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Abstract 

This paper presents a Fourier-based approach for automatically constructing a 3D panoramic 
model of a natural scene from a video sequence. The video sequences could be captured by an 
unstabilized camera mounted on a moving platform on a common road surface. As the input of the 
algorithms, "seamless" panoramic view images (PVIs) and epipolar plane images (EPIs) are 
generated after image stabilization if the camera is unstabilized.  A novel panoramic EPI analysis 
method is proposed that combines the advantages of both PVIs and EPIs efficiently in three 
important steps: locus orientation detection in the Fourier frequency domain, motion boundary 
localization in the spatio-temporal domain, and occlusion/resolution recovery only at motion 
boundaries. The Fourier energy-based approaches in literature were usually for low-level local 
motion analysis and are therefore not accurate for 3D reconstruction and are also computationally 
expensive. Our panoramic EPI analysis approach is both accurate and efficient for 3D 
reconstruction. Examples of layered panoramic representations for large-scale 3D scenes from real 
world video sequences are given.  
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1.  Introduction 

The problem of modeling and rendering real scenes has received increasing attention in recent 
years in both computer vision and computer graphics communities. However, how to automatically 
build a 3D visual representation from image sequences for re-rendering real 3D natural scenes is 
still an open problem, and at the heart of it are two challenging issues: the correspondence problem 
between two or multiple views, and visual representations of large scale scenes with occlusions. 
Many of the successful image-based modeling and rendering approaches have tried to simplify or 
avoid the correspondence problem by using 2D image interpolation or mosaicing, polygon scene 
constraints or human-computer interaction. Other more general approaches need sophisticated 
vision algorithms for handling the correspondence problem, such as in multi-view stereo or general 
motion analysis of an image sequence. Building and maintaining a suitable visual representation of 
a large-scale scene has always been a hot topic of research and applications in image-based 
modeling and rendering. We will discuss some related work in dealing with these two issues for 3D 
scene modeling in Section 1.1. 

In this paper, we will address these two issues with the application of automatically constructing 
a 3D panoramic model of a static natural scene from an easily obtained video sequence. We do not 
attempt to solve the general structure from motion problem; instead, the motion of the camera is 
somewhat constrained. We assume that a long and dense image sequence will be the input of our 
system. Ideally, the video sequence is captured by a video camera undertaking strictly 1D 
translation. However, our method tolerates the vibrations of video sequences captured by an 
unstabilized camera mounted on an ordinary vehicle, moving on a common and often bumpy road 
surface. In the latter case, an image stabilization pre-processing step is necessary to generate a pure 
translational sequence (e.g., Hansen, et al, 1994; Morimoto and Chellappa, 1997, Zhu, et al 1999). 
Then, a multi-perspective panoramic view image (PVI) and a set of epipolar plane images (EPIs) 
are extracted from the long  (and rectified) image sequence. This paper will discuss an approach to 
recover depth for each pixel of the spatial-temporal panoramic view image (PVI) by analyzing the 
corresponding EPIs. Thus, the representation and correspondence problems are efficiently tackled 
by integrating the two spatio-temporal images: the EPI analysis eases the correspondence problem, 
whereas the panoramic representation makes the EPI analysis efficient for long image sequences.  
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1.1. Related Work in 3D Scene Modeling 

Existing work in modeling a 3D scene from image sequences can be divided into four categories 
of approaches: 3D model-based, mosaic-based, multi-view-based and layered representations.  

Model-based approach - A 3D model-based method first constructs a 3D CAD-like model of a 
scene, then the model is reprojected to generate new images of desired views. For modeling and 
rendering large-sale scenes, several important projects have been reported. Faugeras, et al (1998) 
address the problem of recovering a realistic textured model of a scene from a sequence of images 
without any prior knowledge either about the parameters of the cameras or about their motion. 
Correspondences between images are obtained by either corner matching or feature point tracking, 
and the complete set of perspective projection matrices for all camera positions is computed. 
Relying on information of the scene such as parallel lines or known angles, the geometry of the 
scene can be reconstructed up to an unknown affine transformation. Alternatively, if this 
information is not available, the Euclidean structure of the scene can be recovered through self-
calibration techniques. The scene geometry is modeled as a set of polyhedra, and textures to be 
mapped on the polygons are extracted automatically from the images. A similar system has been 
presented by Baillard and Zisserman (1999) which takes sequence of images from an uncalibrated 
camera or cameras and automatically recovers camera positions and 3D point and line structure 
from these sequences. This method allows a piecewise planar model of a scene to be built 
automatically. In Coorg and Teller (1998), a large pose-mosaic dataset is generated in order to 
model urban views. Several thousand digital images are then grouped by spatial position into 
spherical mosaics, and each of them is annotated with estimates of the acquiring camera’s six DOF 
poses. Due to the difficulty of automatically recovering realistic 3-D models from images, the 
authors exploit the geometric structure inherent in typical urban environments, e.g., vertical facades, 
and apply the space sweep algorithms proposed by Collin (1996) used in aerial image site modeling 
(Collins , et al, 1998). Similar scene constraints are used in Debevec, et al (1996) where the 3D 
model of a building is recovered interactively by using a photogrammetric modeling method based 
on a small number of user-supplied correspondences, followed by a model-based stereo algorithm. 
Non-polygonal objects such as trees are flattened to the ground plane.  

Mosaic-based approach - Recently, the construction of panoramic images and high quality 
mosaic images from video sequences has attracted significant attention. However, many of the 
current successful image mosaic algorithms only generate 2D mosaics (either a 360-degree 
panorama or a full sphere omni-directional image) from a camera rotating around its nodal point 
(e.g., Chen, 1995; Xiong and Turkowski, 1997; Shum and Szeliski, 2000; Sawhney , et al, 1998). A 
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plenoptic modeling approach (McMillan and Bishop, 1995) is proposed to use two cylindrical 
panoramas from rotating cameras in two viewpoints to estimate the disparity map. However, the 
emphasis of this work is the rendering from this representation rather than the modeling from an 
image sequence. Later, Shum , et al (1998) made an effort to construct 3D models from two 
cylindrical panoramic mosaics from rotating cameras interactively, using environmental constraints 
such as parallel lines and lines with known orientations. Creating multi-perspective stereo 
panoramas from one rotating camera off the nodal point was proposed by Ishiguro , et al (1990), 
Peleg, et al (1999, 2001), and Shum and Szeliski (1999). Shum, et al (1999) extended this idea to 
capture omnivergent stereo data using a rotating camera. They also showed synthetic examples of 
spherical stereo mosaics. Nayar & Karmarkar (2000) showed stereoscopic spherical mosaics by 
using catadioptric (omnidirectional) slice cameras. In these kinds of stereo mosaics, the viewpoints 
of new views are limited within a very small area, usually a circular area of a few meters in 
diameter. A system for creating a global view for visual navigation by pasting together columns 
from images taken by a smoothly translating camera (comprising only a vertical slit) was proposed 
by Zheng and Tsuji (1992; 1998). The moving slit paradigm was used as the basis of 2D manifold 
projection for image mosaicing (Peleg and Herman 1997, Peleg, et al, 2000), multiple-center-of-
projection image representation for image-based rendering (Rademacher and Bishop 1998), and 
creating multi-perspective stereo mosaics from a translating camera for environmental monitoring 
(Zhu, et al, 2001; Zhu, et al, 2004). Multi-perspective panoramas (or mosaics) show very attractive 
properties in visual representation and epipolar geometry. However, 3D recovery of stereo mosaics 
faces the same problems as in traditional stereo - the correspondence problem and the handling of 
occlusion boundaries. 

Multi-view approach - Rather than constructing a single mosaic from a sequence of images, 
multi-view approaches represent a scene by multiple images with depth and texture. Chang and 
Zakhor (1997, 2001) obtained depth information of some pre-specified “reference frames” of an 
image sequence captured by an uncalibrated camera that scans a stationary scene, then transformed 
the points of reference frames onto an image of the desired virtual viewpoint. However, reference 
frames were chosen quite arbitrarily, and a synthesized image from a viewpoint far away from that 
of the reference frames leads to erroneous results since occluded or uncovered regions cannot be 
well represented. Szeliski (1999) presents a new approach to computing dense depth and motion 
estimates from multiple images. Rather than estimating a single depth or motion map, a depth or 
motion map is associated with each input image (or some subset of them). Furthermore, a motion 
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compatibility constraint is used to ensure consistency between these estimates, and occlusion 
relationships are maintained by computing pixel visibility. 

Layered representation - In a layered representation, a set of depth surfaces is first estimated 
from an image sequence of a single camera and then combined to generate a new view. Wang and 
Adelson (1994) addressed the problem as a computation of 2D affine motion models and a set of 
support layers from an image sequence. Optical flow is used as the input of iterative motion 
clustering. The layered representation that they proposed consists of three maps in each layer: a 
mosaicing intensity map, an alpha map, and a velocity map. The velocity map is actually a set of 
parameters of the affine transformation between layers. Occlusion boundaries are represented as 
discontinuities in a layer's alpha map (opacity). This representation is a good choice for image 
compression of a video sequence and for limited image synthesis of selected layers. However, it 
cannot be used to generate synthesized images of arbitrary views. Sawhney and Ayer (1996) 
proposed a multiple motion estimation method based on Minimum Description Length (MDL) and 
modified Expectation-Maximization (EM) algorithms. The algorithm is computationally expensive 
and requires a combinatorial search to determine the correct number of layers and the "projective 
depth" of each point in a layer. Occlusion regions are not recovered in their layered model. Baker, 
et al (1998) proposed a framework for extracting structure from stereo pairs, and the  scene is 
represented as a collection of approximately planar layers. Each layer consists of an explicit 3D 
plane equation, a texture map (a sprite), and a map with depth offset relative to the plane. 
Initialization of layers (which is a difficult task) is performed by humans, and the initial estimates of 
the layers are recovered using techniques from parametric motion estimation. These initial estimates 
are then refined using a re-synthesis algorithm which takes into account both occlusion and mixed 
pixels.  For more complex geometry of a scene, a layered depth image (LDI) is proposed (Shade, et 
al, 1998) which is a representation of a scene from a single input camera view but with multiple 
pixels along each line of sight. 

