
Crowd Counting With Minimal Data Using
Generative Adversarial Networks For Multiple Target Regression

Greg Olmschenk1 Hao Tang2 Zhigang Zhu1,3

1The Graduate Center of the City University of New York
2Borough of Manhattan Community College - CUNY

3The City College of New York - CUNY
golmschenk@gradcenter.cuny.edu, htang@bmcc.cuny.edu, zhu@cs.ccny.cuny.edu

Abstract

In this work, we use a generative adversarial network
(GAN) to train crowd counting networks using minimal data.
We describe how GAN objectives can be modified to allow
for the use of unlabeled data to benefit inference training
in semi-supervised learning. More generally, we explain
how these same methods can be used in more generic multi-
ple regression target semi-supervised learning, with crowd
counting being a demonstrative example. Given a convolu-
tional neural network (CNN) with capabilities equivalent
to the discriminator in the GAN, we provide experimental
results which show that our GAN is able to outperform the
CNN even when the CNN has access to significantly more
labeled data. This presents the potential of training such
networks to high accuracy with little data. Our primary goal
is not to outpreform the state-of-the-art using an improved
method on the entire dataset, but instead we work to show
that through semi-supervised learning we can reduce the
data required to train an inference network to a given ac-
curacy. To this end, systematic experiments are performed
with various numbers of images and cameras to show un-
der which situations the semi-supervised GANs can improve
results.

1. Introduction

A significant obstacle in many machine learning tasks
is the acquisition of enough ground truth data to train a
complex system. In most tasks which utilize deep neural
networks, one of the most limiting factors is lack of access
to enough training data. This is certainly true in the case
of machine learning algorithms for crowd analysis, where
labeling data is a time consuming and tedious task and where
generalizing to unseen data depends on similar training data.
In this work, we explore the use of generative adversarial
networks in training neural networks for crowd counting

with minimal amounts of data.

Generative adversarial networks (GANs) [2] have been
shown to increase the accuracy of deep networks and allow
for smaller quantities of data to train to high levels of ac-
curacy [6, 7]. However, semi-supervised GANs have only
been used for semi-supervised learning only in classification
problems, and have not been applied to regression problems.
This is both because classification problems are more com-
monly the focus of benchmarks in deep learning, but also
because a classification problem can be simply formulated
into the optimization goals of a GAN. In contrast, it becomes
more difficult to assign goals for adversarial networks in
regression problems, especially given the constraints of the
issue in question. To the best of our knowledge an approach
to using GANs for semi-supervised learning of regression
targets has not previously been proposed.

In this paper, we apply GANs to the structured per pixel
regression problem of generating crowd density images. We
explain the challenges of adapting GANs to this regime, and
provide our solutions to each challenge. More generally, our
algorithm can be applied to any regression problem where
the target is a continuous positive value with higher values
corresponding to a stronger representation of the feature to
be detected. The algorithm works both for single value re-
gression targets, or multiple value (in our case per-pixel)
regression targets. Specifically, to allow for this kind of
training we design a generator which is optimized to pro-
duce the highest possible values using a novel variant of
feature matching where each feature vector is weighted on
the predicted value, and we propose a discriminator loss
function for unlabeled and generated data allowing for train-
ing in the regression regime. Regression is a more general
problem than classification. Specifically, the problem of
classification is a subset of regression problems, so expand-
ing semi-supervised GANs to regression allows for a more
general understanding of their capabilities.

The primary goal of this work is not to outperform the



state-of-the-art methods when trained on a large dataset, but
is to demonstrate the ability of a GAN to train a inference
network to the same level of accuracy with less labeled data
than is required by the inference network without the GAN.
This is done by using the GAN to utilize unlabeled data as
well as the small portion of labeled data. We show that this
approach significantly decreases the amount of data required
to train the network resulting in the same accuracy in many
scenarios. Less data requirements mean less manual work in
labeling and the ability to train even when large quantities
of labeled data are not accessible.

