper. 

1.1. Overview of our approach 

Our overall goal in image-based modeling is to create realistic 2D/3D panoramas from video 
sequences with the more general motion of a hand-held video camera [7-11]. The construction of 
layered panoramas and stereo mosaics of 3D scenes from translating cameras with constrained 6 
DOF motion has been proposed in our previous work [8-11], where motion parallax is large and thus 
is used to recover the 3D structure of the static scenes. In this paper we deal with video sequences of 
scenes with moving objects, which are taken by hand-held cameras undergoing 3D rotation (mainly 
panning), zooming, and small translation. In this case, the motion parallax, if not zero, can be 
neglected due to the small translation. A new approach is proposed to automatically build a Dynamic 
and Multi-resolution 360° Panorama (DMP) from such a video sequence.  For applications of image-
based modeling and rendering, we can control the camera’s motion so this requirement can be easily 
satisfied. Nevertheless, this is often the case for the operation of a video camera by a cameraman for a 
video program. Therefore, although the description of the DMP construction algorithm in this paper is 
mostly directed towards image-based modeling, the same algorithm with slight modifications can be 
used in video analysis and coding, and also in video surveillance.  

The system diagram of our approach (as a road map of this paper) is shown in Figure 1. The input of 
the algorithm is an image sequence captured by a camera, undertaking continuous panning, zooming 
in for each interesting spot and then zooming out to the continuous capture of the scene around the 
viewer, and so on so forth, until the camera rotates a full 360 degrees. The zoom in/out operations 
might be performed at multiple spots, and the focal lengths could be different before and after each 
zoom in/out operation.  However, we assume that the camera will cover the full 360-degree field of 
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view around the camera, and the rotation is almost around its nodal point. There are three steps in our 
algorithm: (1) interframe motion estimation, (2) motion accumulation and classification, and (3) DMP 
model generation.  In the first step, a parameter motion model is estimated between each pair of 
successive frames. Then in the second step, the interframe motion parameters are accumulated to 
generate a global transformation between each frame and the reference frame (e.g. the first frame). 
With these global transformation parameters, those frames with significant and continuous changes of 
the focal lengths (i.e., both zoom-in and zoom-out frames) are separated for further multi-resolution 
processing, wile the remaining 360-degree panning sub-sequence is used for panoramic mosaicing. 

 

Figure.1  

 

In the third step, there are three parts in generating the DMP representation: panoramic generation, 
dynamic object extraction, and multi-resolution representation construction. First, a cylindrical 
panorama is generated by mosaicing those frames in the panning sub-sequence. The full view 
“closed-loop” constraint is used for rectifying the mosaic to a cylindrical representation. Meanwhile, 
as the second part of the processing, dynamic objects in the scene are detected and extracted using 
both motion and shape cues, and they are filtered out from the background panorama and represented 
separately. Finally, in the third part, a spare multi-resolution pyramid representation is built for each 
interesting area using the corresponding zoom-in/zoom-out frames. Because of the continuous nature 
of the video capture, we can effectively register those multiple-resolution frames with the panoramic 
mosaic.  The DMP construction method is fast, robust and automatic; in fact most of the time is spent 
on interframe motion estimation. The computational performance of image registration is 
approximately 1 pair of frames per second on a 266 MHz PC, and up to 5 frames per second (5 Hz) 
on a Pentium III 800 MHz laptop. No camera calibration is needed, and an experimental system has 
been built and can be easily used by a non-expert. While all the three steps are important, algorithms 
for the first step have been well studied. Therefore, we focus on the three parts of the third step. The 
discussion of the second step will be integrated into the description of the multi-resolution 
representation. 

A panoramic representation with dynamic and multi-resolution capacities has the following benefits. 
For virtual/virtualized reality applications, it has the advantages of simplicity in rendering (just image 
warping), photographic quality realism (from real images), and 3D illusion experienced by users 
(virtual camera panning and zooming with dynamic objects). For video analysis and coding, it is 
superior to existing coding approaches in that it is a content-based representation with a very low bit-
rate, for a class of video sequences with pan/tilt/zoom camera motion and moving objects. These two 
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aspects of capabilities could be merged into a more general approach for interactive video (e.g. virtual 
conferencing), which adds the flexibility of synthesizing images with interactivity, selectivity, and 
enhanced field of view and resolution, all the while making the data streams of video information 
within a reasonable bandwidth for video conferencing applications over the Internet. 

