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Abstract

Action Unit (AU) detection becomes essential for fa-
cial analysis. Many proposed approaches face challenges
in three aspects: the alignments of different face regions,
the training of a model for multiple AU labels, and the ef-
fective fusion of temporal information. To better address
these problems, we propose a deep learning framework for
AU detection with region of interest (ROI) adaptation, inte-
grated multi-label learning, and optimal LSTM-based tem-
poral fusing. First, ROI cropping nets (ROI Nets) are de-
signed to ensure that specifically interested regions of faces
are learned independently; each sub-region has a local con-
volutional neural network (CNN) - an ROI Net, whose con-
volutional filters will only be trained for that region. Sec-
ond, multi-label learning is employed to integrate the out-
puts of those individual ROI cropping nets, which learns
the inter-relationships of various AUs and acquires global
features across sub-regions for AU detection. Finally, the
optimal selection of multiple LSTM layers to form the best
LSTM Net is carried out to best fuse temporal features, in
order to make the AU prediction the most accurate. The pro-
posed approach is evaluated on two popular AU detection
datasets, BP4D and DISFA, outperforming the state of the
art significantly, with an average improvement of around
13% on BP4D and 25% on DISFA, respectively.

1. Introduction

Action Units (AUs) are the basic facial movements that
work as the building blocks in formulating multiple facial
expressions. The successful detection of AUs will greatly
facilitate the analysis of the complicated facial actions or
expressions. AU detection has been studied for decades
as one of the basic facial computing problems and many
interesting approaches have been proposed. Classical ap-
proaches in AU detection either focus on facial landmark-

based local features or appearance-based global features. A
number of deep learning approaches have also been pro-
posed to learn deeper facial representations that result in
better AU detection.

However, some essential problems are still not solved
completely. Due to different features for different facial
components, individual AUs may need to be considered
separately. One image may include multiple AUs, therefore
whether training single AU or multi-label AUs has to be an-
alyzed. Since all actions appear in a temporal instead of
just static mode, fusing temporal information becomes nec-
essary. So, to achieve the best AU detection performance,
all the three aspects need to be considered.

Since CNNs have proved to be a powerful tool in solv-
ing many image-based tasks and several novel deep struc-
tures and frameworks have been proposed, we choose these
deep learning models to tackle the AU detection problems.
Recently, region-based processing is used in the fast/faster
RCNN for prediction of object’s bounding box or objec-
tiveness probability in [9, 18]. This inspired us to design
separate networks to learn features for different regions of
interest on faces. The success in applying LSTM (long and
short term memory) in image caption generation [25] and
human action recognition [5, 17] led us to believe that it is a
good temporal information fusing kernel which may be also
useful for facial AU detection.

After identifying the three problems and being inspired
by these RCNN and LSTM approaches, we designed an
adaptive region cropping based multi-label learning deep
recurrent net. The structure of the proposed neural network
is shown in Figure 1. There are a number of unique fea-
tures of the proposed network. Unlike conventional CNNs
where the same convolutional filters are shared within the
same convolutional layers, we crop individual regions of
interest(ROIs) based on facial landmarks from all the fea-
ture maps. Each cropped region (as represented by red cir-
cle, yellow triangle, gray square and black diamond in the
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Figure 1. Framework of the proposed neural network with VGG Net, ROI Nets and LSTM Net

figure), represents an area of interest. So, these ROIs are
learned individually and therefore important areas will be
able to receive special attention. To fuse the temporal infor-
mation of expressions, the features from the final fully con-
nected layer are fed to several stacks of LSTM layers (two
in the figure for illustration purpose only). Then, the tem-
poral features are used to predict all AUs simultaneously.
Through this structure, our network can handle both the
adaptive region learning and the temporal fusing problems.

Comparing to existing approaches, our approach has the
following unique contributions:

1) A set of adaptive ROI cropping nets (ROI Nets) is
designed to learn regional features separately. In the pro-
posed network, each ROI has a local convolutional neural
network. The convolutional filters will only be trained for
corresponding regions.

2)Multi-label learning is employed to integrate the out-
puts of those individual ROI cropping nets, which learns the
inter-relationships of various AUs and acquires global fea-
tures across sub-regions for AU detection. Multi-label and
single AU based methods are compared. With additional
AU correlations and richer global features, the multi-label
learning approach shows slightly better performance.

3) An LSTM-based temporal fusion recurrent net
(LSTM Net) is proposed to fuse static CNN features, which
makes the AU predictions more accurate than with static
images only.

This paper is organized as the follows. In Section 1, we
have introduced the problems in AU detection and the ba-
sic idea of our proposed approach. In Section 2, we re-
view the related work on AU detection, including both tra-
ditional and deep learning approaches. We then explain our
proposed region learning based CNN network in Section 3.
Section 4 describes the way the temporal information of the
CNN features is fused with the LSTM layers. Experimen-
tal results are included in Section 5 where we evaluate our
proposed approach in terms of regions cropping, multi-label
learning and temporal fusion, and performance comparison
against baseline approaches are also given. We conclude the

paper in Section 6.