To summarize, we provide the following three primary
contributions: (1) We apply semi-supervised GANs to learn-
ing of the structured per pixel regression problem of generat-
ing crowd density images, and show that it can significantly
reduce the amount of data required to train a predictor for
crowd analysis. (2) A new formulation of GAN objectives is
designed which allows GANs to deal with a set of regression
problems, and showcases how regression may be approached
in general. (3) A systematic study is performed in terms of
the number of images and number of cameras, demonstrat-
ing the capabilities of semi-supervised GANs in various data
limited circumstances.

2. Related Work
The work in [9] provides one of the first uses of convolu-

tional neural networks (CNNs) as a method for crowd count-
ing, especially across multiple scenes. While other works
have made valuable alterations to the approach given in this
paper to produce improved state-of-the-art results (such as
multiple scale CNNs [8], or residual network skip connec-
tions [5]), the primary functionality of these approaches,
namely the ability to use CNNs for crowd counting, is still
similar to that which is presented by [9]. Our discriminator
is similar to the CNN of this work, notably in the use of the
joint optimization goal of two outputs of the CNN, one for
count prediction and the other for density prediction. This
CNN then becomes the discriminator half of our GAN. The
main contributions of our work are in formulating how to
allow a GAN to function properly in this set of regression
target problems. We also use the datasets first presented in
[9] as our experimental data.

The use of GANs for minimal data semi-supervised learn-
ing was proposed in [7]. Similar to this work, we wish to
reduce the amount of data required to train the inference
network. However, their approach was designed with clas-
sification problems in mind, and we need to completely
redesign the optimization goals to work in the regime of
problems involving multiple regression targets. The large
scale goals are the same: use a GAN to allow unlabeled
data to provide useful information in training a network for
inference. We use the high level thinking of this approach
as a starting point, but in our crowd counting case, there are

no classes, and as such the loss functions described in [7]
are unusable (and are unusable for regression problems in
general). Our work consists of designing objectives which
work for a regression target, and overcoming the obstacles
in achieving such an objective.

Wasserstein GANs have been shown to produce more
stable training in GANs [1, 3]. As demonstrated in these
works, Wasserstein GANs theoretically converge wherever
a standard GAN converges, and converge in many cases
where the standard GAN does not. We found this approach
to GANs essential in preventing mode collapse and avoiding
unconverging states during training of our network. In our
work, we train the GAN with the discriminator being trained
more frequently than the generator and apply a gradient
penalty to the discriminator, as is proposed in [1, 3].

In [4], a GAN is used in crowd counting. The GAN in
[4] is used to improve the accuracy of the crowd counting
prediction. The GAN in this work consists of a conditional
generator with an input of true images and an output of gen-
erated density maps. A discriminator network then attempts
to distinguish between the generated density maps and the
true density maps. Once this GAN is trained, the generator
is used to produce density maps of the test images, and these
results are used as the predicted density maps. That is, the
generator is used for inference in the testing phase. The
formulation of this GAN is significantly different from our
approach. Most notably, the GAN in [4] is not designed to
train with unlabeled data or to specifically reduce the amount
of data required. [4] expects the training images have the
corresponding labels which can be used for training the dis-
criminator. Our approach allows for the use of unlabeled
data to train, with the goal of requiring significantly less
labeled data. The difference in the goal of the GANs is also
reflected in the structure of the networks being completely
different. These differences include but are not limited to the
generator outputting a density label vs an image, the genera-
tor predicting the labels vs the discriminator predicting the
labels, and the generator using true images as input vs only
using random noise as input.

3. Methodology

3.1. Notation

Throughout this section, we will reuse notation frequently
and so we will initially define a few key elements. x refers
to the input random variable. In our case, a specific value
of this random variable would be an image. If the ground
truth label, y, is provided, this maybe denoted as the pair x,
y. x ∼ pdata denotes that x has a distribution over the real
data, and x ∼ G has a distribution over the fake (generated)
data. The G here is the shortened notation for G(N ) where
N is a spherical normal distribution. Specifically, this is the
generator function being applied to random normal noise. In



general, G represents the generator function and D is the
discriminator function. Both functions require input. For
example D(x) is the discriminator function applied to the
input x. However, as the input to the generator is always a
normal distribution, we usually omit its input in the notation
(i.e. G is the generator applied to the normal distribution).
pmodel denotes the probability distribution of the discrimina-
tor model. Particularly, pmodel(y | x) is the probability of
predicting label y for the given data x. Lastly, E denotes the
expected value of a term over a probability distribution.