1.2. Related work 

Apple’s QuickTime VR [12] captures a 360-degree panoramic image of a scene with a camera 
panning horizontally from a fixed position. The overlap in images is registered first by the user and 
then “stitched” together by the software using a best match algorithm. Similarly, in [13] mosaics were 
constructed by registering and reducing the set of images into a single, larger resolution frame. 
However, the final image mosaic is not a full 360-degree view.  Shum & Szeliski [14] proposed a 
mosaic representation that associates a transformation matrix with each input image, rather than 
explicitly projecting all of the images onto a common surface (e.g., a cylinder). In particular, to 
construct a full view panorama, they introduced a rotational mosaic representation that associates a 
rotation matrix (and optionally a focal length) with each input image. However, the decomposition of 
the projective transformation matrix into rotation angles and the focal length is known to be very 
sensitive to image noise. Kang & Weiss [15] analyzed the error in constructing panoramic images and 
proposed a technique that has the advantage of not having to know the camera focal length a priori. 
However, in order to create a panorama, they first had to ensure that the camera is rotating about an 
axis passing through the nodal point. To achieve this, they manually adjusted the position of the 
camera relative to an X-Y precision stage (mounted on a tripod) such that the parallax effect 
disappears when the camera is rotated about the vertical axis. The focal length of the camera cannot 
be changed throughout the rotation. Xiong and Turkowski [1] proposed a method to create image 
based VR using a self-calibrating fisheye lens. The nodal point of the fisheye lens needs to be 
adjusted so that it lies on the rotation axis of the tripod. They take four pictures by rotating the camera 
90 degrees after every shot and formulate the registration and self-calibration constraints as a single 
nonlinear minimization problem in which 34 parameters need to be determined. Most of the current 
panoramic mosaicing software systems available with digital cameras follow these approaches, which 
lack the capabilities to close the panoramic loop, to represent moving targets, and to represent zoom 
frames properly. Manifold projection [16] enables the fast creation of low distortion panoramic 
mosaics under a more general motion than an exact panning. The basic principle is the alignment of 
the strips that contribute to the mosaic, rather than the alignment of the entire overlap between frames. 
However, the issues of full-view cylindrical panorama, independent object motion, and camera zoom 
are not considered in this approach.  
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Static scenes are a common assumption in image mosaicing and image-based rendering, with a few 
exceptions such as a dynamic mosaic approach proposed by Irani, Anandan & Hsu [17] and the 
motion panoramas [18] to describe dynamic events. However, the accuracy of the contour of a 
moving object was not addressed, which is important for synthesis of fine details of dynamic objects 
on the mosaic representation. In our work we utilized a modified active contour method to extract 
contours of moving objects. Recent work in dealing with matching images with large zoom factors 
includes several pieces of work to design and use scale-invariant features [19, 20, 21], but these 
approaches are usually time-consuming. 

This paper is organized as follows. In Section 2 a simple inter-frame motion model is introduced and  
motion estimation and refinement is discussed for panoramic mosaicing. This section also explains 
why a simple 2D rigid transformation model can result in fine mosaicing of 360-degree panoramas. 
Section 3 describes how to separate zoom frames from a pan/zoom image sequence and how to build 
a multi-resolution representation for the selected “interesting” regions. In Section 4, a closed-loop 
image mosaicing and rectification algorithm is presented in detail. The algorithm for moving object 
detection and segmentation from the background is presented in Section 5. Interesting results 
involving the movement of a walking person in a single mosaicing frame is shown. A brief 
conclusion and some discussions are given in the last section. 

2. Motion Estimation and Refinement for Mosaicing 

The exact transformation between two frames from pure rigid 3D rotation should be a planar 
projective transformation. However, if we use planar reprojection, the field of view is limited to be 
less than 180 degrees. In an initial study, we first utilized a direct linear method similar to that in [14] 
to estimate camera parameters from projective transformation between two frames. The parameters 
include relative focal length, nodal point, aspect ratio, and the three inter-frame rotational angles of 
the camera. Theoretically it would be elegant if a cylindrical panorama can be constructed after the 
focal length and the three rotation angles have been decomposed. However, experimental analysis has 
shown that this decomposition is very sensitive to image noise and accuracy of the recovered motion 
parameters. Since the motion of a hand-held camera cannot be guaranteed as a pure rotation, which 
makes this difficult problem even harder, we adopt an alternative approach when the camera panning 
is the dominant motion and the pan covers more than 360° around the viewpoint. This section 
introduces the interframe motion modeling and estimation. Then, in Sections 3 and 4 we will discuss 
zoom-frame handling and closed-loop mosaicing algorithms. 
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2.1. Interframe motion model 

Let us first assume that the scene is static and all motions in the image are caused by the movement of 
the camera. The independent motion of other objects in the scene will be considered later. A 
coordinate system XYZ is attached to the moving camera; the origin O is the optical center of the 
camera (Figure 2). UV is the image coordinate system whose origin is the intersection of the optical 
axis with the image plane. The camera motion has 6 degrees of freedom: three translation components 
and three rotation components. Since we use the camera as the reference coordinate system, an 
alternative equivalency is that the scene being viewed moves with 6 degrees of freedom. Considering 
only an inter-frame case, we represent three rotational angles (roll, tilt and pan) by (α, β, γ) and then a 
rotation matrix R, and three translation components by T= ),,( zyx TTT t.  

 

Figure 2 

 

With current frame at time t and the reference frame at the previous time t’, a 3D point X = (x, y, z)t 
with image coordinates u = (u, v,1)t at time t have moved from point X’=(x', y', z') t in the reference 
time t’, with the image point u’ = (u', v',1) t. The relation between the 3D coordinates is 

 TRXX +=′       

If the rotation angle is small (e.g., less than 5 degrees) between the successive frames, then under a 
pinhole camera model, we have 
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and the camera focal lengths are f' and f before and after the motion. 
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Figure 3 

 

Under a 3D rotation that is dominated by panning motion, possibly with zooming and small 
translation, we have very small roll α, tilt β and )/,/,/( zTzTzT zyx . Therefore, a 2D rigid inter-frame 

motion model can be used 
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where  '/ ffs ≈  is a scale factor associated with zoom and Z-translation; (tu, tv) ≈ (-γf, βf) is the 

translation vector representing (pan/X-translation, tilt/Y-translation); and α is the roll angle. This 
motion model is also plausible if the scene is far away. Given more than 2 pairs of corresponding 
points between two frames, we can obtain the least square solution of motion parameters, s, tu, tv and 
α, in equation (3).  The errors of approximation are especially small for the narrow vertical strip in 
the center of each image that will be used in our image mosaic algorithm (Figure 3). This observation 
can be easily deduced by comparing equation (3) with equation (1) when β≈0, u≈0, and 

 0)/,/,/( ≈zTzTzT zyx . If the image size is 384×288 and the equivalent focal length of the camera is 

384 pixels, numerical analysis shows that when all the three angles are less then 2 degrees, errors due 
to model simplification are of only 0~2 pixels in the central strip (with the width w < 16 pixels in 
Figure 3). In the actual situation for our image sequences, the camera focal length is about 8 mm. 
More detailed analysis can be found in Appendix 1. 