1.2. Panoramic Images and Epipolar Plane Image Analysis 

It has been shown that under strict translation, a panoramic view image (PVI) can be generated 
by extracting a vertical column from each frame and piling them up to form a wide angle multi-
perspective image (Zheng and Tsuji, 1992). Similarly, an epipolar plane image (EPI) (first proposed 
by Bolles, et al (1987)) can be generated by extracting a horizontal scan-line from each frame and 
piling them up to form a spatio-temporal (ST) image. In other words, an EPI image is an x-t section 
of a video sequence (each row comes from the same row index but from different frames). The 
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slope of a locus (i.e., a line induced by motion of a single point) in an EPI is proportional to its 
depth. Techniques based on 2D ST image formation (panoramic view images and epipolar plane 
images) meet the need for a compact representation and fast 3D recovery (e.g., Ishiguro, et al, 1990; 
Zheng and Tsuji, 1992; McMillan and Bishop, 1995; Dalmia and Trivedi, 1996; Murray, 1995; 
Shum and Szeliski, 1999; Li, et al, 2004; Zhu, et al, 2004). Baker & Bolles (1989) extended their 
earlier work that only addresses translation to general motion. However, they used locus tracking 
for constructing generalized epipolar planes on 3D spatio-temporal surfaces. For EPI-based depth 
recovery methods, locus extraction is a hard problem for image sequence of a natural scene with 
complex textures, particularly when the EPIs are generated from video sequences with 
unpredictable vibrations in camera motion. In addition, the large amount of data in EPIs of a lone 
video sequence often makes it prohibitive in terms of computational costs.  

In order to apply these two kinds of compact representations to an easily-captured image 
sequence, an efficient and robust Fourier-based method is proposed to robustly detect multiple 
orientations of the EPI’s motion texture in the frequency domain. This approach is different from 
the locus tracking methods (Murray, 1995; Allmen and Dyer, 1991), the 1D multibaseline matching 
technique (Li, et al 2004), or the local operator methods, such as Gabor filters (Adelson and Bergen, 
1985; Heeger, 1987) and Steerable filters (Freeman and Adelson, 1991; Niyogi, 1995; Fleet, et al, 
1998).  The local operator methods only provide limited angular resolution for orientation 
calculation since a local motion operator is usually performed in a small ST neighborhood. This 

paper provides a first attempt to use large neighborhood windows (e.g. 64×64 pixels) for detecting 

local motion more robustly and accurately. Furthermore, motion boundaries are accurately located 
in the spatio-temporal domain by measuring global intensity similarities only along the detected 
orientations, and the occluded regions are recovered by further exploring extra information near 
motion boundaries in the EPI. We emphasize that only a small amount of selected data in the EPIs 
that correspond to the PVI representation is processed in our approach, and the processing for all 
the epipolar planes can be done in parallel. Thus, it is possible to implement the proposed 
algorithms in real time with parallel computing hardware. Even the current sequential 
implementation on a Pentium 400 MHz PC can achieve a frame rate of about 2 frames per second 

(fps) for 128×128 images. The frame rate increases to 10.8 fps on a Xeon 2.4 GHz dual-CPU Dell 

Linux workstation.  Three-dimensional layered panoramic models have been constructed from 
several image sequences, some of which have more than 1000 frames. In addition, direct methods 
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for all the steps have been developed in which image segmentation, feature extraction, and 
matching are avoided. 

The rest of the paper is organized as follows. In Section 2, we describe the data collection and 
pre-processing issues for generating panoramic view images and epipolar plane images, then we 
introduce our panoramic EPI analysis approach. In section 3, a new motion occlusion model is 
presented and analyzed in both the spatio-temporal and the frequency domains. Then, a Gaussian-
windowed Fourier orientation detector (GFOD) is proposed for multiple-motion orientation 
detection. In Section 4, we further discuss the use of the occlusion model and the GFOD for 
multiple orientation estimation and methods for motion boundary localization and dense depth 
acquisition. In Section 5, methods for occlusion handling and perspective resolution recovery are 
presented. In Section 6, we discuss data selection and representation issues for efficient EPI 
analysis and 3D scene representation. In Section 7, we give a comparison study and show 
experimental results on panoramic layered representations of several image sequences for natural 
scene modeling. Brief conclusions are given in the last section.  

2. Panoramic Epipolar Plane Analysis 

2.1. Data Collection and Spatio-Temporal Image Generation 

In order to construct the 3D model of a roadside scene, a camera is mounted on a vehicle 
moving on an approximately flat road surface. The camera’s optical axis is perpendicular to the 
motion direction and its horizontal axis is parallel to the motion direction1. We assume that the 
motion of the vehicle (camera) consists of a smooth planar motion and an unpredictable small 
fluctuation due to the vehicle's motion over a rough surface. In many real cases, the smooth motion 
can be approximated as a constant velocity (V) translation.  The small fluctuation between two 
successive frames is modeled by three small rotation angles  around the three coordinate axes and 
three translation components along the three axes (denoted as a rotation matrix R and a translational 
vector T in Fig. 1(a)). An image stabilization algorithm is used as a pre-processing step to reduce or 
remove fluctuations so that the motion after stabilization is a translation motion with constant 
velocity V.  Image stabilization is not the focus of this paper, but we want to show the conditions in 
which our algorithms work. Therefore, after we formally define the spatio-temporal (ST) images we 
will provide some experimental results in generating two kinds of ST images - panoramic and 
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epipolar plane images - from real-world video. Interested readers can refer to our previous papers 
(Zhu, et al, 1998; Zhu, et al 1999; Zhu 2001) for details of the image stabilization algorithms.  

Fig. 1 

Without loss of generality, the effective focal length f of the camera is assumed to be fixed for a 
rectified (stabilized) image sequence. The image sequence obeys the following spatio-temporal (ST) 
perspective projection model  

Z
Yfty

Z
VtXftx =

+
= )(,)(  (1) 

where (X,Y,Z) represent the 3D coordinate at time t=0. A feature point (x,y) forms a straight locus 
and its depth is 

  
dx

Vdtf
v
VfZD ===  (2) 

where dtdxv /=  is the slope of the straight locus. In order words, two kinds of useful 2D ST 

images can be extracted (Fig. 1(b)). One is the Panoramic View Image (PVI), which possesses most 
of the 2D information of a roadside scene. The other is the Epipolar Plane Image (EPI), whose ST 
texture orientations represent depths of scene points. Fig 2(a) shows two PVIs (x=0 and x=-56) that 
are extracted from a 1024-frame BUILDING sequence of 128×128 images. These two PVIs are 
parallel-perspective images with multiple viewpoints in the t axis, and depth information can be 
derived from this ST stereo pair. A better approach is to make use of the continuous information in 
the epipolar plane images. Fig 2(b) shows an EPI (x = 9) between these two PVIs. In addition to 
obtaining depths from locus orientations, occluded (and side) regions will also be recovered by the 
method proposed in this paper. 

Fig. 2 

Here, we show two examples to see what are the inputs of our method. Fig. 3 shows the 
stabilization results of the BUILDING sequence when small fluctuations occurred. Better PVIs and 
EPIs  are obtained after image stabilization, which means better depth estimation. Fig. 4 compares 
PVIs and EPIs with and without image stabilization for a TREE sequence taken by a camera 
mounted on a hand-pushed tricycle on a bumpy road. The sequence consists of 1024 frames of 

128×128 images. It is obvious that stabilization plays a vital role in the construction of good 

panoramic and epipolar plane images when the camera's  vibrations are large as in this example. 
The vibrations include both x/y translation components and small in-plane rotation when the vehicle 
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bumps up and down (y translation – see Fig. 4(a)), waves left and right (x translation, see Fig. 4(b)), 
and tilts up and down ( in-plane rotation), since the camera’s direction is perpendicular to the 
motion direction. The depth map (Fig. 4(c)) can be obtained through our epipolar plane image 
analysis on the stabilized EPIs. This is almost impossible without image stabilization (see Fig. 
4(b)).  

In summary, in order to use any EPI-based methods the input image sequences need to be 
constrained under 1D translation. This can be achieved either by a precise control of the camera 
motion or by a software process of video stabilization. We note here that our method is robust 
enough to deal with EPIs generated in the latter case from difficult image sequences as in Fig. 4. 

Fig. 3 

Fig. 4 

2.2. Panoramic Epipolar Plane Analysis 

Spatio-temporal panoramic view images(PVIs) provide a compact representation for large-
scale scene.  Stereo PVIs  can be used to estimate the depth information of the scene. The difference 
between panoramic stereo and the traditional stereo is that panoramic images are parallel-
perspective projections. The depth of a point is proportional to the "displacement" in the t direction 

in a pair of stereo PVIs (Fig. 2 (a); in Eq. (2) "disparity" dx is fixed and D∝ dt), which means that 

depth resolutions are the same for different depths ( Zhu, et al, 2001). However, there are some 
disadvantages when we use stereo PVIs to recover the depth of a scene. First, stereo PVI approach 
faces the same correspondence problem as in any traditional stereo methods.  Second, occluding 
regions in two panoramic views cannot be easily handled due to the lack of information. The 
solution to these two problems is to effectively use the information in between, i.e. that of the 
epipolar plane images. Our panoramic epipolar plane analysis approach consists of three important 
modules:  

• Module 1: frequency domain orientation detection by using large neighborhood windows (e.g. 

64×64) for detecting local motion more robustly and accurately in the EPIs (Section 3);  

• Module 2: spatio-temporal domain motion boundary localization by measuring global intensity 
similarities only along the detected orientations of the loci (Section 4); and  

• Module 3: occlusion and resolution recovery by further exploring extra information near 
motion boundaries in the EPIs (Section 5).  
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Our approach has the following three advantages. (1) It is robust since with a spatio-temporal-
frequency domain analysis, feature detection, hard thresholding and locus tracking are avoided in 
our algorithm. (2) It is efficient in that it only processes a small fraction of the necessary data 
instead of the entire 3D ST images. (3). It is accurate in both depth estimation and occlusion 
boundary localization since we use a large ST window for orientation estimation and apply depth 
boundary localization. In the following sections, after we derive the motion occlusion model in 
spatio-temporal and frequency domains, we will describe each of the three modules in details, with 
discussions for the three advantages in the proposed algorithms. 

3. Motion and Occlusion Modeling and Detection 

The first order motion texture model of an EPI can be expressed in the spatio-temporal domain 
as (Allmen and Dyer, 1991; Adelson and Bergen, 1985; Heeger, 1987) 

 g(x,t) = f(x - vt) (3) 

where f(x) is the image of a single scan line at time t =0. By Fourier transform, the model in the 
frequency domain can be derived as 

G( ξ, ω) = F ( ξ) δ (v ξ + ω) (4) 

Eq. (4) indicates that object points with the same depth values and the same constant translation 
occupy a single straight line  passing through the origin in the frequency domain, i.e.,  

v ξ + ω = 0 .  