3.2. Semi-supervised GANs for Classification

To begin, we present how semi-supervised GANs for
classification are defined. This provides a well understood
basis from which we can extend the model for the regression
regime.

In [7], semi-supervised learning is accomplished by hav-
ing a set of examples labeled among K real classes as well
as a set of examples which are unlabeled, but known to be
among the K classes. A K + 1th class which is made to
represent a "fake" class is also used. In this GAN, the dis-
criminator is optimized to give labeled examples probability
distributions favoring their true class, to give unlabeled im-
ages probability distributions that favor any of the first K
classes, and to give generated image distributions that favor
the K + 1th class. Conversely, the generator is optimized to
have the generated images given distributions favoring the
first K classes. In this way, real unlabeled images can be
used to train the discriminator and allows for less labeled
data. Formally, [7] describes the discriminator loss as

LD = Lsupervised + Lunsupervised (1)

Lsupervised =

− Ex,y∼pdata(x,y)log[pmodel(y | x, y < K + 1)]
(2)

Lunsupervised =

− Ex∼pdata(x)log[1− pmodel(y = K + 1 | x)]
− Ex∼Glog[pmodel(y = K + 1 | x)].

(3)

To understand what is happening in this semi-supervised
learning more intuitively, we can imagine a case of an ideal
discriminator and generator. The generator would eventually
learn to produce data which exactly matches the true data
distribution. That is, the likelihood the generator generates
any specific image is the same as the likelihood that the im-
age exists in true data. For this to happen, the discriminator
must have forced the generator to learn this, meaning the
discriminator too knows exactly the data distribution. This
is how using a generator may make the discriminator more
accurate.

While we use the high level concepts of this approach in
our own work, the objectives as outlined here are inapplica-
ble in the case of regression targets. There can be noN+1th

class (as there are no classes) meaning the loss functions
need to be completely reformulated. Our method works to
overcome this issue.

3.3. Discriminator

A label in our data is a crowd density map (an array of real
numbers). Thus, instead of a cross entropy typically used in
classification problems, we define our supervised loss using
an L1,1 loss (equivalent to L1 if the matrix is flattened) over
the elements of the true density labels compared with the
predicted ones,

Lsupervised = Ex,y∼pdata(x,y) ‖y −D(x)‖1 . (4)

Note that our supervised loss function omits a logarithm,
as we are using a Wasserstein GAN [1]. GANs have been
shown converge more consistently using a loss function
based on an Earth Mover’s distance (or Wasserstein distance)
even among classification problems [1]. Our network also
uses a discriminator training gradient penalty of Wasserstein
GANs as opposed to the weight clipping proposed by [1], as
weight clipping was shown to result in a GAN which pro-
duces pathological behavior while gradient penalty results in
more consistent convergence over a wider range of network
architectures [3].

In the classification case, there were two terms to the
unsupervised loss. For clarity, in the following description of
our proposed approach we define these two terms separately
with

Lunsupervised = Lunlabeled + Lgenerated. (5)

This way we can define the intuition for the definition of
Lunlabeled and Lgenerated individually. For the case of loss
from the generated images, we wish to punish the discrimi-
nator for seeing any amount of people (any density), as the
generated images contain no true images of people. So here
our loss is given by

Lgenerated = Ex∼G ‖D(x)‖1 . (6)

With this, in a sense our equivalent of the K + 1th class is
zero density. Note however, that even real images contain
areas of pixels with zero density.