2.2 Motion estimation and refinement 

Motion estimation and refinement consists of two embedded iteration cycles. The first (inner) 
iteration cycle is robust motion estimation based on the motion displacements from the interframe 
image matches [22, 23].   The inter-frame image displacements are estimated by using a pyramid-
based matching algorithm. The hierarchical algorithm consists of four steps: pyramid construction, 
hierarchical block matching, match evaluation and robust estimation of motion parameters. Details on 
the algorithms and the performance analysis can be found in [23]. As a highlight, the 2D rigid 
transformation between two successive frames in equation (3) is estimated using an iterative weighted 
least mean square method. However, this iterative process is only carried out on the current motion 
displacements without re-calculating them from the original images. A re-weighting process accounts 
for moving objects and other mismatches that are not consistent with the estimated rigid motion 
model.  
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The second (outer) iteration cycle is for match correction and refinement. After warping the current 
frame using the calculated motion parameters, the difference between the warped image and the 
reference image provides residual errors for the motion model. If the residual is large, then the 
residual motion displacements are estimated between the warped frame and the reference frame, by 
either a match correction or a motion refinement step.  

When motion parameters are significantly different from the averages of the previous several frames, 
we assume it is a mismatch. In this case, the initial inter-frame motion parameters of this frame are 
assigned as the average of the previous several frames. Given that our goal for image registration is to 
create an image mosaic using only a small portion of the full frame, the weight function employed for 
the image difference is a 1D Gaussian function 

 2
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which favors those points near the center scan-lines of the frames that will be used in the mosaic 
images (Fig.2). With the initial motion vectors of each block from the given initial inter-frame motion 
parameters, the match process will start from a suitable intermediate layer of the image pyramids in 
which the initial displacements are detectable. 

 

Figure 4  

 

Figure 4 shows a real example in matching correction for a Library scene. The initial match obtained 
wrong motion parameters 35.206=ut , 84.19=vt , 99.0=s , 00.0−=α  due to repetitive patterns 

under the large search window of the motion estimation algorithm (Note that the search range is the 
entire image at the top of hierarchical match process at the beginning). The motion parameters are far 
from the average of the preceding values, and the sum of absolute frame difference (SAD, average of 
the R,G and B bands) is 17533 for an overlapping region of 1/3 of the image size. By using the 
match-correction technique, the new motion parameters are 25.49−=ut , 01.11=vt , 00.1=s , 00.0=α  

and the SAD reduced to 3950.. The improvement is quite clear by looking at the difference images in 
Figure 4 (c) and (d). 

Even if no mismatch occurs, the refinement process is needed when the rotation angle α is large 
(since we use α instead of sin α in our motion parameter estimation).  The refinement is performed by 
iteratively warping the current image and re-matching the warped image with the reference image. 
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We emphasize that a more accurate transform matrix Mt than the one in equation (3) is used to warp 
the current image t as 

 ttt uMu ≈′ ,   
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That fact is, even if we still use equation (3) to estimate the motion parameters θ (m)= (Tu
(m), Tv

(m), α(m), 
s(m)), where (m) denotes the iteration count, errors will be reduced with decreasing residual rotating 
angles α(m).  The warping in the mth iteration can be expressed by 
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where ui
(m) is the ith image point after the mth warping of the current frame. The final transformation 

matrix for the current frame t is  

 ∏=
m
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Since the residual motion displacements are reduced, the probabilities of mismatches will be reduced; 
hence the matching results will be improved. Experiments show that about two outer match cycles 
after rectification can achieve fine registration results.  

2.3.  Global motion accumulation and mosaic basics 

A frame (e.g. the first, the last, or a middle frame) of an image sequence could be selected as the 
reference frame for the mosaic process. The accumulating transformation parameters between each 
frame and this reference frame are calculated as 
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when the first frame (t=0) is selected as the reference frame. The accumulated parameter vector ΘI
(t) = 

(Tu
(t), Tv

(t)
 ,Α(t),S(t)) is used to warp frame t in creating a mosaic after zoom-frames have been separated 

from the entire sequence (as in Section 3). Image frames are warped and pasted frame by frame onto 
the final mosaic using the following transformation  

 ttuPu =  (t = 1, 2, …, F) ,   
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where u = (u,v,1)t is the coordinate in the mosaic coordinate system, i.e. frame t =0, and ut = (ut,vt,1)t 

in the current frame (i.e. time t).  

3. Zoom-Frame Separation and Multi-Resolution Representation 

In image-based rendering applications, we want the capability not only to pan but also to zoom the 
virtual camera to enhance the visual realism. In image coding, we need to handle the video sequence 
with camera zooming as well as panning. Therefore, we introduce a multi-resolution representation 
for each user specified “interesting” portion of the panorama. Each of those regions on the panorama 
is labeled as a “zooming hot spot”. The representation is constructed by physically zooming the 
camera when the more interesting regions of the scene are viewed. The zoomed frames are separated 
automatically from the original panning and zooming image sequence.  In the following, we first 
describe the basic steps, then we will give some real examples. 

The zoom subsequence separation is in fact performed before panoramic mosaicing and moving 
object detection (see Figure 1). The whole procedure includes the following five steps: pan/zoom 
sequence capture, interframe motion estimation, zoom subsequence separation, panning sequence 
connection, and key frame selection for each zoom subsequence. 

Pan/zoom sequence capture. The camera is first panned, zoomed in for an interested scenic spot, 
and zoomed out to the normal focal length (approximately) to continue the scan of the scene to make 
a full 360-degree coverage. Multiple zoom in/out operation may be performed for multiple zooming 
hot spots. Typically, frames are counted as in the zoom sub-sequence if the absolute scale factor of 
those frames are more than twice (2) of the normal panning frames. 