It is well known that orientation can be easier to detect in the frequency domain than in the spatio-
temporal domain when a single orientation is presented in the window of the processing (Jahne, 
1991). In this paper, we will deal with multiple orientations due to depth changes. Consequently we 
will study two important issues: motion occlusion modeling, and accurate and robust orientation 
estimation. 

Fig. 5 

3.1. Motion Occlusion Model 

 We model the motion occlusion in an x-t image (EPI) (following Wang and Adelson, 1994) as  

),()),(1(),(),(),( 21 txgtxmtxgtxmtxg ss −+=  (5) 
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where the first layer ),(1 txg  is occluded by the second layer ),(2 txg , and ms(x,t) is a occluding 

mask (Fig. 5(a)). Under a 1st order translation, the ith layer with velocity vi can be expressed as  

 g x t f x v t ii i i( , ) ( ),( , )= − = 1 2  

where v1 < v2.  The occluding mask is a step function moving with velocity v2, i.e., 

 )(),( 2tvxutxms −=  (6) 

and the value of the function is 0 or 1. Hence the 1st order motion occlusion model can be written 
as 

 )())(1()()(),( 222112 tvxftvxutvxftvxutxg −−−+−−=   (7) 

It should be noted here that many other approaches for multiple motion analysis look only at the 
summation of the single motion model but do not take real occlusion into account. Now we want to 
further look at this occlusion model in the frequency domain. The Fourier transform of the model 
can be derived as (Appendix 1) 

)()()()(1),( 22
21

1

12

2
1

21
ωξδξ

ωξωξ
ωξ ++

−
+

−
+

−
= vF

vv
vU

vv
vF

vv
G u  (8) 

where )(1 ξF is the Fourier transform of f1(x), )(*)()()( 222 ξξξξ UFFFu −=  is the Fourier transform 

of f2(x)(1-u(x)), the visible parts of f(x), and )(ξU  is the Fourier transform of u(x). Without loss of 

generality, we assume the step function is 

 0,1
0,0{)( ≥

<= x
xxu  ,  (9) 

so we have 

 )(1)( ξπδ
ξ

ξ +=
j

U  (10) 

which implies that the peak value of U(ξ) is at ξ = 0 (Fig. 5(c)). From Eq. (8) and (10) we can 

obtain the following important conclusion (Fig. 5(b)):  

Most of the energy spectra of a spatio-temporal texture at a motion boundary of two depth 
layers lie in two lines in the frequency domain that correspond to the two depth layers.  



 12

Eq. (8) is not as obvious as Eq. (4), therefore we will give a little bit more explanation. The Fourier 
transforms along the first line  ξ ω= − / v1  is 

)0()(1),( 1
21

1 UF
vv

vG ξξξ
−

=−  (11) 

which displays a peak corresponding to the occluding layer. The Fourier transform along  the 
second line ξ ω= − / v2  is  

)()0(1)(),( 1
21

22 ξξξξ UF
vv

FvG u −
+=−  (12) 

which shows a peak corresponding to the occluded layer, with an addition that only has an obvious 

effect when ξ = 0.  This conclusion indicates that we can easily detect two layers with occlusion in 

the frequency domain. In the following we will see how we can use this property in real 
applications. 

3.2. Gaussian-Fourier Orientation Detector (GFOD) 

In order to detect multiple orientations more precisely and robustly, we need the Fourier 
transform performed in a large ST window on an EPI. The angular resolution of orientation 
estimation is proportional to the size of the window m. For example, the angular resolution is four 

times better when the window size m×m is 64×64 pixels than when it is 16×16. However, the side 

effect of the large window is that all the oriented textures in the large window will contribute to the 
energy spectrum. So for a multiple orientation pattern, multiple peaks could be detected when the 
window slides thorough a quite wide region near the depth boundary. Therefore, the question is 
how to accurately localize the depth/motion boundaries. In this paper, a Gaussian-Fourier 
Orientation Detector (GFOD) is designed in order to keep the precision for both orientations of 
motion textures and localization of motion boundaries.  

A spatio-temporal Gaussian window is defined as  

)exp(),( 22

22

σ

txtxw +=  (13) 

where 
4

12 −= mσ . Applying this Gaussian mask to the motion texture image, the Gaussian windowed 

result of the motion texture can be represented as  

 gw(x,t) = f(x - vt)w(x,t) (14) 
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Again, we want to look at this model in the frequency domain. Its Fourier transform, which is 
derived in the same way as for Eq. (8), is 

 )()
1

()(),(
2

ωξωξωξ +
+

−
= vW

v
vFvcG vww  (15) 

where  

 c v v
v

( ) =
+

2
12 ,  

)(ωwF  ⇔ 22

2

)1(2)()( +
−

= v

x

w exfxf σ   (16) 

 222 )1/(2)( ω+σ−=ω v
v eW ⇔ 22

2

)1/(2)( +σ
−

= v

t

v etw . 

The Gaussian windowing still preserves the important frequency property of the motion texture, i.e., 
most of the energy still lies in the line ξ ω= − / v , which is 

 )0()(),( vww WFvG ξξξ =−  (17) 

since Wv(ω) is a Gaussian function with peak at ω = 0.  

  The derivation of the energy model for the cases of multiple orientation and motion occlusions 
is a combination of Eq. (8) and Eq. (15). The Gaussian-windowed spatio-temporal image with 
occlusion and its frequency spectrum can be  represented as 

 ),(),(),(
),(),(),(

ωξωξωξ WGG
txwtxgtxg

w

w

⊗=
=

 (18) 

where ⊗ denotes convolution operation. Here we only give a qualitative analysis. From the 

principle of the Fourier transform, the multiplication of a Gaussian window w(x,t) with variance 2σ  

in the ST domain is equivalent to the convolution of a Gaussian function W(ξ,ω) with variance 

inversely proportional to 2σ  in the frequency domain, which will smooth the energy distribution. 

For this reason, the GFOD has the following two advantages. First, it is insensitive to noise. Since 
the Gaussian window acts like a smoothing operator in the frequency domain, the Fourier spectrum 

is smoother than that without Gaussian weighting. The smaller the variance 2σ  (i.e. the narrower 

the Gaussian window), the more smoothing to the energy spectrum2. Second, it favors the motion 
texture closer to the center of the window. By applying the Gaussian window in the ST domain, the 
ST patterns that are farther from the center of the window have less contribution to the final energy 
spectrum, but they are not eliminated. So the design of the GFOD operator tries to reach a balance 
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between the orientation resolution (over a large window) and the localization accuracy of depth 
boundaries (in the center of the window).  We will give real examples in Section 4.4 to show the 
effectiveness of large Gaussian windows versus small rectangular windows in motion orientation 
and motion boundary detection.  

 It should be noted here that the proposed method could be used in other application domains 
where multiple oriented texture patterns need to be analyzed. 

4. Multiple Orientations, Motion Boundaries, and Dense Depths  

4.1. Multiple Orientation Detection 

 First, we show how to use the Gaussian-Fourier Orientation Detector (GFOD) for multiple 
orientation detection in an EPI. The GOFD is applied only along a scan-line (x=x0) in the EPI, 
which is the intersection line of this EPI and the PVI extracted at x0 in the xyt cube (Fig. 1(b). The 
GFOD operator uses Gaussian-windowed Fourier transforms to detect orientations of the image 

under the Gaussian window. A large window (e.g. 64×64) is used in order to detect accurate locus 

orientations. The Fourier transform Gw ( )ωξ ,  is obtained for a 64×64 Gaussian-windowed EPI 

pattern centered at (x0, t) for any t coordinate along the t axis. The “energy spectrum” 

P ( )ωξ , =log(1+Gw
2 ( )ωξ , ) is mapped into the polar coordinate system ( )φ,r  by a coordinate 

transformation 





+=+=

ω
ξπφωξ arctan

2
,22r . From the resulting polar representation P ( )r,φ , 

an orientation histogram is constructed as  

( ) [ ]πφφφ ,0,)( 2

1

∈= ∫
r

rd drrPP  (19) 

where φ  corresponds to the orientation angle of the ST texture centered at (x0, t) and [r1,r2] is a 

frequency range of the bandpass filter, which is selected adaptively according to the spatio-temporal 

resolution of the image. Initially, r1 and r2 are set to 8 and 30, respectively, for a 64×64 window.  

 As noted in Chang and Zakhor (2001), because of visibility limitations, real-world scenes 
typically do not have more than three occlusion levels. We assume that at a depth boundary there 
are only two depth levels when observed locally. Therefore our method picks up one or two peaks 
in the 1D orientation histogram (Eq. (19). The highest peak is always selected. The second highest 
peak is selected if it exists and is significantly high, for example, more than half of the highest in 



 15

our implementation. Fig. 6 shows the peak selections for a real EPI (please refer to Fig. 8 for more 

details in close-up displays). An orientation energy distribution map Pd(φ,t) can be constructed 

which visually represents the depths of the points along the time (t) axis in the EPI. The two peaks 
are shown on the distribution map. However the highest does not necessarily correspond to the 
correct orientation. This will be fixed in the following motion boundary localization. 

Fig. 6 

4.2. Motion Boundary Localization 

Multiple orientations will be detected for a certain temporal range when the GFOD operator 
moves across a depth boundary. The Gaussian window is applied to reduce this range by assigning 
higher weights for pixels closer to the center of the window. However, the response of multiple 
(two in our current implementation) orientations does not only happen exactly at the point on the 
depth boundary. Therefore a Motion Boundary Localizer (MBL) is designed to determine whether 
or not the depth/motion boundary is precisely in the center of the Gaussian window. For the method 
to be valid for most of the cases encountered in a natural scene and applicable to the EPIs generated 
by a un-stabilized camera, we use an approach that does not rely on locus tracking (which often 
fails due to the non-ideal ST textures generated from a complex scene with changing illuminations 
and  un-smooth camera motion). The intuition behind the MBL algorithm is that statistically 
intensities of a scene point seen in an image sequence will remain similar (if not the same) over 
time (here the time period  is 64 frames). Therefore we check the pixel similarity along all possible 
directions estimated by the GFOD under the window to determine the correct orientation. In our 
algorithm, multiple scale intensity similarities are measured along all the detected orientations 

( )Kkk ,,1L=θ  by the GFOD operator. Among them, the orientation with the greatest similarity 

measurement is selected as the correct orientation of the locus.  For introducing the basic idea, a 
single scale similarity measurement is derived first. Then, we extend the principle to multiple scale 
measurements. Note that only a comparison-and-selection operation is used, without assuming any 
detection of feature points or using any troublesome thresholds. 