As we do not know the true label for the unlabeled, train-
ing the discriminator toward an exact value can be detrimen-
tal toward the overall accuracy. For example, consider a
case where we assume, based on the labeled images from
the camera, that the unlabeled image has a label ŷ, but the
true (unknown) label is y. If the discriminator predicts y and
our loss function has no leniency, the discriminator will be
trained to move away from the correct answer it predicted
towards ŷ. Instead, we use a loss function which allows for
a range of "correct" answers as we do not know which is
true. Specifically, we use a loss function for which a range



of input values produces zero loss. That is, if the difference
of the predicted from the true value is small enough, no loss
is produced. However, beyond a given difference threshold,
loss is non-zero. Specifically, our unlabeled loss is

Lunlabeled = Ex∼pdata(x)

[
max

(
1

α

∑
ye −

∑
D(x), 0

)
+

max
(∑

D(x)− α
∑

ye, 0
) ] (7)

where α is an experimentally chosen hyperparameter (see
Section 4) and is greater than 1. ye is average labeling of
known count labels for the labeled images being used for
training (in implementation, these are the images for a given
step of training). Note here that the values are summed
before differences are computed. This is because there is
no information on the locations of the person densities in
unlabeled images and only the approximate count is useful
(i.e. comparing density maps would not be).

3.4. Generator

The generator is trained on a modified version of the fea-
ture matching loss described by [7]. Once again, the main
difference in our generator as compared to [7] comes from
training in the case of regression targets, and more specifi-
cally, our crowd counting case. In this case, we want the gen-
erator’s goal to be able to produce highly crowded examples
(as interpreted by the discriminator). Here we use feature
matching as the generator goal as described by [7]. Nor-
mally, feature matching is simply used to match the features
that arise in the discriminator from the real images. Instead,
we want features which result in the highest predictions for
density and count to be the goal of the generator’s matching.
That is, we don’t want the generator to match the features
for floors or walls, but instead to match the features in areas
the discriminator sees as containing crowds of individuals.
If this were not the case, the discriminator and generator
could simply "agree" to have the generator produce realistic,
uncrowded images, as it could meet both networks’ goals.
To force the generator to work toward features that represent
crowded portions of the images, each feature vector on the
intermediate layer is weighted based on the predicted output
value of that vector by the discriminator. In this way, the
generator tries to produce images whose feature vectors in
the discriminator match the feature vectors in the real data
that have the largest count and density predictions. With
f(x) denoting the activations on the final layer before the
output layer and z being noise to input into the generator,
the generator loss is given by

LG =

∥∥∥∥Ex∼pdata

[
D(x)� f(x)∑

D(x)

]
− Ez∼pzf(G(z))

∥∥∥∥
1
(8)

The second term of this loss function is simply getting the
expected values for the activations of an intermediate layer
of the discriminator for fake images. That is, the mean
features of fake data. The first term does something similar
for real data. The only difference is that the real features
are weighted by how much crowd density they correspond
to. Thus, the generator tries to produce images that have
features similar to more crowded images.

3.5. Dual Optimization Goal

One additional complication comes from training a net-
work with a second optimization goal. As shown by [9],
better crowd counting results can be achieved by training a
network to produce both a density map and a separate total
count value. The last layer of our network is actually two lay-
ers in parallel, one for density and one for count. The density
layer is trained to produce a density map which matches the
true values of the label. The count layer is trained to produce
values which, when summed, match the true summed value
of the label. Because of this, we actually have two losses for
both discriminator and generator. Luckily, other than which
output of the discriminator is used, all the losses are identical
in both cases except the labeled loss of the discriminator for
the case of the count. That loss is given by

Lsupervised = Ex,y∼pdata(x,y)

[∑
y −

∑
D(x)

]
. (9)

Note that the only difference is that rather than the norm
distance between the arrays, the loss is the difference of the
sum of the arrays. We use the same network for our CNN as
[9].

4. Implementation
In this work we use the Shanghai Jiao Tong University

WorldExpo’10 crowd counting dataset [9]. The process of
selecting cameras for use in training is done entirely ran-
domly, and this random selection process was not repeated
based on trial results. The number of cameras and images
used for each experiment is given in Section 5.