Interframe motion estimation and global motion accumulation. The interframe motion vectors are 
estimated, and then the global motion parameters related to a reference frame are calculated, using the 
method described in Section 2. 

Zoom sub-sequence separation. The list of the global motion parameters is scanned sequentially. 
When a frame ts that have a global scale S(ts)  >= ST , and the interframe translational components tu 
and tv are significant small, then it is selected as the first frame of a zoom sub-sequence. Typically ST 
is selected as 2.0 in order that the algorithm works under accumulation error of scales and does not 
generate too many fragment zoom frames. Translational components tu and tv are selected to be 
smaller than 5 pixels so that the camera mainly performs a zooming in a zoom sub-sequence. Then 
the frames followed that satisfied the above conditions are added to the sub sequence, ending with a 
frame te with scale factor S(te)  < ST (Figure 5). Note in a zoom sub-sequence, the scale factors first 
increase to a certain level, then decrease back to normal. 
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Panning sequence connection. Ideally, frames ts and te will be registered by using the global motion 
parameters, if there is no accumulation error in the interframe matching from the frame ts, across the 
zoom subsequence, to the frame te. However, accumulation error does exist; therefore, we only use 
the accumulated “interframe” transformation as the initial estimation between this pair of to-be-
connected frames (ts and te), and then perform real matching between them. Since these two frames 
view almost the same area, we use histogram equalization for both to deal with possible illumination 
changes due to lighting and auto iris. Then, the refined global transformations are re-calculated after 
the final panning sequence is determined for final mosaicing. 

Key frame selection. From each zoom subsequence, we only select frames when the scale factor 
changes by a certain number Sc, for example Sc = 1.5 when significant zoom happens, until a frame 
with the highest resolution. So the selected key frames are t0= ts, t1, t2, …, which satisfy the condition 
S(t

i
)  >= ST Sc

i,  i = 0, 1, 2,….Frame t0 can be roughly registered with the panoramic mosaic using its 
own global motion parameters. 

 

Figure 5 

 

We want to make two notes here. First, an automatic registration between two zoomed frames is 
achieved in a manner similar to that for the panned frames, but after that the next step is to select 
representative frames as the components of a multi-resolution representation (instead of mosaicing 
the frames). It should be noted here that it is more difficult to accurately assess similarity in the 
zooming case than in the panning case, especially when the scale change is large between successive 
frames (e.g. s > 1.1), since the scales of the match blocks are not the same in the two images. In this 
case refinement processing after warping (i.e. re-zooming) is vital for the accurate estimation of the 
scale parameter.  Figure 6 shows a matching example from a zooming clip of a Main Building 
sequence shown in Figure 7. The motion parameters from the initial matching process are 7.29=ut , 

52.0−=vt , 03.1=s and 00.0=α , while the motion parameters from the second (final) matching 

process are 34.0=ut , 99.0−=vt , 12.1=s and 00.0−=α .  The second set of parameters results in a 

much better registration of the frames, as can be seen by comparing Figure 6c and Figure 6d. The 
zoom factor between Figure 6a and Figure 6b is 1.12.  The reason for the successful match is that 
every iteration adjusts the scale factor to approach to the real one. 

 

Figure 6 
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Second, the effect of the value of the threshold ST is not significant for both panoramic mosaicing and 
multi-resolution representation, since the mosaicing procedure handles scale changes between images 
in the sequence. However, it is safe to select the ST larger than 1.5 otherwise the accumulation error 
of the scales over 1.0 may cause false detection of a zoom sub-sequence.  Figure 7b shows the 
cylindrical panorama generated from the panning and zooming image sequence. In this background 
mosaic, moving objects, some of them are very large, as in the third image of Figure 7a, were 
removed. Note that the mosaic has been rectified to a 360-degree panoramic view, using the method 
that will be described in Section 4. Two zoom in/out operations were performed in this sequence, 
which are marked with rectangles on the mosaic. It is clearly shown that the focal lengths are 
obviously changed before and after the first zooming operation. Figure 7c shows the three selected 
zooming frames of the second zooming sub-sequence, with a 1.5 scaling factor between two selected 
frames. The rectangle in each frame indicates the sub-region that corresponds to the next selected 
frame. The selection of the scaling factor in the multi-resolution representation should be suitable so 
that with a minimum number of frames for each interesting area, much better rendering results can be 
achieved by using image morphing between two preserved zoom frames rather than just using a direct 
digital zoom from a singe basis resolution of the panorama. 

 

Figure 7 

 

4. Closed-Loop Image Mosaicing and Rectification 

Since only one narrow vertical strip in the center of each frame is utilized, a 2D rigid transformation 
is sufficient to merge the successive frames. Intuitively, the 2D rigid mosaicing approximately maps 
the image to an “unfolded” conic surface, or sometimes an “unfolded” cylindrical surface, depending 
on the orientation of the optical axis (Figure 8). The principle behind the “conic mosaicing” can be 
explained as follows. Suppose the central strip is represented in spherical coordinates. Then the four 
parameters in  equation (9) could be interpreted as  the 3D rotation (Tu, Tv, Α) and zoom (S) of the 
camera, even though error will be introduced by the approximation of the circular arc by a planar strip. 
If the roll and tilt angles are significantly smaller than the pan angle, then this error is small since the 
distortion is mostly in the vertical direction (see also Appendix 1). It also implies that the actual 
mosaic is an unfolded conic surface since the strip is planar. A true cylindrical panorama can be 
obtained only if the optical axis is strictly horizontal (Ib in Fig.3 (a)). The cone is upward (e.g. in 



 13

Figure 8(b)) if the optical axis of the reference frame is slightly downward looking (Ic in Figure 8(a)) 
and vice versa ( Ia in Fig.3 (a), and Figure 10(a)).  