Fig. 7 

Consider the case in which two orientations 1θ  and 2θ  ( 21 θθ > ) are detected within a Gaussian 

window. Dissimilarity measurements along 1θ  and 2θ  for a given circular window of radius R 

centered at the point (x0,t0)  are defined as the variance of intensity values (Fig. 7(a) and (b)) 
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measurements in two opposite radial directions ( kθ  and πθ +k ) along the detected orientation kθ  

(k=1, 2). This is designed for dealing with the occlusion of a farther object ( 2θ ) by a closer one 

( 1θ ): the occluding (i.e., closer) object can be seen in both of the radial directions ( 1θ  and πθ +1 ), 

but the occluded (i.e., farther) object can only be seen in one of the two directions ( 2θ  or πθ +2 , 

Fig. 7(a)). Thus, the dissimilarity measurements for closer and farther objects are defined as 
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respectively. Notice the difference in the two measurements: the measurement for the closer object 
is the average of those in both radial directions, but the occluded (i.e. farther) object only takes the 
smaller measurement of those in the two radial directions. In addition, we give more weights to 
stronger oriented texture patterns: Pd( kθ ) is the value of the orientation histogram (Eq. (19)) at kθ  

(k=1,2). The higher the value is,  the lower the dissimilarity measurement will be.   

Fig. 7(a) shows how to use these measurements to localize a depth boundary when the farther 
object is occluded by the closer object (which is defined as the occlusion case). Two peaks are 
detected by the GFOD operator when the Gaussian window (indicated by circles) is near the depth 
boundary. When the Gaussian window is to the left of the depth boundary, the dissimilarity 
measurement (i.e. ( )RE ,1θ ) along the locus direction of the occluding object will be larger, since the 

measurement is performed across the loci pattern of the to-be-occluded object (left of Fig. 7(a)). On 
the other hand, the dissimilarity measurement (i.e., ( )RE ,1θ ) along the locus direction of the to-be-

occluded object  will be much smaller, since the measurement is right along the locus of the to-be-
occluded object. As the center of the Gaussian window is precisely at the depth boundary, both 
measurements will be small since both measurements are along their own loci’s directions. 
However, since the occlusion boundary of the occluding (closer) object usually will be visually 
stronger than the ST pattern of the occluded object, the measurement will be in favor of the closer 
object at this location (middle of Fig. 7(a)). As the center of the window moves into the occluding 
(closer) object, the dissimilarity measurement of the occluded object will be significantly increased, 
since the measurement will cross the loci of the occluding object, but the dissimilarity measurement 
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for the occluding object will remain small (right of Fig. 7(a)). Similar arguments hold for the 
reappearance case,  when the occluded object reappears behind the occluding (closer) object (Fig. 
7(b)). Therefore a simple verification criterion can be expressed as 



 ≤

=
Otherwise ,

),(),( 

2

21  ,1
θ

θθθ
θ

REREif
 (22) 

In fact, the condition of occlusion and reappearance can be judged either by comparing ( )RC ,2θ  
and ( )RC ,2 πθ +  (see Fig. 7) or by analyzing the context of the processing (i.e., the change of 

depths): in the case of occlusion of a far object by a near object (far to near, Fig. 7(a)) we have  
( ) ( )RCRC ,, 22 θπθ <+ , and in reappearance (near to far, Fig. 7(b)) we have ( ) ( )RCRC ,, 22 πθθ +< . 

In order to handle cases of various object sizes, different motion velocities and multiple object 

occlusions, multiple scale dissimilarity measurements ( )ik RE ,θ  (e.g., i=1,2,3) are calculated within 

multiple scale windows of radii Ri (i=1,2,3),  R1<R2<R3. In our experiments, we have selected  

R1=m/8, R2=m/4, R3=m/2 (m = 64 is the window size; see Fig. 7(c)).  By defining the following 

ratio 
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a scale p (p=1,2 or 3) with maximum Dp is selected for comparing the intensity similarities.  For 

example, in Fig. 7(c), R2 will be selected. 

 The real example of motion boundary localization is shown in Fig. 6. The “correct” peaks are 
marked as the long dashed curves (red in color version) in the orientation map, while the second 
peaks are shown in solid small pieces (blue in color version). They are detected by the GFOD but 
are discarded by the motion boundary localizer. 

4.3. Orientation Refinement and Depth Interpolation 

The selected orientation angle θ  can be refined by searching for a minimum dissimilarity 

measurement  for a small-angle range around θ . The calculation is very simple since for each angle 

in this small range we only need to calculate a variance value along a 1D line ((as in Eq. (21)), then 
pick up the angle with the minimum variance value. The accuracy of the orientation angle, 
especially that of a far object, can be improved by using more frames. The frame number can be 
decided by examining the occluding relations near the far object.  
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In order to obtain a dense depth map, interpolations are applied to textureless or weak-textured 
regions /points where no orientation can be detected (see Section 6 for data selection). The 
proposed interpolation method (Fig. 7(d)) is based on the fact that a depth discontinuity almost 
always implies an occluding boundary or shading boundary. The value )(tθ  between two instants 

of time t1 and t2 with estimated orientation angles θ1 and θ2 is linearly interpolated for smooth depth 

change (i.e., dis21 T<−θθ , Tdis is a threshold), and is selected as ),min( 21 θθ , i.e., the angle of the 

farther object, for depth discontinuity (i.e., dis21 T≥−θθ ).   

The processing results for a real EPI  (after applying the GFOD, the motion boundary localizer 
and depth interpolation) are shown in the last row of Fig. 6  by the histogram of  orientation angles. 
Note that the accuracy of the depth boundaries at locations marked from (1) to (5). 

4.4. Experimental Analysis 

  In this subsection, we will discuss the impact of three aspects of our approach with real data: 
large window, Gaussian weighting, and motion boundary localization.  

 Gaussian versus rectangular windows with the same size - Fig. 8 compares experimental results 

for the BUILDING sequence using a rectangular window and a Gaussian window (
4

12 2 −= mσ ). 

The size of the windows in both cases is 64×64 pixels. Simply using a rectangular window has 
ambiguity in localizing depth boundaries. For example, when the rectangular window is used (see 
columns (a)  to (d) in Fig. 8 (1)), two peaks can be detected within a large neighborhood (27 frames  
- from frame 296 to frame 322) of a depth boundary (at frame 131). By using the Gaussian window, 
motion boundaries can be located in a much smaller range. In columns (e) to (h) of Fig. 8(1), two 
peaks are detected only in 8 frames from frame 305 to frame 313 and without obviously degrading 
the angular resolution of orientation. This is because the magnitudes of ST texture off the center are 
reduced but are not eliminated by using a Gaussian window. Note that multiple orientations are still 
detected within a region of the motion boundary even if Gaussian windows are used. Therefore, 
motion boundaries are further localized by using the proposed motion boundary localizer, which 
results in the final dense histogram of the orientation angles in Fig. 6.  The motion boundary 
localizer could also solve the ambiguity problem when the rectangular window is used in this 
example. In both cases, the solid dark lines show the correct orientation, while the dashed dark lines 
show the second orientations that are discarded by the motion boundary localizer. 
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 So the question is, since the spatial-temporal domain motion boundary localizer is used 
anyway, why do we use the more expensive Gaussian windowing?  Fig. 8(2) shows that the 
detection ambiguity by the rectangle windowed Fourier method could not even be correctly fixed by 
using the motion boundary localizer. This set of images is taken from the EPI of a region with 
gradually changing depths (side façade of a building - see Fig. 2 and Fig. 6). The reason for this 
kind of problem is that the stronger oriented texture off the center has different orientations from 
that of the weaker motion texture at the center. In frame 661, none of the two detected orientations 
is that of the locus in the center; rather, they are the orientations of the loci of the left and right 
stronger textures. In frames 613, 661 and 670, the correct orientation is among the two detected 
peaks, but the orientation selection by the motion boundary localizer is not correct since it is almost 
textureless along one of the orientations.  However, if the Gaussian windowed Fourier orientation 
detector is used, the motion boundary localizer helps in most of the cases. In Fig. 8(2),  the correct 
orientations can be found in three frames (613, 661 and 670) of the four frames listed here, except 
for the frame 661. Note that the correct orientation of the weak texture in frame 661 is detected by 
the GFOD, so the remaining issue is how to correct pick it up. 

Fig. 8 

Large Gaussian versus small rectangular windows – From the above discussion, it is obvious 
that large rectangular window won’t work well. Now the natural question is: how about using a 
smaller rectangular window instead of a large Gaussian window for the sake of motion boundary 
localization as well as computational efficiency? Fig. 9 shows the depth estimation result using a 
16x16 rectangular window and without using the motion boundary localizer for the same EPI 
shown in Fig. 6. Using a smaller window is computationally more efficient; however, compared to 
Fig 6, the resolution of the orientation energy spectrum is much lower due to the smaller x-t 
window used. Therefore, the depth resolution is lower when we use the smaller x-t window. The 
motion boundary localizer won’t help in this case since it will bring more noise to the depth 
estimation and since the depth estimates are noisy and not accurate in the first place.  

Fig. 9 

Depth w/o motion boundary localizer – We have shown in Fig. 8 that the motion boundary 
localizer is required even when  the GFOD is used. As a comparison, Fig. 10. shows the result of 
depth estimates without using the motion boundary localizer for the same EPI in Fig. 6. In this 
example, whenever multiple peaks occur, the highest peak in the orientation histogram is selected to 
determine the orientation of the locus in the center of the window. By comparing Fig. 10 and Fig. 6, 
the output of the motion boundary localizer is two-sided. In many cases, it improves the accuracy of 
the motion boundary locations, such as location (2) marked in both figures. But in some other cases, 
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the motion boundary localizer brings in errors in orientation selection, such as location (5) where 
the gradual depth change of the side face is actually detected without the motion boundary 
localization.  As a useful observation, the motion boundary localizer can provide accurate depth 
boundaries in many cases, but might also bring in inaccurate estimates due to noisy data and/or 
weak texture. 