The original dataset consists of images, head positions, a
region of interest within which head positions were labeled,
and average person height at any given point within the
image. Using this, we created a crowd density map for
each image. This was done by creating two 2D gaussian
distributions which approximately fit the shape of a human,
with one gaussian covering the head and the other covering
the body. This gaussian was sized according the average
person height for each head position. The sum of the values
of the two gaussians is equal to 1. This way, the sum of
the entire density map label is equivalent to the number of
individuals within that image. An example of the images in
the dataset as well as the corresponding labels can be seen
in Figure 1.



Figure 1. Examples of the data images and corresponding density
labels.

Figure 2. The structure of the GAN as a whole. In the case where
the GAN is not being used, only the CNN and labeled data is
present.

The overall structure of the generative adversarial network
as a whole can be seen in Figure 2.

During these experiments, we used a generator with a
normal noise input vector containing 100 values. This is
passed through 3 transposed convolutional layers with out-
put channels 64, 32, and 32 and kernel size 18, 4, and 4.
Additionally a stride of 2 is used on the second and third
transposed convolutional layers. Note, first transpose convo-
lutional layer happens on the noise vector, which has only 1

Figure 3. The structure of both the generator (left) and the discrimi-
nator (right).

spatial dimension, and is then equivalent to a fully connected
layer with the output layer being reshaped to 64x18x18. All
layers use a leaky ReLU activation except the final layer
which uses a TanH activation to push the values into the -1 to
1 range which is what the image pixel values are normalized
to.

The discriminator is equivalent to the CNN used by [9].
First there are 3 convolutional layers with output channels
32, 32, and 64 and with kernel size 7, 7, and 5. Between
the convolutional layers are max pooling layers with kernel
size 2. After, there are 2 fully connected layers with output
channels 1000 and 400. The final two layers happen in
parallel working on the 400 channel output layer. One has
324 output channels and the other has a single output channel.
The first corresponds to a density map and is reshaped to an
18x18 patch. The other is a value which estimates the total
count output in the entire image patch. Each layer uses a
leaky ReLU as the activation function.

The generator and discriminator networks are visualized
in Figure 3.

The original image dimensions are 720x576. Each image
used in training is a randomly selected patch of the original
image. A patch is approximately 3x3 meters in the real world.
This size is determined by the perspective map provided in
the original database. Then this image patch is resized to
72x72 pixels when input into the network. During testing,
patches from each full test image are taken with approxi-
mately 50% overlap between patches. The resulting crowd
densities are averaged where patches overlap to produce a
final predicted count.

An Adam optimizer is used for training. The images
were augmented by random horizontal flipping. In the fash-



ion of the Wasserstein GAN, we allow the discriminator to
train to convergence between steps of training the genera-
tor (the value of this demonstrated and explained [1]). We
additionally apply a gradient penalty to the discriminator
during GAN training (the value of this is demonstrated and
explained in [3]). The α defined in the unlabeled loss from
methodology was set to 2 during our experiments.

When training the GAN, each step of training uses the
labeled, unlabeled, and fake (generated) images. For each, a
equal batch size of images is used on each training step for
each type of data (i.e. N labeled, N unlabeled, and N fake).
Both the labeled and unlabeled datasets are finite. When all
the images of one of these two datasets have been cycled
through, it repeats, though with a new shuffling of the data.
The fake images are newly generated on each step, as the
generator is changing during training.

All code, including data preprocessing and hyperparame-
ters, can be found at (repository link will be provided upon
paper acceptance).

5. Experiments

5.1. Evaluation Protocol

The Shanghai Jiao Tong University WorldExpo’10 crowd
counting dataset is used for our experiments. The dataset
includes images and videos from 109 cameras, and consists
of a training dataset and a testing dataset. We used the
WorldExpo’10 training data, and from it generated a set of
training datasets, and a single validation dataset, and a single
testing dataset (in addition to the original WorldExpo’10
testing dataset). Our training datasets (as a group), validation
dataset, and each testing dataset are entirely disjoint from one
another, in particular disjoint in their use of cameras/scenes.
CNN and GAN models are trained using a varying number
of cameras (1, 3, 5, 10 and 20) and varying number of images
(1, 3, 5, 10 and 20) per camera in order to systematically
compare the performance of the two models; details of the
selections will be provided in Section 5.2. However, the
same testing datasets and validation dataset are used for all
the trained models.