4.1 Cylindrical panoramic rectification 

Rectifying the unfolded conic mosaic to an unfolded 360° cylindrical panorama is achieved by 
finding the correspondence of a (virtual) vertical edge in the head and tail of the conic mosaic. The 
correspondence is established automatically by matching the possible “re-homing” (tail) frames in the 
image sequence with the first (head) frame using the same pyramid-based matching strategy, and then 
selecting the frame with minimum difference between the overlapping region of its warped image 
with the first frame. The “virtual” vertical edge in the head frame is represented by the central column 
PQ, and the corresponding edge P’Q’ is determined by the image matching. To account for the 
illumination changes between the connecting head and tail frames, histogram specification from the 
frame in consideration into the head frame is performed. With the head-tail match, the angular range 
of the unfolded cone, ∠PoP’, and the radii of inner and outer arcs of the unfolded cone, oQ and oP , 
are computed. The re-projection of the conic mosaic to the cylindrical panorama can then be 
determined (see Figure 8(b)). We will show the algorithm in detail in the following. 

 

Figure 8 

 

If the reference frame coordinate tvu )1,,(  (i.e. the mosaicing coordinate system) is chosen as the first 

frame coordinate tvu )1,,( 11 , then the transformation (PE) between the “re-homing” (tail) frame 
t

EE vu )1,( ,  and the reference frame can be obtained by the successive rigid transformations from the 

first (head) frame to the last (tail) frame from equation (8) (Fig.3 (b) ): 

 















=

















11
v
u

v
u

EE

E

P   (10) 

The physical relation (in the cylindrical mosaicing coordinate system) between the head frame and 
the tail frame derived from their direct match can be expressed as 
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where ME1 is defined in equation (5). For a point Tvu ),( 11  in the head frame, its coordinates in the 

panorama frame are simply  Q = tt vuvu )1,,()1,,( 11= . But for its corresponding point in the tail frame 
t

EE vu )1,,( , the coordinates Q′ in the panorama frame should be calculated as  
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using equations (10) and (11). By finding a vertical line segment PQ  ( a column) in the head frame, 
the corresponding segment ''QP  in the panorama can be determined by using equation (12). This 
"vertical" line can be selected as the central column of the head frame when the head frame is not 
level (see Fig.3(b)). The center of the inner and outer circles of the unfolded conic mosaic, o,  is the 
intersection point of PQ and ''QP . For simplicity of notation, we choose the new coordinate system 

xoy with the origin at the center of the circles. Then the angle range of the unfolded cone ∠PoP’ is  

 10 θθθ −=  (13) 

where  

 )(tan  ),(tan
''

''1
1

1
0

QP

QP

QP

QP

xx
yy

xx
yy

−
−

=
−
−

= −− θθ  (14) 

where the two pairs of the end points of the two line segments are used in the calculation: P(xP,yP) 
and Q(xQ,yQ); P’(xP’,yP’) and Q’(xQ’,yQ’).  Due to the change of the camera’s focal length and 
accumulating errors, we could have a “deformed” cone with different radii (i.e., |PQ|≠|P’Q|’) in the 
head and tail of the conic mosaic, e.g., 

 ''' QPQP RRRRRR −=≥−=   (15) 

where RP=|oP|,RQ=|oQ|, etc. The height ( in the vertical direction) and the length (in the angular 
direction) of rectified cylindrical panorama are set as the larger ones (to preserve image resolution), 
as 

 θPQP RLRRR =−=   ,  (16) 

So the relation between the conic mosaic (x,y) and the cylindrical mosaic (r,l) can be expressed as 

 )sin,cos(),( lrllrl RRyx θθ=  (17) 

where  



 15

 
)'()( '

0

RR
LR
lrrRR

L
lRR

R
l

QQQrl

P
l

−++−+=

+= θθ
 (18) 

and  l = 0,…,L (left to right); r = 0, …, R (bottom-up). The reason for us to use an inverse 
transformation in equation (17) from the destination (r,l) to the source (x,y) is that we can easily 
generate a dense cylindrical mosaic from a conic mosaic. Note that this process also eliminates the 
accumulating errors from frame-to-frame registration. 

 

Figure 9 

4.2. Experimental results 

Figures 9 and 10 show a real example of head-tail matching and closed-loop cylindrical rectification. 
Figure 9 shows the matching process of the head and the tail frame from a 246-frame image sequence 
of the Library scene. The motion parameters from the initial match are 07.49=ut , 72.13=vt , 

00.1=s  and 00.0−=α , while the motion parameters resulting from the second match are 05.48=ut , 

74.13=vt , 00.1=s and 00.0−=α (These numbers are truncated two places after the decimal point, so –

0.00 means a very small negative value). The second set of parameters results in a better registration 
result, which can be observed from the edges in the difference images between the two frames (with 
the tail image warped to the reference image), especially in the center strip of the image which will be 
used for the mosaic, e.g., the white lamp in front of the pine tree and the door near that tree. 

 

Figure 10 

 

Figure 10(a) and Figure 10(b) show the panoramas before and after cylindrical rectification and head-
tail stitching. The original image sequence has 246 frames of 384 x 288 color images, so the average 
panning angle between two frames is about 1.5 degrees, which satisfies the small rotation assumption 
in equation (1). The size of the rectified cylindrical panorama is 3494x323 (please visit http://www-
cs.engr.ccny.cuny.edu/~zhu/panorama2D.html for high resolution panoramas). If the compression 
ratio of the panorama in JPEG format is 20:1, the total compression ratio between the JPEG panorama 
and the original image sequence is about 500. Moreover, new images of arbitrary viewing angles can 
be synthesized interactively, which is essential for applications of virtual reality and content-based 
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video manipulation. When there are moving objects in the scene, median values of the corresponding 
points in multiple frames are used to generate the conic panoramic background (refer to examples in 
Figure 7b). The moving object extraction will be presented in the next section. 