A systematic comparison of depth maps under various cases will be shown in Section 7. 
Fig. 10 

5. Occlusion and Resolution  

5.1. Occlusion Recovery 

      Because a panoramic view image only reserves information from a single viewing direction, for 
example, the direction perpendicular to motion direction when the PVI (y, t) is selected at x0 = 0 
(Fig. 1(b)), some parts of the scene that are visible in other parts of the images of an original (or a 
stabilized) video sequence are lost due to occlusions. They will be recovered by analyzing depth 
occlusion relations in the EPIs. The basic algorithm is performed in each EPI after the panoramic 
depth map and its depth boundaries have been obtained. The algorithm consists of the following 
steps (Fig. 11, Fig. 12): 

Step 1. Find the location of depth boundary – Since we use PVI representation with index (y,t) 
and at x0,  a point on a depth boundary (y0,t0) in the PVI corresponds to a depth boundary point 

p0(x0,t0) in the corresponding EPI. The depth boundary point p0 and the two associated orientation 

angles (θ2 and θ1) of the occluded (far) and occluding (near) objects are all encoded in the 

panoramic depth map at location (y0,t0). A point is considered as a depth boundary point when 

depth discontinuity occurs, for example, when o2|| 21 >−θθ . 

Step 2. Localize the missing part - The missing (occluded) part is represented by a 1D 
(horizontal) spatio-temporal segment pspe in the EPI. Points on this segment are projected from the 

same parallel viewing directions of a moving viewpoint since they have the same x coordinate. The 
segment is determined by the slopes of the two orientation patterns that have generated the depth 
boundary, and it is denoted by an x coordinate and start/end times (ts/te). Basically the largest 

possible angle of viewing direction (indicated by the x position in the EPI) from the viewing 
direction of the PVI (indicated by the x0 coordinate) possesses the most missing information, but 
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possible occlusions by other nearby objects should be considered. For example, the second missing 
region from the right in Fig. 12(b) was determined by checking the occlusion of the locus patterns 
of the missing part against those of other nearby foreground objects (trees), resulting in an ST 
segment with smaller x coordinate, i.e., smaller viewing angle from the viewing direction of the 
PVI. In this way a triangular region p0pspe can be determined, and the 1D segment pspe will be used 

as the texture of the missing part that is occluded by the foreground objects. 

Step 3. Verify the type of the missing part. The triangular region also contains  depth information 
of the missing part - the 1D segment pspe. For simplicity, the missing parts are classified into two 
types in our current implementation: OCCLUDED and SIDE.  This judgment of classification can 
be made by calculating and comparing the dissimilarity measurements within the triangular regions 
for the two cases, Eo for OCCLUDED and Es for SIDE: 
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where the computing of Eo is centered at point p along ||, pqRpp tes =  , and Es is centered at 

||, 00 ppRp t = . The radial direction for measuring the dissimilarity is determined by i (=0 or 1): for 

reappearance (near to far, Fig. 11 (a) and (b)), i=0, and for occlusion (far to near, Fig. 12(a) and (b)) 
i=1. The region is classified as OCCLUDED if we have Eo < Es within the triangle p0pspe. 

Otherwise it is classified as a SIDE region. The angle θ of an OCCLUDED region will be the same 

orientation θ2 as the occluded object, whereas angle θt  of a SIDE region will have gradually 

changing orientations from θ1 to θ2 (or from θ2 to θ1), as expressed in Eq. (24).  

Fig. 11 

Fig. 12 

In this way, the depths of the occluded or side region can be assigned.  Fig. 11 illustrates the 
situation of reappearance where the farther object re-appears behind the closer object. Fig. 12 shows 
other situations (occlusion and side) with real images. Fig 12(a) shows an example of recovering an 
occluded region (building façade) behind a tree, as indicated by the first circle in Fig. 12(c). Fig 
12(b) shows three recovered “side” regions. The first two correspond to the first side of the building 
indicated by the second circle in Fig. 12(c), which is separated into two pieces by a tree in front of 
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it. The third side region corresponds to the second side façade indicated by the third circle in Fig. 
12(c). The x location of the second side region is much closer to the supporting PVI (with x = 0), 
since it is occluded by the tree.   

5.2. Resolution Enhancement 

If an object shifts more than one pixel between two successive frames, i.e., its image velocity v 
is greater than 1, the spatio-temporal panoramic view image (PVI) only preserves one pixel out of 
the total number of the shifted pixels. The rest of the pixels are not encoded in the PVI. Fortunately, 
those pixels are preserved in the x directions of the xyt cube when the motion is along the x axis. 
Therefore the image resolution can be recovered by further EPI analysis. When the image velocity v 

of a point in the panorama is greater than 1, i.e. the orientation angle of it θ= arctan(v) is greater 

than π/4, then a v-pixel segment in x direction is extracted from the EPI instead of just using the 

single pixel in the PVI. Fig. 11(c) shows the idea. A noticeable feature is that the end point px(x,t) of 
a segment p0px at time t will exactly connect with the start point p1(0,t+1) of the segment at time 
t+1. This property is used to generate seamless, adaptive-time panoramas. In Fig. 12(a) and (b), the 
thickness of the central black horizontal line indicates the number of points to be extracted in the x 
direction of this epipolar plane image. Fig 12 (c) shows a seamless panoramic mosaic after 
resolution enhancement, where the width of each vertical strip from the corresponding original 
frame is determined by the dominant image velocity v along the y-axis in the corresponding PVI. 
The algorithms for occlusion recovery and resolution enhancement are two key modules that enable 
the creation of our layered, adaptive resolution and multi-perspective panoramic (LAMP) 
representation presented in Zhu and Hanson (2001). 

 6.  Data Selection and Fast Algorithm 

This section discuss our data selection and representation approach for efficient computation of 
the panoramic depth map. A fast GLOD algorithm is also designed to speed up the computation.   

6.1. Data Selection and Representation 

Suppose that a video sequence has F frames, each of size W×H, and the size of the Gaussian  

window is m×m. Instead of integrating F depth maps, each of them of size W×H, the panoramic 

depth map corresponds to a single spatio-temporal panoramic view image (PVI). The H×F depth 

map is acquired by the independent and parallel processing of H images of 2D panoramic epipolar 
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planes. After the belief map for depth measurement (Fig. 13) is calculated from the panorama, depth 
information for each scan line of the PVI is obtained by executing the algorithms of multiple 
orientation detection, motion boundary localization and depth interpolation in the corresponding 
epipolar planes as described in Section 4.  

    Basically, our panoramic epipolar plane analysis method processes only the EPI data around a 
panoramic view image (e.g., the centered horizontal line in the EPI of Fig. 6). A small amount of 
additional data is processed only for the motion boundaries (see Fig. 12). Moreover, the algorithms 
also deal with the following two problems: the aperture problems of horizontal edges that run along 
the motion direction, and depth interpolation in textureless regions. Depth estimates at vertical edge 
points are more robust. To take this observation into account, a belief map corresponding to a PVI 
IPVI(y,t) is calculated as  
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Fig. 13 shows the belief map corresponding to a PVI. The brighter intensity in the belief map shows 
stronger belief. 

Fig. 13 

      The basic data selection is as follows. For the epipolar plane image ( )txI EPI ,  corresponding to 

a y coordinate of a given PVI, orientations are detected only at the x coordinate from which the 
panorama has been taken (typically x0 = 0). The GFOD is applied only to each location (x0,ti) where 

the belief value B(y,ti) is greater than a given threshold; typically it is a very small value (e.g., 2). 

Those points with belief values lower than the threshold are interpolated (see Section 4.3). Single or 
multiple orientation angles ( )θ k k K= 1, ,L are determined by detecting peaks in an orientation 

histogram. Image velocity can be calculated for each orientation as kkv θtan= . A motion boundary 

will appear within the Gaussian window if the orientation number K is greater than 1 (K=2 for 
double peaks). The additional data selection in motion boundary localization, depth interpolation, 
occlusion recovery and resolution enhancement have been discussed in the Section 5. 

6.2. Fast GFOD Algorithm 

The implementation of the GFOD is based on a 1D Fast Fourier Transform (FFT) algorithm. It 

is performed in an m×m moving window along a 1D scanline (e.g. x0 = 0), so the 1D Fourier 

transforms are performed first in the column direction (i.e. the x axis) to obtain ( )tG ,ξ then in the 
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row direction (i.e. the t axis) to obtain the final ( )ωξ ,G . Generally speaking, a moving window 

technique can be designed to make use of the overlapping successive windows along the time axis 
in order to save computation time. However, the multiplication of a Gaussian window to the spatio-
temporal epipolar plane image will increase the complexity of reusing the results in the previous 
window locations. Therefore, we have designed a fast GFOD algorithm that uses the temporal 
coherence and meanwhile allows adaptive moving intervals of the Gaussian window along the time 
axis, depending on the belief map.   

Fig. 14 

A 2D Gaussian function can be separated as the product of two 1D Gaussian function as 

 ( )w x t w x w t, ( ) ( )= 1 1  (26) 

then we have (Appendix 2) 
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where ( )tGt ,
1

ξ  and ( )tGt ,
2

ξ  are the 1D Fourier transforms of the function gw(x,t) (in Eq. (18)) 

along the x axis when the Gaussian window is at time t1 and time t t T2 1= + ∆ , respectively. This 

indicates that the 1D Gaussian-Fourier transform of the column t in the window centered at t2 can 

use the 1D Gaussian-Fourier transform of the column t+∆T in the window of time t1, providing 
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,  and m is the size of the window (Fig. 14). For such a column, the 

computation complexity is reduced to O(m), compared with O( m mlog2 ) if 1D FFT is directly 

applied. If there is no overlap between the current and the previous windows (i.e., 
2
mTt >∆+ ), then 

we need to initialize the calculation of the current window. When ∆T is smaller (i.e. the ST texture 
is denser hence the orientation estimation is denser and better) the speedup in computation is more 

obvious. In the extreme case when ∆T =1, for a W(row)×F(column) x-t image, the multiplication 

and the addition of a 2D FFT (using 1D FFT directly) is ( )mFmO 2
2 log2 . Using the proposed fast 

GFOD algorithm, the computation complexity reduces to ( ))1(log2
2 +mFmO , which means an 

increase of speed by nearly a factor of 2. The total computation for an H(height)×W(width)×

F(frames) xyt cube is ( ))1(log2
2 +mHFmO  which is independent to the width of the original video 

frames. 
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With the fast GFOD algorithm and the data selection approach, the current sequential 
implementation on a Pentium 400 MHz PC can achieve a frame rate of about 2 frame per second 

(fps) for an image sequence with 128×128 images. The frame rate increases to 10.8 fps on a Xeon 

2.4 GHz dual-CPU Dell Linux workstation. The processing for all the epipolar planes can be done 
in parallel. Thus it is possible to implement the proposed algorithms in real time with a parallel 
processing hardware system. 

Fig. 15 

6.3. More on Data Selection and Representation 

We show here how to make full use of the original image sequence by generating an extended 

panoramic image (XPI). Suppose that an image sequence has F frames of images of size W×H. An 

example is the frequently used flower garden (FG) sequence (W×H×F = 352×240×115 pixels). Fig. 