One testing dataset is simply the WorldExpo’10 testing
dataset, and it consists of 600 images from 5 cameras. We
want to note that no images from cameras in the testing
dataset are included in the training dataset and vice versa.
That is, training and testing is preformed across scenes. The
datasets are disjoint in camera source selection. Each camera
from this test dataset has 120 images. This dataset contains
2 of the most crowded scenes (in the entire WorldExpo’10
database), 2 of the least crowded scenes (and 1 additional
scene). While this provides a good challenging case to test
on, it is not very representative of the training data. As such,
we prepared the additional testing dataset. This provides
better insight into how accurate the methods will be when

testing on data whose statistics more closely match the train-
ing data statistics (i.e. this dataset is specifically chosen
randomly from the same data generating distribution, rather
than hand chosen to be a challenging case). The second
testing dataset is from a subset of the WorldExpo’10 training
dataset. This testing dataset consists of 370 images from 10
cameras. These cameras were randomly chosen from among
the full dataset before any models were trained. No images
from cameras in the validation dataset are included in the
training dataset and vice versa. Again, the two datasets are
disjoint camera source selection as well.We note that in gen-
eral results are better on our randomly chosen testing dataset
then on the original testing dataset. Finally, the validation
dataset consists of a different 307 images from 10 cameras,
and was only used to try different models and examine how
well they generalize without comparing against the final
testing datasets.

In each of the following experiments, we train both a
CNN model and a GAN model on the same set of labeled
data (for each of the camera-image number combinations).
The GAN additionally uses the unlabeled images from the
cameras in the trial’s training dataset (the CNN has no way
to profitably use this data). Each resulting model is used to
predict the person count of each image in both test datasets.
The accuracies between the two methods are compared. In
every case, the GAN uses as its discriminator a network
identical to the CNN. As we compare the two methods using
a varying number of cameras and varying number of images
per camera, this gives both an understanding of the amount
of total image data required by each network as well as the
distinct scene information (number of cameras) required by
each network.

The unlabeled data from the GAN model consists of video
from which the labeled image data was taken for training.
The GAN allows for any number of these frames to be used
with no additional labeling (which is the primary advantage
of the GAN). As such, in these experiments, we used all
(unlabeled) video data for any camera within the training set
(that is, the number of cameras the GAN has access to is still
limited). Though the video lengths vary, on average there is
approximately 2 minutes of video for each camera with 50
FPS. It should be noted that as this is video data, many of
the frames are near identical to others.

5.2. Semi-Supervised Results

We demonstrate the ability of a GAN to train an inference
network using less labeled data than would be required to
achieve the same level of accuracy by an identical inference
network outside a GAN. The process of selecting cameras is
done entirely randomly, and this random selection process
was not repeated based on trial results. For each set of
experiments, the cameras and images chosen are consistent
between experiments. That is, when 10 cameras are used,



the first 5 of these cameras are the ones used in the 5 camera
trial. The same is true for the images used. Specifically, in
the table, the training dataset used for any trial is a subset of
the training dataset for the trial to the right and below it on
the table. Although cameras were chosen randomly, to allow
for reproducibility, the list of cameras and images used is
provided in the appendix (supplementary material). In the
GAN cases, the unlabeled image data which is used is only
from the cameras which are in the labeled set for that trial
(i.e. no cameras are included which are not included in that
training set). In all the training cases listed, the networks are
trained for 7000 epochs.