5. Moving Object Extraction and Representation 

As the mosaic is being constructed, difference images between the warped successive frames are 
analyzed. Regions in the panorama that correspond to those containing large residuals in the 
difference images are labeled as  “dynamic hot spots”. The sequences of the dynamic sub-images of 
objects are coded separately, for example, using MPEG format.  

In practice, a difference image is calculated from three successive images for robustness. Then, a 
region grouping procedure is carried out to determine those regions that may contain moving objects. 
In order to achieve the best figure-ground separation, the contour of the moving object in each region 
needs to be extracted. We apply an active contour model to extract contours [24-27]. The basic idea 
of an active contour algorithm is to constrain the contour of an object onto a controllable continuous 
spline. The task is to minimize an energy function that takes into account both input image 
information and constraints on the continuity of the contour. Our modified active contour algorithm 
uses both motion and gradient cues of the images, and the control parameters are adaptively adjusted 
according to objects in the current image. Finally, each dynamic object is separated along its contour 
from the original frame and is labeled on the corresponding location of the panorama, and the 
dynamic sub-images of objects are represented individually.  

In the following three sub-sections, we will detail each of the three steps: motion detection, initial 
region grouping, and object extraction via the modified active contour approach.  

5.1. Motion detection via three-frame differencing 

For moving target extraction, we use three successive frames ),,( 321 fff . Let the second frame 2f be 

the reference frame (current frame). After warping the first and the third frame to the reference frame 

using the corresponding interframe motion parameters, a new triple of frames ),,( '
32

'
1 fff  is  

generated. By smoothing each frame using a 3×3 kernel, we generate three smoothed and registered 

frames noted as ),,( 321 fff . Then, the difference image among three frames is defined as 

 |),(),(||),(),(|),( 3221 jifjifjifjifjiD −×−=  (19) 

Note that there will be a difference in a pixel location only if there are differences among all three 

frames in that location.  Moving objects correspond to regions with large values in the difference 



 17

image.  These regions can be extracted by thresholding the difference image by the following bi-

threshold method, thus generating a binary mask image 

 G(i,j) = 


 ∈∃∈>>

Othewise ,0

)),(&),(&),((or ,),(  if   1 ClkCjiTjiDTjiD lowhigh   (20) 

where Thigh > Tlow are  two thresholds, and C is a connected region that have pixels (k,l) assigned as 1.  

The advantages of using difference image among three frames are twofold. (1) While the moving 
target extraction from the difference between only two successive frames often exceeds the object 
regions in the current frame (Figures. 11a and 11b), most of the points that have such three-frame 
differences correspond to the image of the moving objects in the current (reference) frame (Figure 
11c), since equation (19) indicates that there will be a difference only if there are differences among 
all the three frames.. (2) The regions in the three-frame difference image are more compact than those 
in the two-frame difference image if the object texture is smooth and thus generates low difference 
values within the region, due to the same reason. 

 

Figure 11  

 

5.2.  Initial region extraction via region grouping 

Generally speaking, for real moving objects that have large portions of homogeneous colors or 
smooth textures, the binary mask image G cannot give good contours for the moving objects: an 
object often consists of several dis-connected regions, and the boundary is not accurate. In order to 
form a single region for each object, a morphological close transformation is first carried out on the 
mask image G, and then nearby regions are grouped into a single region.  The question is how to 
identify regions corresponding to real moving objects. The following cues are used for this purpose.  

• Size and shape constraints. For example, a long horizontal or vertical narrow strip region may 
correspond to a video scan-line noise instead a moving object. 

• Temporal constraints. The existence, size and the shape could not change rapidly in a few 
frames. Therefore, the determination of the region of an object in the current frame uses the track 
of this object in previous frames. 

The algorithm for the initial region extraction can be summarized in the following steps.  
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Step 1. A grayscale morphological open operation is applied to the binary mask image in order to 
eliminate some isolated spots and thin lines. Small spots may due to electrical noise of the camera, 
and the thin lines may correspond to the edges due to inaccurate registration and the scanline noise of 
the camera or a videotape. After the grayscale morphological operation, the binary difference image 
is transformed into a grayscale mask image. The grayscale mask image is then smoothed using a 3×3 
average kernel so that the “gray-level” of the difference image is smooth. 

Step 2. A threshold is determined for turning the grayscale mask image back into a binary one using 
the gray-level distribution of the gray-scale mask image. Typically, the threshold is set to 15% of the 
maximum difference of the current frame so that holes in the original binary mask image are filled. 

Step 3. A morphological close operation and a nearby-region grouping procedure are performed to 
further generate more solid regions for moving objects. Initial contours for moving target regions are 
generated by extracting boundaries of those regions in the processed mask image.  

5.3. Region refinement via an active contour approach 

The final step in moving object extraction is to refine the contour of each region on the current 
original frame and then separate the region out of the frame. For this purpose a modified active 
contour approach is applied. The concept of active contour algorithms was first proposed by Kass, 
Witkin & Terzopoulos [24] and many modified methods have been developed since then. Amini, 
Weymouth & Jain [25] proposed an algorithm to find the minimum of an energy function using 
dynamic programming. Their algorithm does not need to calculate the high order differentials and is 
easy to give a discrete implementation. Lai & Chin [26] proposed a global contour model that could 
effectively describe both global and local deformations by combining a stable shape matrix method 
with a Markov random field approach. A line search strategy was presented that encompasses a large 
search region without significantly increasing the search time.  