15 shows two frames of this 115-frame sequence. A PVI and an EPI is shown in Fig. 16(a) and Fig. 
16(b). It is unfortunate in this case that the field of view of the panoramic view image turns out to 
be “narrow” due to the small number of frames and large interframe displacements. Therefore, an 
extended panoramic image (XPI) is constructed. The XPI is composed of the left half of frame m/2 
(m is the GFOD window size), the PVI part formed by extracting center vertical lines from frame 
m/2 to frame F-m/2, and the right half of frame F-m/2 (Fig. 16(c)). 

Fig. 16 

7. Experimental Results 

We will provide two examples of complete 3D reconstruction, occlusion recovery and 
resolution recovery from long video sequences.  First we will use the first example to show the 
effectiveness of large Gaussian windows in orientation estimation and the motion boundary 
localizer in obtaining panoramic depth maps. 

7.1. Comparison: Window Sizes, Gaussian and Motion Boundary Localization 

A systematic comparison of depth estimation with various parameter selections will be useful 
to understand the importance of large Gaussian windowing in accurate and robust depth estimation.  
The selections of the parameters are  

G - rectangular windowing (G = 0) or Gaussian windowing (G = 1);  

B – with motion Boundary localization (B = 1) or without boundary localization (B = 0); and 
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M - different window sizes (M = 16, 32, or 64 pixels) 

The qualitative rating of the depth maps under all of the 12 possible parameter combinations are 
shown in Table 1. In the table rank “1” is the best and rank “6” is the worst. The large GFOD with 
the motion boundary localizer yields the best result in terms of depth resolution, accuracy in depth 
boundaries and robustness. Some typical results (raw depth maps) for the BUILDING sequence are 
shown in Fig. 17. As a summary, we have the following observations: 

(1) Large Gaussian windowing is important in the accuracy of both locus orientation estimation 
and depth boundary localization. Rectangular windowing does not work whether the 
window sizes  are small or large. Large rectangular windowing cannot detect depths with 
fine structures (Fig. 17(c)), while small rectangular windowing does not provide sufficient 
accuracy in locus orientation (Fig. 17(a)). 

(2) Motion boundary localization in the spatial domain could be helpful in obtaining more 
accurate depth boundaries with well-presented texture patterns, but could also bring in 
errors with weak and complex texture patterns. Let us compare Fig. 17(d) and Fig. 17(e). 
Both of them use a 64×64 pixel Gaussian window, but Fig. 17(d) is obtained without depth 
boundary localization. The motion boundary localizer yields better result in most part of the 
depth map.   

Table 1  

Fig. 17 

7.2. 3D Panoramic Layered Representation Results 

In this subsection, we present results of dense depth estimation, occlusion recovery and 
resolution enhancement for two real examples. To reduce the noise of the depth map, a simple two-
step algorithm is used:  

(1). Median filtering on the depth map preserves each depth boundary while eliminating errors 
due to aperture problems and complex non-rigid motion of trees, etc.  

(2). Intensity boundaries and depth boundaries are labeled in vertical directions. If there is no 
intensity boundary at a depth boundary, then the depth boundary is moved to the location of the 
most suitable intensity boundary.  

Fig. 17(f) shows the filtering result for the BUILDING sequence. Depth boundaries of the depth 
map, superimposed on the panoramic intensity image as red lines in Fig. 17(g), show the accuracy 
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of localization. We note here that better results of occlusion recovery and resolution enhancement 
can be obtained when operated on the filtered, panoramic depth map.  

Fig. 18 

Starting from a panoramic depth map, resolutions of nearer objects are enhanced and the 
occluded and side regions that are not visible in the basic panoramic view image are recovered.  
Fig. 18 shows the results of constructing a LAMP representation (Zhu and Hanson, 2001) based on 
the occlusion and resolution recovery results for the BUILDING sequence. With resolution 
enhancement, each index (y,t) in the PVI could have more than one pixel. Fig. 18(a) shows the 
internal data of the resolution-enhanced PVI (without occluded regions), where all the pixels are 
shown sequentially in a 2D image. With occlusion recovery, additional pixels are obtained at depth 
boundaries. Fig. 18(b) shows both the occluded region and the resolution-enhanced pixels, in a 
similar way as in Fig. 18(a). The occluded portion of the facade by the tree and the side façade of 
the building are partially recovered.   

Fig. 19 shows the results of 3D construction of the FG sequence. In the depth map, the tree 
stands out distinctly from the background, and the gradual changes of depths of the flower-covered 
foreground are detected. Fig. 20 shows the two layers of the layered representation for the FG 
sequence, each of which has both texture and depth maps. Note that the background layer is an 
extended panoramic image (XPI) representation of xy-ty-xy images. 

Fig. 19 

Fig. 20 

8. Conclusions 

This paper presents a Fourier-based approach for automatically constructing a 3D panoramic 
model of a natural scene from a video sequence. The video sequences could be captured by an 
unstabilized camera mounted on a moving platform on a common road surface. As the input of the 
algorithms, "seamless" panoramic view images (PVIs) and epipolar plane images (EPIs) are 
generated after an image stabilization step to eliminate fluctuation from the vehicle’s motion.  A 
novel panoramic EPI analysis method is proposed that combines the advantages of both PVIs and 
EPIs efficiently in three important steps: locus orientation detection in the Fourier frequency 
domain, motion boundary localization in the spatio-temporal domain, and occlusion/resolution 
recovery only at motion boundaries. The Fourier energy-based approaches in literature have been 
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proposed for low-level local motion analysis, but the previous approaches are not accurate for 3D 
reconstruction and are computationally expensive. We have presented and analyzed an occlusion 
model in both spatio-temporal and frequency domains. Based on the occlusion model, and spatio-
temporal-frequency analysis, we have proposed the Gaussian-windowed Fourier Orientation 
Detector (GFOD). The GFOD is accurate in both locus orientation estimation and depth boundary 
localization. With the GFOD, effective data selection and fast GFOD algorithm, our panoramic EPI 
analysis approach is both accurate and efficient for 3D reconstruction. Examples of layered 
panoramic representations for large-scale 3D scenes from real world video sequences are given.  

While the proposed method is a practical solution for 3D scene modeling, there exist some 
open problems that need further study. The current algorithms can work well only with dense image 
sequences with constrained motions. The motion boundary localizer is not as robust as we have 
expected. The fusion of depth/motion and spatial structures (textures, edges) also need further 
study. The applications of the proposed GFOD to other areas could also be investigated.  We hope 
these open issues will attract research interests in the computer vision and related communities. 

 

Appendix 1.  Energy model of the occluding boundary 
Define the following functions for Eq. (7) 
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Appendix 2. Fast GFOD algorithm 

The m×m Fourier transform, ),( ωξG , of function gw(x,t) = ( ) ( ) )()(),(,, 21 twxwtxftxwtxf = is 
calculated in two steps. First, for each column in the x direction, performing a 1D FFT obtains an 

intermediate result ( )G tξ, . Second, applying 1D FFTs along the t direction to obtain the final Fourier 

transform ( )G ξ ω, . When the Gaussian window is centered at (x0, t1), the origin of an m×m sub-image, the 

Gaussian Fourier transform for column t in this sub-image is 
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Assume that the next location that a Gaussian window will be applied is t t T2 1= + ∆ , then the Gaussian-
Fourier transform of column t with origin (x0, t2) should be 
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Notes 
1. Camera settings other than this standard stetting are also applicable but an image rectification procedure 
should be applied first (Zhu, 2001). 

2. So in practice, the variance will be selected adaptively according to the real situation of an ST 

texture instead of using 
4

12 −= mσ directly. 

References 
[1]. Adelson, E. H. and Bergen, J. R. 1985. Spatiotemporal energy model for the perception of motion. J. 

Opt. Soc. Am., A2: 284-299. 

[2]. Allmen, M. and Dyer, C. R. 1991. Long range spatiotemporal motion understanding using 
spatiotemporal flow curves. In IEEE Conf.  Computer Vision and Pattern Recognition, pp. 303-309. 

[3]. Baillard, C. and Zisserman, A. 1999. Automatic reconstruction of piecewise planar models from 
multiple views. In IEEE Conf. Computer Vision and Pattern Recognition, pp. 559-565. 

[4]. Baker, H. H. and Bolles, R. C., 1989. Generalizing epipolar-plane image analysis on the 
spatiotemporal surface. Int. J. Computer Vision, 3, pp 33-49. 

[5]. Baker, S., Szeliski, R. and Anandan, P. 1998. A layered approach to stereo reconstruction. IEEE Conf. 
Computer Vision and Pattern Recognition, pp. 434-441. 

[6]. Black, M. J. and Jepson, A. D. 1996. Estimating optical flow in segmented images using variable-
order parametric models with local deformations. IEEE Trans Pattern Analysis and Machine 
Intelligence, 18(10): 972-986. 

[7]. Bolles, R. C., Baker, H. H. and Marimont, D. H. 1987. Epipolar-plane image analysis: an approach to 
determining structure from motion. Int. J. Computer Vision, 1(1): 7-55. 

[8]. Chang, N. L. and Zakhor, A. 1997. View generation for three-dimensional scene from video sequence. 
IEEE Trans on Image Processing, 6(4): 584-598. 

[9]. Chang, N. L. and Zakhor, A. 2001. Constructing a multivalued representation for view synthesis. Int. 
J. of Computer Vision, 45(2), November 2001: 157-190. 

[10]. Chen, S. E. 1995. QuickTime VR - an image based approach to virtual environment navigation. In 
ACM Conf. Proc. SIGGRAPH 95, pp. 29-38. 

[11].  Collins, R. 1996. A space-sweep approach to true multi-image matching. In IEEE Conf. Computer 
Vision and Pattern Recognition, pp. 358-363. 

[12].  Collins, R., Jaynes, C., Cheng, Y., Wang, X., Stolle, F., Schultz, H., Hanson, A. and  Riseman, E. 
1998. The Ascender System: Automated Site Modeling from Multiple Aerial Images," Computer 
Vision and Image Understanding, 72(2): 143-162. 

[13]. Coorg, S. and Teller, S. 1998.  Automatic extraction of textured vertical facades from pose imagery. 
MIT LCS TR-729. 

[14]. Dalmia, A. K. and Trivedi, M. 1996. High speed extraction of 3D structure of selectable quality using 
a translating camera. Computer Vision and Image Understanding,  64(1): 97-110. 