We tested the trained models using a varying number of
cameras with a varying number of images. For each case,
training using the CNN (discriminator) alone and training
with the GAN is compared. These results can be seen in
Tables 1 and 2. For each experiment, the number of cameras
is given along with the number of images used per camera.
The data is explicitly limited so that we can experiment on
how much data is needed to train the system to different
levels of accuracy, and to compare how much data is needed
with the generator to how much is needed without it. The
numbers of images and cameras used are referring to the
training dataset only. In all trials the entirety of both testing
datasets are used. Table 1 shows the results on the randomly
chosen test dataset and Table 2 are the results on the original
WorldExpo’10 test dataset. Again, there is no overlap of
cameras between the test datasets and the training datasets
(or between the two test datasets).

When trained using the entire database of available data,
the CNN and GAN reach an accuracy of 11.1 and 14.2 for the
random test dataset, and 19.7 and 23.9 for the original test
dataset. Training using the entire dataset, the CNN performs
better. The CNN outperforming the GAN in this case is
likely due to the GAN introducing a bias and the labeled
data samples for training CNN is already sufficient.

5.3. Analysis

We have made the following interesting observations.
(1) When data is limited, training using the semi-

supervised GAN usually allows the network to train to higher
accuracies than the CNN with the same, limited amount of
labeled data. This is true on both the random test dataset and
the original test dataset, even though the errors on the ran-
dom test dataset are much lower than on the testing dataset
(again, due to the random test dataset more closely matching
the training dataset distribution).

(2) The effectiveness of the GAN is most pronounced
when the labeled data is most limited. This makes sense as
what the semi-supervised GAN does is to provide a form of
regularization that is based on real, but unlabeled data. It
discourages the discriminator from overfitting the data as
it’s method needs to have reasonable results on the much

larger unlabeled dataset as well. This suggests that much
more powerful networks could be used while mitigating the
likelihood of overfitting. When we reach approximately
50-60 total images, the CNN begins to occasionally outper-
form the GAN. As noted, when training using the entire
dataset, the CNN performs better. The CNN outperforming
the GAN in these cases is likely due to the GAN introducing
a bias. Specifically, the expected value of the unlabeled data
is greater than zero. As this introduces a bias in the training,
taken to the extreme of unlimited data, the bias will create
error. The stronger the bias introduced, the lower amounts
of data that the unbiased network will begin to outperform
the biased network. Though speculative, we believe a loss
function which removes this bias would remove the advan-
tage of the CNN while keeping the advantage of the GAN.
This might be done using feature matching of a feature layer
instead of count matching on the unlabeled data, but this is
left for future work.

(3) In general, the increase in number of cameras reduces
the error in both CNN and GAN cases. With the same num-
ber of total training images, the error tends to be lower with
more cameras. This is due to additional scenes, lighting
conditions, etc being included in these cases to be general-
ized to the testing cameras which are not seen in training.
Additional images usually only give additional configura-
tions of individuals in the images. This also suggests that
using unlabeled data from unseen cameras in the GAN may
provide the GAN a significant increase in advantage, but this
is left for future work.

(4) The estimation errors on both testing datasets mostly
exhibit consistent trends with regards to the numbers of
cameras and images, and for both CNN and GAN. However
we have noticed a few outliers on both the testing datasets:
For example, in both testing data, the errors of both GAN
and CNN trained on 5 cameras x 5 images is significantly
higher than would be expected given trend of surrounding
data points. In both datasets, the GAN does very poorly
with only a single image from a single camera. At the same
time, the CNN does poorly with several images from a single
camera. Particularly when dealing with only a single camera,
the exact images in question and luck during training may
play a significant role.

6. Conclusions
In this work, we’ve used GANs to train crowd counting

with less data than is required to train an equivalent inference
network. We’ve demonstrated a case of how to allow GAN
based semi-supervised learning to be usable in a multiple tar-
get regression problem. We’ve used a presented a weighted
feature matching approach and provided a lenient unlabeled
loss goal. We have given experimental results to show that
a GAN network outperforms an equivalent CNN using sig-
nificantly less data. Our ongoing work include the use of