In general, there are three critical issues for a successful active contour algorithm: iterative 
convergence, automatic parameter selection, and computational complexity. In the aforementioned 
algorithms, only the intensity information was used. In order to detect and rapidly separate the 
dynamic and deformable objects from the scene, both motion and shape information is utilized in our 
active contour method.  

For a closed contour )1,0(,))(),(()( ∈= ssysxsu , the energy function is defined as  

 dssuEsuEsuEE conimagetotal }))(())(())(({1
0 int∫ ++=  (21) 

where 
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int |)(|)(|)(|)())(( sussussuE sss β+α=   

 ))(())(())(())(( suEwsuEwsuEwsuE motionmotionedgeedgelinelineimage ++=  (22) 

 2)21())(( xxksuEcon −−=  

In the above equations, intE  is the internal energy that forces the contour smooth, where sss uu 、 are 

the 1st and 2nd order differentials along the contour. imageE  is the external energy from the current 

image that pull the current contour to the object contour. This term is the weighted average of the 

following three: ),( yxIEline =  - the intensity function of the image,  2|),(| yxIEedge ∇−=  - the 

gradient function of the image to account for edges, and |),(| yxDEmotion −=  - the temporal 

difference function of the image defined in equation (19) to account for motion. Finally, conE  is the 

energy terms of the control points, so that the contour will be pulled to the control points (k  is the 
elastic coefficient).  The external energy  extE  is the sum of imageE  and conE . We use the same 

discrete form as in [25].  Suppose the number of the control points is n.  Then if the search range of 

every point is m，then the spatial complexity of the algorithm is )( 2nmO and the time complexity is 

)( 3nmO . Using the searching strategy in [26], the time complexity can be reduced. 

For our specific application, there are two improvements on the active contour algorithm: 

(1) Both the speed and accuracy of the initial contour extraction is increased. Since we extract 
contours of moving objects in the motion sequence, motion information is used to speed up the 
procedure of initial contour extraction; meanwhile, more accurate initial contours speed up the active 
contour convergence and increase the accuracy of the final contours. 

(2) We integrate the advantages of several algorithms [24-27]. Evenly spaced control points are 
placed on the initial contour, and curvatures at the control points are estimated. The control points are 
evenly spaced and the spaces are adaptively changed according to the size of the initial contour. The 
energy function incorporates both shape and motion information. Then, the parameters used in the 
energy function are automatically assigned according to the point spaces and the curvatures, 
following [27]. The energy function is minimized using the dynamic programming approach [25] and 
the line search strategy [26] to obtain the resulting contour. 

 

Figure 12 



 20

 

Figure 12(a) and Figure 12(b) show an original image and the extracted object (a person).  Figure 
12(c) shows the dynamic mosaic with the walking person pasted onto the mosaic every ten frames. 

6. Concluding Remarks 

The algorithm proposed in this paper for the construction of the Dynamic and Multi-resolution 
Panorama (DMP) is fast, robust, and automatic. Key features of this work include: automatic closed-
loop mosaicing, accurate moving object extraction, zoom-frame handling, and multi-resolution 
representation. The processing rate is about 1 frame per second for 384×288 color images using a 
Pentium II/ 266 MHz PC, and up to 5 frames per second (5 Hz) on a Pentium III 800 MHz laptop.  

The objective of this work is to build an image-based representation with panoramic views, multiple 
resolutions, and dynamic objects in natural scenes. In addition to the most obvious applications such 
as virtual reality scene modeling and very low bit rate video coding, the DMP and the algorithm is 
also useful in other applications such as video surveillance, video enhancement, indexing and 
manipulation. Future work could include the following interesting topics. 

Panoramic view morphing.  Seitz and Dyer [28] showed that two basis views of a static scene 
uniquely determine the set of views on the line between their optical centers when a visibility 
constraint is satisfied, and then a simple view morphing algorithm can generate new images from the 
set of views. We can apply this method to a discrete set of panoramic images to generate scene 
appearance for a continuous range of viewpoints.  With a suitable view planning strategy for 
collecting the discrete panoramic samples, a panoramic view morphing method can generate the 
scene appearance with arbitrary viewpoints and viewing directions.   

3D and layered panoramas. We can generate several interesting representations that have both 3D 
and multi-resolution representations. For example, by combining the layered panoramic 
representations we proposed in [8-10] with the dynamic multi-resolution panoramic representation in 
this paper, we can generate a 3D layered and multi-resolution panorama for 3D scene modeling when 
a camera undertakes a motion with a dominant translation direction. As another example, using a 
camera with off-center rotation, we can generate panoramic stereo mosaics [29,30] and then obtain 
depth maps [30, 31] of the panoramic views. With a camera undertaking off-center rotation plus 
zooming for a dynamic scene, we will be able to generate a 3D panoramic representation of the scene, 
together with multi-resolution and moving object representations. 
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Appendix 1. Error analysis 

    For simplicity, we only consider the case of pure 3D rotation. When  0)/,/,/( ≈zTzTzT zyx  and f 

= f',  subtracting equation (1) and (3) yields the following error terms 
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The errors in pixels are shown in the following table for the edge and central points along the central 
strip and off the center strip with different rotation angles.  

 (|u|, |v|)  (0,0) (0,128) (192,128) 

(δu|,|δv|)* (0, 0) (0, 0) (4.0, 3.3) 

(δu|,|δv|)** (0, 0) (0.61. 2.03) (6.9, 5.3) 

 ∗ α=β=0, γ=2° ;         ** α=β=γ=2° 

It is interesting to notice that there are no differences between equations (1) and (3) for the central 
column if the tilt angle β is zero. 
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Figure Captions 

Figure 1. System diagram. 