[15]. Debevec, P., Taylor, C. and Malik, J. 1996. Modeling and rendering architecture from photographs: a 
hybrid geometry- and image- based approach. In ACM Conf. Proc. SIGGRPAH 96, pp. 11-20.  



 31

[16]. Faugeras, O., Robert, L., Laveau, S., Csurka, G., Zeller, C., Gauclin, C. and Zoghlami, I. 1998. 3-D 
reconstruction of urban scenes from image sequences. Computer Vision and Image Understanding, 
69(3): 292-309. 

[17]. Fleet, D. J., Black, M. J., and Jepson, A. D. 1998, Motion feature detection using steerable flow fields. 
In IEEE Conf. Computer Vision and Pattern Recognition, pp. 274-281.   

[18]. Freeman, W. T. and Adelson, E. H. 1991. The design and use of steerable filters. IEEE Trans Pattern 
Analysis and Machine Intelligence, 13(9): 891-906. 

[19]. Hansen, M., Anandan, P., Dana, K., van de Wal, G., and Burt, P., 1994. Real-time scene stabilization 
and mosaic construction. In IEEE Conf. Computer Vision and Pattern Recognition, pp. 54-62. 

[20]. Heeger , D. J. 1987. Optical flow from spatio-temporal filters. In Proc. IEEE Int. Conf. Computer 
Vision, pp. 181-190. 

[21]. Ishiguro, H., Yamamoto, M. and Tsuji S. 1990, Omni-directional stereo for making global map. In 
Proc. IEEE Int. Conf. Computer Vision, pp. 540-547. 

[22]. Jahne B, Digital Image Processing , Concept, Algorithms and Scientific Applications, Springer-
Verlag, 1991. 

[23]. Li, Y.,. Shum, H.-Y., Tang, C.-K., and Szeliski, R., 2004. Stereo reconstruction from multiperspective 
panoramas. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(1):44-62, January 2004. 

[24]. McMillan L. and Bishop, G. 1995. Plenoptic modeling: an image-based rendering system. In ACM 
Conf. Proc. SIGGRAPH 95, pp. 39-46. 

[25]. Morimoto, C. and Chellappa, R. 1997. Fast 3-D stabilization and mosaic construction. In IEEE Conf. 
Computer Vision and Pattern Recognition, pp. 660-665. 

[26]. Murray, D. W. 1995. Recovering range using virtual multicamera stereo, Computer Vision and Image 
Understanding.  61(2): 285-291.  

[27]. Nayar, S. and Karmarkar, 2000. 360x360 mosaics. In IEEE Conf. Computer Vision and Pattern 
Recognition: II 388-395. 

[28]. Niyogi, S. A. 1995. Detecting kinetic occlusion. In Proc. IEEE Int. Conf. Computer Vision, pp. 1044-
1049. 

[29]. Peleg, S. and Ben-Ezra, M. 1999. Stereo panorama with a single camera. In IEEE Conf. Computer 
Vision and Pattern Recognition, pp. 395-401. 

[30]. Peleg, S., Ben-Ezra, M. and Pritch, Y., 2001. OmniStereo: Panoramic Stereo Imaging, IEEE Trans. on 
PAMI, vol 23, no 3, March 2001, pp. 279-290. 

[31]. Peleg, S. and Herman, J. 1997. Panoramic mosaics by manifold projection. In IEEE Conf. Computer 
Vision and Pattern Recognition: pp. 338-343. 

[32]. Peleg, S., Rousso, B., Rav-Akha, A. and Zomet, A., 2000. Mosaicing on Adaptive Manifolds,  
IEEE Trans. Pattern Recognition and Machine Analysis, 22(10), October 2000: 1144-1154. 

[33]. Rademacher, P. and Bishop, G. 1998. Multiple-center-of-projection images. In Proc. SIGGRAPH'98, 
pp. 199-206. 

[34]. Sawhney, H. S. and Ayer, S. 1996. Compact representation of videos through dominant and multiple 
motion estimation. IEEE Trans Pattern Analysis and Machine Intelligence, 18(8), Aug ,  pp. 814-830. 



 32

[35]. Sawhney, H. S., Kumar, R., Gendel, G., Bergen, J., Dixon, D. and Paragano, V. 1998. VideoBrushTM: 
Experiences with consumer video mosaicing. In IEEE Workshop on Application of Computer Vision, 
pp. 56-62. 

[36]. Shade, J., Gortler, S., He. L. and Szeliski, R. 1998. Layered depth image. In Proc. SIGGRAPH'98, pp. 
231-242. 

[37]. H.-Y. Shum and R. Szeliski, Construction of panoramic image mosaics with global and local 
alignment,  Int. J. of Computer Vision, vol. 36, no. 2, 2000: 101-130. 

[38]. Shum, H.-Y., Han, M. and Szeliski, R. 1998. Interactive construction of 3D models from panoramic 
mosaics. IEEE Conf. Computer Vision and Pattern Recognition, pp. 427-433. 

[39]. Shum, H.-Y. and Szeliski, R., 1999. Stereo reconstruction from multiperspective panoramas. In Proc. 
IEEE Int. Conf. Computer Vision, pp. 14-21. 

[40]. Shum H-Y, Kalai A and Seitz S M. Omnivergent stereo. Proc. IEEE Int. Conf. Computer Vision,  pp 
22 – 29, 1999. 

[41]. Szeliski, R. 1999. A multi-view approach to motion and stereo. In IEEE Conf. Computer Vision and 
Pattern Recognition,  pp. 157-163. 

[42]. Wang, J. and Adelson, E. H. 1994. Representation moving images with layers. IEEE Trans. on Image 
Processing, 3(5): 625-638. 

[43]. Xiong, Y. and Turkowski, K. 1997. Creating image-based VR using a self-calibrating fisheye lens. In 
IEEE Conf. Computer Vision and Pattern Recognition, pp. 237-243. 

[44]. Zheng, J. Y. and Tsuji, S. 1992. Panoramic representation for route recognition by a mobile robot. Int. 
J. Computer Vision, 9(1): 55-76. 

[45]. Zheng, J. Y. and Tsuji, S. 1998. Generating Dynamic Projection Images for Scene Representation and 
Understanding. Computer Vision and Image Understanding, 72(3): 237-256. 

[46]. Zhu, Z., Xu, G. and Lin, X. 1998. Constructing 3D natural scene from video sequences with vibrating 
motions. In Proc. IEEE Virtual Reality Annual International Symposium (VRAIS-98), pp. 105 – 112. 

[47]. Zhu, Z., Xu, G. and Lin, X., 1999. Panoramic EPI Generation and Analysis of Video from a Moving 
Platform with Vibration. In IEEE Conf .Computer Vision and Pattern Recognition,  pp. 531-537. 

[48]. Zhu, Z. 2001. Full View Spatio-Temporal Visual Navigation - Imaging, Modeling and Representation 
of Real Scenes, China Higher Education Press, December 2001 (based on his Ph.D. Thesis, 
Department of Computer Science and Technology, Tsinghua University, 1997. English Version may 
be found at http://www-cs.engr.ccny.cuny.edu/~zhu/PhD-Thesis/). 

[49]. Zhu, Z. and A. R. Hanson, 2001. 3D LAMP: a new layered panoramic representation. In Proc. IEEE 
Int. Conf. Computer Vision, vol II, 723-730. 

[50]. Zhu, Z.,  E. M. Riseman and A. R. Hanson, 2001. Parallel-perspective stereo mosaics, In Proc. IEEE 
Int. Conf. Computer Vision, vol I, 345-352. 

[51]. Zhu, Z., Riseman, E. M. and Hanson, A. R., 2004. Generalized Parallel-Perspective Stereo Mosaics 
from Airborne Videos, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 2, Feb 
2004, pp 226-237. 

 



 33

Figure Captions 
Fig. 1. (a) Motion model with a side-looking camera, constant speed translation and small vibrations. (b) ST image 
model: xyt cube, panoramic view image (PVI) and epipolar plane image (EPI)  

Fig. 2. ST images from an image sequence (a) Stereo PVIs (x = 0 and x= -56)  (b) Loci, occlusion and side regions in 
an EPI with y = 9 that starts at the PVI with x=0 and ends at the PVI with x = -56. 

Fig. 3. Stabilization and ST image generation of the BUILDING sequence. (a) PVI (x=24) before and after stabilization    
(b) EPI (y = 0) before and after stabilization. Only a small portion of the 1024-column ST images are shown.  

Fig. 4. Stabilization of the TREE sequence (128×128×1024).  (a) PVI (x=0) before and after stabilization  (b) EPI (y 
=0) before and after stabilization (c) Depth estimation from the stabilized EPIs (the nearer, the brighter).  Only a small 
portion of the 1024-column ST images are shown. 

Fig. 5. The motion occlusion model. (a) an x-t image g(x,t)  (b) Fourier magnitude map of the x-t image (c) the Fourier 

magnitude of the step function u(x) 

Fig. 6. Multiple orientation detection by 64×64 GFOD and the motion boundary localizer. Rows 1-4: 64×1024 x-t 
image (EPI, y = 56); orientation energy distribution map (the long dashed curve (red in color version) indicates the 
selected peaks (which may not be the highest), and several small pieces of solid lines (blue in color version) indicate the 
second peaks); histogram of orientation angles; and part of the corresponding PVI (PVI x = 24 is selected in order to 
shown the side face of building around frame 613; the horizontal line in the PVI corresponds to location of the EPI in 
the first row). The significant motion boundaries are marked by vertical lines (red in color version). 

Fig. 7. The principles of depth boundary localization and depth interpolation. (a) Occlusion case: two peaks can be detected in 

the Fourier spectrum in all of the tree cases when the center of the window is to the left, just at and to the right of a depth 

boundary (b) reappearance case (c) orientation detection in multi scales (d) depth interpolation for textureless regions. 

Fig. 8. Multiple orientation detection: comparison of rectangular and Gaussian windows. The frame index (t) 
corresponds to the time in the EPI shown in Fig. 6. In both (1) and (2), (a) – (d) rectangular window:  (a) the original 64

×64 x-t image f(x,t). (b) energy spectra  of  f(x,t)  (c) the orientation histogram with the detected peak(s). (d) motion 

boundary localization results.  Column (e) – (h) Gaussian window: (e) Gaussian weighted x-t image g(x,t)  (f) energy 
spectra  of  g(x,t)  (c) the orientation histogram with the detected peak(s)  (d) motion boundary localization results.  In 
each of  (c), (d) , (g) or (h), the solid dark line indicates the correct orientation, while the dashed dark line indicates the 
second peak (if any). 