Random Test Dataset Error

Number of
training cameras Number of training images per camera

1 3 5 10 20

1
CNN 93.2 116.8 131.5 25.2 32.0
GAN 134.0 70.1 37.5 32.4 19.9

3
CNN 46.8 29.1 17.4 25.0 21.7
GAN 26.1 28.0 28.8 22.4 19.9

5
CNN 31.3 29.2 48.9 13.5
GAN 22.2 24.4 27.9 18.2

10
CNN 31.0 17.8 17.4
GAN 29.4 24.3 17.5

20
CNN 26.1 25.8
GAN 22.7 24.1

Table 1. A table of the mean absolute error when the network is trained with varying amounts of data with or without the generator. For each
experiment, the number of cameras is given along with the number of images used per camera. Additionally, it is shown whether the GAN or
the plain CNN is used. The test dataset is the same for every case

Original WorldExpo’10 Test Dataset Errorr

Number of
training cameras Number of training images per camera

1 3 5 10 20

1
CNN 65.8 168.5 189.2 32.8 45.9
GAN 169.5 74.3 53.5 36.0 27.9

3
CNN 73.3 60.3 35.0 29.6 30.2
GAN 112.6 36.4 30.5 32.3 32.9

5
CNN 58.0 55.5 68.1 23.7
GAN 33.6 40.1 42.8 30.2

10
CNN 52.3 25.7 24.6
GAN 40.0 31.5 26.8

20
CNN 46.6 38.7
GAN 39.5 32.7

Table 2. A table of the mean absolute error when the network is trained with varying amounts of data with or without the generator. For each
experiment, the number of cameras is given along with the number of images used per camera. Additionally, it is shown whether the GAN or
the plain CNN is used. The test dataset is the same for every case

loss functions which do not include a bias (which leads to
the CNN outperforming the GAN on the full dataset), and
compare the performance of our GAN model with the state-
of-the art methods.

7. Acknowledgments

This research was performed under appointments to the
U.S. Department of Homeland Security (DHS) Science &
Technology Directorate Office of University Programs, ad-
ministered by the Oak Ridge Institute for Science and Edu-

cation (ORISE) through an interagency agreement between
the U.S. Department of Energy (DOE) and DHS. ORISE is
managed by ORAU under DOE contract number DE-AC05-
06OR23100 and DE-SC0014664. All opinions expressed in
this paper are the author’s and do not necessarily reflect the
policies and views of DHS, DOE, or ORAU/ORISE. This
work is also supported by the U.S. Computing resources were
supported by Azure for Research. National Science Foun-
dation through Award EFRI-1137172 and SCC-Planning-
1737533. Additional support by a CUNY-Bentley CRA.



References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

“Wasserstein gan”. In: arXiv preprint arXiv:1701.07875
(2017).

[2] Ian Goodfellow et al. “Generative adversarial nets”.
In: Advances in neural information processing systems.
2014, pp. 2672–2680.

[3] Ishaan Gulrajani et al. “Improved training of wasser-
stein gans”. In: arXiv preprint arXiv:1704.00028
(2017).

[4] Jiawen Li et al. “An end-to-end generative adversarial
network for crowd counting under complicated scenes”.
In: Broadband Multimedia Systems and Broadcast-
ing (BMSB), 2017 IEEE International Symposium on.
IEEE. 2017, pp. 1–4.

[5] Mark Marsden et al. “ResnetCrowd: A Residual Deep
Learning Architecture for Crowd Counting, Violent
Behaviour Detection and Crowd Density Level Classi-
fication”. In: arXiv preprint arXiv:1705.10698 (2017).

[6] Alec Radford, Luke Metz, and Soumith Chintala. “Un-
supervised representation learning with deep convo-
lutional generative adversarial networks”. In: arXiv
preprint arXiv:1511.06434 (2015).

[7] Tim Salimans et al. “Improved techniques for training
gans”. In: Advances in Neural Information Processing
Systems. 2016, pp. 2234–2242.

[8] Lingke Zeng et al. “Multi-scale Convolutional Neu-
ral Networks for Crowd Counting”. In: arXiv preprint
arXiv:1702.02359 (2017).

[9] Cong Zhang et al. “Cross-scene crowd counting via
deep convolutional neural networks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2015, pp. 833–841.