Figure 2.  Coordinate systems of the camera and the image. 

Figure 3.  Mosaicing strips from two successive frames. 

Figure 4.  A match correction example for the 246-frame Library image sequence.  (a) the current 
frame; (b) the previous (reference) frame; (c) difference image of inital matching;   (d) difference 
image after re-matching. 

Figure 5. Zoom sub-sequence separation, panning sequence connection, and key frame selection. 

Figure 6. Iterative matching after image warping (re-zooming).  (a) the current frame; (b) the   
reference (previous) frame; (c) difference image of initial matching; (d) difference image after 
matching refinement. 

Figure 7. Multi-resolution panorama. The original image sequence has 561 frames, which includes 
two zooming segments inside the panning sequence. (a). Three frames of the Main Building 
sequence when the camera was panning from right to left. There are many moving objects (persons, 
bicycles) in the scene. (b) Cylindrical panorama  (image size: 3498x303). Notice that most of the 
moving objects and noises (e.g. horizontal lines in frame 199) have been successfully filtered out.  (c) 
Three selected zooming frames for one of the “interesting” areas, which is at the right edge of the 
first segment of the panorama. 

Figure 8. The strip-mosaicing geometry.  (a) spherical and conic representation;  (b) unfolded conic 
mosaicing and rectification. 

Figure 9.  Head-tail match and refinement for a 246-frame Library sequence (panning from right to 
left). (a) the current frame (Frame no. 245) ;   (b) the reference frame (Frame no. 0); (c) difference 
image of inital match;   (d) difference image after match refinement. 

Figure 10. The panoramic mosaic from the 246-frame Library sequence. (a). Unfolded conic mosaic 
(13% display scale). The original color image is 3806 x 773x24 bits. Notice the curved and uneven 
boundary created by the up-tilted angle and unstabilized motion of the hand-held camera. (b). 
Unfolded 360-degree cylindrical panorama (27% display scale; 1st row : 0~180°; 2nd row: 180°~360°). 
The original true-color image is 3494x323 x24 bits. 

Figure 11. Three frame difference illustration, assuming that the rectangular object moving to down-
right. (a) frame difference (colored region) between f1 and f2. (b) that between f2 and f3, and (c) the 
three frame difference. Ideally, the three-frame difference give the entire object region in the current 
frame f2, whereas the two frame differences usually have “fatter” regions than the true one. 

Figure 12.  Moving object detection and separation. (a) an original image frame; (b) extracted moving 
object ; (c) dynamic mosaicing: synopsis of the walking human was pasted on part of the cylindrical 
panorama. 
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Figure 1.  System diagram. 
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(a)                                               (b)  

            

(c)                                             (d)  

Figure 4.  A match correction example for the 246-frame Library sequence.  (a) the current 
frame; (b) the previous (reference) frame; (c) difference image of inital matching;   (d) 

difference image after re-matching. 
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Figure 5. Zoom subsequence separation, panning sequence connection and key frame 
selection. 
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(a)                                                  (b)  

                        

(c)                                                             (d)  

 

Figure 6. Iterative matching after image warping (re-zooming).  (a) the current frame; (b) the   
reference (previous) frame; (c) difference image of initial matching; (d) difference image after 

matching refinement. 
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(a)    

 Frame 199 (cars parked at the road side); Frame 149 (many small moving objects); Frame 90 (large moving object) 

 

 

(b) 

            

(c)  

Figure 7. Multi-resolution panorama. The original image sequence has 561 frames, which 
includes two zooming segments inside the panning sequence. (a). Three frames of the Main 
Building sequence when the camera was panning from right to left. There are many moving 
objects (persons, bicycles) in the scene. (b) Cylindrical panorama  (image size: 3498x303). 
Notice that most of the moving objects and noises (e.g. horizontal lines in frame 199) have 

been successfully filtered out.  (c) Three selected zooming frames for one of the “interesting” 
areas, which is at the right edge of the first segment of the panorama.  
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                (a)                                                         (b) 

Figure 8. The strip-mosaicing geometry.  (a) spherical and conic representation;  (b) 
unfolded conic mosaicing and rectification. 

 

               

(a)                                                    (b)  

                                 

(c)                                                                (d)  

Figure 9.  Head-tail match and refinement for a 246-frame Library sequence (panning from 
right to left). (a) the current frame (Frame no. 245) ;   (b) the reference frame (Frame no. 0); 

(c) difference image of inital match;   (d) difference image after match refinement. 
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the door
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the door
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the door
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(a)  

 

 

(b)   

 

Figure 10. The panoramic mosaic from the 246-frame Library sequence. (a). Unfolded conic 
mosaic (13% display scale). The original color image is 3806 x 773x24 bits. Notice the 

curved and uneven boundary created by the up-tilted angle and unstabilized motion of the 
hand-held camera. (b). Unfolded 360-degree cylindrical panorama (27% display scale; 1st 

row : 0~180°; 2nd row: 180°~360°). The original true-color image is 3494x323 x24 bits. 
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(a)                            (b)                           (c) 

f1 f2 
f3 

f1 f2 f2 
f3 

 

Figure 11. Three frame difference illustration, assuming that the rectangular object moving 
to down-right. (a) frame difference (shaded region) between f1 and f2. (b) that between f2 

and f3, and (c) the three frame difference. Ideally, the three-frame difference give the entire 
object region in the current frame f2, whereas the two frame differences usually have “fatter” 

regions than the true one. 

(a)                 (b)  

(c)  

Figure 12.  Moving object detection and separation in the Library video sequence. (a) an 
original image frame; (b) extracted moving object ; (c) dynamic mosaicing: synopsis of the 

walking human was pasted on part of the cylindrical panorama. 

 