Fig. 9. Multiple orientation detection by 16x16 Fourier orientation detection without motion boundary localization. Rows 1-

4: 16x1024 x-t image (EPI, y = 56); orientation energy distribution map (the dark (blue in color version) curves shows the 

high peaks at each frame t); histogram of orientation angles; and part of the corresponding PVI (the horizontal line in the 

PVI corresponds to the EPI in the first row). 

Fig. 10. Multiple orientation detection by 64×64 GFOD, and without motion boundary localization. Rows 1-4: 16x1024 x-t 

image (EPI, y = 56); orientation energy distribution map (the dark (blue in color version) curves shows the high peaks at 

each frame t); histogram of orientation angles; and part of the corresponding PVI (the horizontal line in the PVI corresponds 

to the EPI in the first row). The significant motion boundaries are marked by vertical lines (red in color version). 
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Fig. 11.  Region classification and adaptive resolution. (a) locus patterns near an occlusion boundary  (b) locus 

patterns of front- side  surfaces (c) temporal resolution enhancement by using spatial resolution  

Fig. 12. Occlusion and resolution recovery results in real EPIs.  (a) an OCCLUDED region;  (b) three SIDE regions (two of 

them belong to a side facade separated by trees). (c) Multi-viewpoint mosaic with adaptive time scales (the right edge of the 

upper part connects with the left edge of the bottom part). Circles show the corresponding OCCLUDED and SIDE regions in 

(b). 

Fig. 13.  Top: panoramic intensity image ( x =0); bottom: panoramic belief map. The brighter intensity in the belief map 
shows stronger belief.  

Fig. 14. Fast GFOD using a moving window approach 

Fig. 15.  Two frames of the FLOWER GARDEN  (FG) sequence  
Fig. 16  Panorama and epipolar plane images of FG sequence (a) PVI (b) EPI and (c) XPI 

Fig. 17. Panoramic depth maps for the BUILDING sequence: comparison under various parameter selections (B- 
boundary localization, G – Gaussian windowing,  and M – window size). In all depth maps, the nearer depths are 
represented by brighter intensities. Large GFOD with the motion boundary localizer yields the best result. 

Fig. 18. Internal data of (part of) the multi-resolution layered representation of the BUILDING sequence. (a) Resolution 
enhancement (without occlusion recovery) (b) Occlusion recovery as well resolution enhancement   

Fig. 19. Panoramic depth map for the FG sequence. (1) Isometric depth lines overlaid in the intensity map (the 

isometric depth lines have 2o intervals).   (2)panoramic depth map  

Fig. 20. Layered representation model of the FG sequence 

 

 

Table 1. A systematic comparison of depth estimation  (G =0/1: rectangular /Gaussian windows; B (0/1): motion 
boundary localizer, M = 16, 32, 64: window sizes. Grading 1-6 is from best to worst.  The depth maps corresponding to 
those marked by * are shown  in Fig. 17) 
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Fig. 1. (a) Motion model with a side-looking camera, constant speed translation and small vibrations. (b) ST image 
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Fig. 2. ST images from an image sequence (a) Stereo PVIs (x = 0 and x= -56)  (b) Loci, occlusion and side regions in 
an EPI with y = 9 that starts at the PVI with x=0 and ends at the PVI with x = -56. 
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Fig. 3. Stabilization and ST image generation of the BUILDING sequence. (a) PVI (x=24) before and after stabilization    
(b) EPI (y = 0) before and after stabilization. Only a small portion of the 1024-column ST images are shown.  
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Fig. 4. Stabilization of the TREE sequence (128×128×1024).  (a) PVI (x=0) before and after stabilization  (b) EPI (y 
=0) before and after stabilization (c) Depth estimation from the stabilized EPIs (the nearer, the brighter).  Only a small 
portion of the 1024-column ST images are shown. 
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Fig. 5. The motion occlusion model. (a) an x-t image g(x,t)  (b) Fourier magnitude map of the x-t image (c) the Fourier 

magnitude of the step function u(x) 
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Fig. 6. Multiple orientation detection by 64×64 GFOD and the motion boundary localizer. Rows 1-4: 64×1024 x-t 
image (EPI, y = 56); orientation energy distribution map (the long dashed curve (red in color version) indicates the 
selected peaks (which may not be the highest), and several small pieces of solid lines (blue in color version) indicate the 
second peaks); histogram of orientation angles; and part of the corresponding PVI (PVI x = 24 is selected in order to 
shown the side face of building around frame 613; the horizontal line in the PVI corresponds to location of the EPI in 
the first row). The significant motion boundaries are marked by vertical lines (red in color version). 
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(a) occlusion: two peaks in three cases – to the left, just at and to the right of a depth boundary  
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    (b)  reappearance                    (c) multi-scale window            (d)  depth interpolation 
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Fig. 7. The principles of depth boundary localization and depth interpolation. (a) Occlusion case: two peaks can be detected in 

the Fourier spectrum in all of the tree cases when the center of the window is to the left, just at and to the right of a depth 

boundary (b) reappearance case (c) orientation detection in multi scales (d) depth interpolation for textureless regions. 

 

t=0                                                     313                                              613                                                               1024     

(1)            (2)                 (3) (4)         (5)   
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t Rectangular  window Gaussian window,  
4

12 2 −= mσ  
 (a) (b) (c) (d) (e) (f) (g) (h) 

296 

305 

313 

322 

356 

(1)  GFOD operator on occluding boundary 

t Rectangular  window Gaussian window,  
4

12 2 −= mσ  
 (a) (b) (c) (d) (e) (f) (g) (h) 

613 

631 

661 

670 

(2) GFOD operator on a side surface 

Fig. 8. Multiple orientation detection: comparison of rectangular and Gaussian windows. The frame index (t) 
corresponds to the time in the EPI shown in Fig. 6. In both (1) and (2), (a) – (d) rectangular window:  (a) the original 64

×64 x-t image f(x,t). (b) energy spectra  of  f(x,t)  (c) the orientation histogram with the detected peak(s). (d) motion 

boundary localization results.  Column (e) – (h) Gaussian window: (e) Gaussian weighted x-t image g(x,t)  (f) energy 
spectra  of  g(x,t)  (c) the orientation histogram with the detected peak(s)  (d) motion boundary localization results.  In 
each of  (c), (d) , (g) or (h), the solid dark line indicates the correct orientation, while the dashed dark line indicates the 
second peak (if any). 



 39

 
Fig. 9. Multiple orientation detection by 16x16 Fourier orientation detection without motion boundary localization. Rows 

1-4: 16x1024 x-t image (EPI, y = 56); orientation energy distribution map (the dark (blue in color version) curves shows 

the high peaks at each frame t); histogram of orientation angles; and part of the corresponding PVI (the horizontal line in 

the PVI corresponds to the EPI in the first row). 

 

 
Fig. 10. Multiple orientation detection by 64×64 GFOD, and without motion boundary localization. Rows 1-4: 16x1024 x-

t image (EPI, y = 56); orientation energy distribution map (the dark (blue in color version) curves shows the high peaks at 

each frame t); histogram of orientation angles; and part of the corresponding PVI (the horizontal line in the PVI 

corresponds to the EPI in the first row). The significant motion boundaries are marked by vertical lines (red in color 

version). 
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Fig. 11.  Region classification and adaptive resolution. (a) locus patterns near an occlusion boundary  (b) locus 

patterns of front- side  surfaces (c) temporal resolution enhancement by using spatial resolution  

(1)            (2)                 (3)  (4)           (5)   
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Fig. 12. Occlusion and resolution recovery results in real EPIs.  (a) an OCCLUDED region;  (b) three SIDE regions (two 

of them belong to a side facade separated by trees). (c) Multi-viewpoint mosaic with adaptive time scales (the right edge of 

the upper part connects with the left edge of the bottom part). Circles show the corresponding OCCLUDED and SIDE 

regions in (b). 

 

 

 
Fig. 13.  Top: panoramic intensity image ( x =0); bottom: panoramic belief map. The brighter intensity in the belief map 
shows stronger belief.  

 

 

 

 

 
Fig. 14. Fast GFOD using a moving window approach 
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Fig. 15.  Two frames of the FLOWER GARDEN  (FG) sequence 
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Fig. 16  Panorama and epipolar plane images of FG sequence (a) PVI (b) EPI and (c) XPI 

Table 1. A systematic comparison of depth estimation  (G =0/1: rectangular /Gaussian windows; B (0/1): motion 
boundary localizer, M = 16, 32, 64: window sizes. Grading 1-6 is from best to worst.  The depth maps corresponding to 
those marked by * are shown  in Fig. 17) 

                         M 
B    G 

16 32 64 

0    0 4* 4 6 

0    1 4 3 2* 

1    0 6 5 6* 

1    1 5 3* 1* 

 

EPI

x

y

t

PVI XPI

(a)  PVI          (b)   EPI                           (c)     XPI 

 

EPI analysis along this zigzag line 

Occlusion recovery 
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(a) 16×16 rectangular windows without depth boundary localization (BGM = 0-0-16) 

 
(b) 32×32 Gaussian window with depth boundary localization (BGM = 1-1-32) 

 
(c) 64×64 rectangular window with depth boundary localization (BGM = 1-0-64) 

 
(d) 64×64 Gaussian window without depth boundary localization (BGM = 0-1-64) 

 
(e) 64×64 Gaussian window with depth boundary localization (BGM = 1-1-64) 

 
Horizontal wedge and a row of flags       Pine tree                                         depth changes in the wall   

 
building façade and steps                       trees                              building bridge   pedestrian                  pine tree and bamboo 
 

(f) panoramic depth map after depth-intensity filtering 
 

 
(g) depth boundaries (red lines in color version) overlay on the panorama 

 
Fig. 17. Panoramic depth maps for the BUILDING sequence: comparison under various parameter selections (B- 
boundary localization, G – Gaussian windowing,  and M – window size). In all depth maps, the nearer depths are 
represented by brighter intensities. Large GFOD with the motion boundary localizer yields the best result. 
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(a)   

 
(b)  

Fig. 18. Internal data of (part of) the multi-resolution layered representation of the BUILDING sequence. (a) 
Resolution enhancement (without occlusion recovery) (b) Occlusion recovery as well resolution enhancement   

 

 

   
Fig. 19. Panoramic depth map for the FG sequence. (1) Isometric depth lines overlaid in the intensity map (the 

isometric depth lines have 2o intervals).   (2)panoramic depth map  

 

 

occlusion 

after occlusion recovery 
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(a) Intensity / depth maps of background layer   (b)  object layer 

Fig. 20. Layered representation model of the FG sequence 

 

t-y part x-y part x-y part 