2. Related Work
AU detection has been studied for decades and vari-

ous approaches have been proposed for this problem. Fa-
cial key points (landmark points) play an important role in
AU detection. Two types of features were usually used in
landmark-based approaches. Landmark geometry features
were obtained by measuring the normalized facial landmark
distances and the angles of the Delaunay mask formed by
the landmark points. On the other hand, landmark texture
features were obtained by applying multiple orientation Ga-
bor filters to the original images. Many conventional ap-
proaches [6, 14, 26, 2, 4, 28, 16, 24] were designed by em-
ploying texture features near the facial key points. Valstar et
al [23] analyzed Gabor wavelet features near 20 facial land-
mark points. The features were then selected and classified
by Adaboost and SVM classifiers. Since landmark geome-
try has been found robust in many AU detection methods,
Fabian et al [1] proposed an approach for fusing the geom-
etry and local texture information. Zhao et al [29] proposed
the Joint Patch and Multi-label Learning (JPML) method
for AU detection. Similarly, landmark-based regions were
selected and SIFT features were used to represent the local
patch. Overall, the conventional approaches focused on de-
signing artificial features near facial areas of interest. The
appearance changes, representing the motion of the land-
mark points, give an indication of the facial action units.

In addition to facial AU detection, some researchers have
also focused on other related problems. Song et al [20] in-
vestigated the sparsity and co-occurrence of action units.
Wu et al [27] explored the joint of action unit detection and
facial landmark localization and showed that the constraints
can improve both AU and landmark detection. Girard et al
[8] analyzed the effect of different sizes of training datasets
on appearance and shape-based AU detection. Gehrig et al
[7] tried to estimate action unit intensities by employing lin-
ear partial least squares to regress intensities in AU related
regions.



Over the last few years, we have witnessed that CNNs
boost the performance in many computer vision tasks.
Compared to most conventional artificially designed fea-
tures, CNNs can learn and reveal deeper information from
training images. Deep learning has also been employed for
AU detection [15]. Two pieces of the most recent work on
the use of deep learning for AU detection are noteworthy.
Zhao et al [30] used a deep learning approach by divid-
ing aligned face images into 8x8 blocks. These 64 separate
areas are then learned separately. However, although this
approach worked well for each individual part of a face,
it highly relied on face alignment. Additionally, treating
all blocks equally may degrade the importance of some re-
gions. Chu et al [3] proposed a hybrid approach for com-
bining CNN and LSTM to learn a better representation of
an AU sequence. Due to the fusion of both spatial CNN
and temporal features, the AU detection performance in this
work has improved significantly compared to existing ap-
proaches. However, the proposed network is a conventional
CNN, which is unable to extract local features from specific
regions. Jaiswal et al [12] proposed a dynamic appearance
and shape based deep learning approach. A shallow region
and shape mask CNN is employed to learn the static fea-
ture while LSTM is used to extract a dynamic feature from
the trained CNN model. In our work, we have designed a
CNN which can not only focus on different facial regions
independently but also fused the temporal features using re-
current networks.

3. Region of Interest Learning: ROI Nets
CNNs have recently been the most popular tool for im-

age understanding. In a classic CNN structure, a convolu-
tional layer is composed of multiple filters and activation
functions. The convolutional filters cover the entire image
and generate corresponding feature maps. In this manner,
convolutional filters are shared by all the regions of the fea-
ture maps. This approach is effective in dealing with general
image feature detection, but for some tasks in which indi-
vidual local regions should be treated differently, sharing
the same set of filters for the entire image is not an effective
approach. As most traditional approaches tried to find lo-
cal SIFT or Gabor features near facial landmark points, we
would like to learn local CNN features in these regions of
interest (ROIs).

We use the BP4D dataset for AU detection which in-
cludes 12 AUs. The index, name and corresponding mus-
cles of each AU are illustrated in Table 1 for all the 12 AUs.
The corresponding 2D positions of these AUs are shown in
Figure 2. We first use a landmark detection algorithm [13]
to find the facial landmark points on a face (blue points in
Figure 2 right). We choose the AU centers based on the
positions of the related muscles (Figure 2 left), which are
adjusted from face to face using the detected facial land-

Table 1. Rules for defining AU centers

AU index Au Name Muscle name
1 Inner Brow Raiser Frontalis
2 Outer Brow Raiser Frontalis
4 Brow Lowerer Corrugator supercilii
6 Cheek Raiser Orbicularis oculi
7 Lid Tightener Orbicularis oculi

10 Upper Lip Raiser Levator labii superioris
12 Lip Corner Puller Zygomaticus major
14 Dimpler Buccinator
15 Lip Corner Depressor Triangularis
17 Chin Raiser Mentalis
23 Lip Tightener Orbicularis oris
24 Lip Pressor Orbicularis oris

mark points. Note that some landmark points are not in the
centers of facial action muscle regions but they are close to
them and can be used to locate the muscles. In the end, the
center of an AU is either at a landmark point or a certain
distance away from a landmark point, as shown with a pair
of blue-to-green point in the figure; we used 20 landmark
points in total.

Figure 2. ROI center selection based on muscles and landmarks

Knowing the landmark positions, we can then design the
neural network cropping layers to form the ROI Nets. We
use VGG [19] as the base for our ROI Net due to its simple
structure and excellent performance in object classification.
We also choose the 12th convolutional layer as the feature
map for cropping. We finally crop the face into 20 ROIs for
separate AU learning. In other words, the 20 green points
in Figure 2 are regarded as ROI AU centers.

The corresponding positions of AU centers in the feature
map can be found based on the ratio of the original image
size (224×224) and the feature map size (14×14). Based on
the 512×14×14 feature maps as well as the 20 AU centers,
we take a total of 20 sub-regions (centered at the selected
AU landmark centers), each of 512×3×3, as the input for
cropping layers to form the ROI-Nets, 20 in total. For each
individual region learning network, the input size of 3×3
might not be able to represent the region well: If the 3x3



feature map is directly connected to a 3×3 filter, it will be
turned into a single value, hence spatial information is lost.
So, upsampling layers are added to upscale these 3times3
feature maps to 6×6 before the convolutional layers. As a
result, applying the 3x3 filter to an upsampled 6×6 feature
map yields a 4×4 feature array (This upsampling actually
leads to a 1% improvement of the average F1 score). The
final adaptive region learning structure is shown in the mid-
dle part of Figure 1. After local learning with the ROI Nets,
we use a fully connected feature vector to represent the local
regional features. Then we can either pair the symmetrical
features for single AU detection or concatenate all the fully
connected features for multi-label AU detection. We will
conduct a further comparison on this selection in Section 5.

By designing the ROI Nets, we can train separate filters
for the AUs. This may make the feature learning adaptive
to different local facial properties. Comparison of the ROI
learning and conventional CNN learning will be performed
in the evaluation section (Section 5).

4. Temporal Fusing: LSTM Net
A facial action always has a temporal component when

using a video sequence as the input, hence knowing the pre-
vious states of a facial expression can definitely improve the
AU detection. However, one of the limitations of the CNN
structure is the lack memory of previous states. Regular
CNNs are only able to process a single image at a time. To
deal with a sequence of images, C3D [22], which is basi-
cally a 3D version of CNN, has been proposed. C3D can
deal with sequential images but the number of input images
is fixed. The training of a C3D is very time consuming too.
Another huge shortage of C3D is, compared to using regu-
lar CNN, the lack of existing pretrained models similar to
VGG [19], GoogleLeNet [21] and ResNet [11], which can
all provide very good initial parameters as a starting point
for training. The current best network for temporal fusion
is the Long Short Term Memory (LSTM) network [10]. As
a recurrent net, it can memorize the previous features and
states, which can help current feature learning and estima-
tion. It also has gate structures to make it suitable for long
time and short time temporal feature learning. LSTM has
also proved to be effective in action recognition [17].

Figure 3. Structure of a simple LSTM block.

The structure of an LSTM block is shown in Figure 3. In

the LSTM block, Ct−1 and Ct are the cell parameters at the
previous and the current times, the long and short memo-
ries are described by the cell state vector Ct. The cell states
store the memory parameters in LSTM. At each time step,
an LSTM kernel will take the previous output ht−1 and the
new input xt to generate the new output ht based on ker-
nel parameter Ct. Meanwhile, the cell state Ct gets updated
by dropping old information and getting new information.
A new input feature fed to a LSTM block will go through
three steps: Ct forgets; Ct updates; ht updates. First, the
LSTM has to decide what information to keep/forget from
the old cell state. This is based on the previous LSTM out-
put ht−1 and new input feature xt. The forget vector ft
follows equation 1:

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where Wf and bf are the forget gate parameters. The next
step is to update the cell state with new information for
future use. The new cell state Ct is determined by three
elements: previous partially saved cell state Ct−1, current
LSTM input xt and previous output ht−1. The last two vec-
tors need to go through an “input gate” and a tanh activa-
tion function. The updated cell state can be obtained using
equation 2:

Ct = ft ∗ Ct−1 + it ∗ Čt (2)

where it is the merged input of xt and ht−1 defined by

it = σ(Wi · [ht−1, xt] + bi) (3)

where Wi and bi are the input gate parameters. Čt in equa-
tion 2 is the candidate cell state for generating final cell state
and output, which can be regarded as a temporal cell state
parameter, following equation 4:

Čt = tanh(Wc · [ht−1, xt] + bc) (4)

where Wc and bc are the candidate gate parameters.
Finally, we generate the current output ht for the LSTM

based on the updated cell state Ct, the current input feature
xt and the previous output ht−1, which can be described by

ht = σ(Wo · [ht−1, xt] + bo) · tanh(Ct) (5)

where Wo and bo are the output gate parameters. Mean-
while, the output ht and the cell Ct are passed to next time
output generation.

LSTM can be easily connected to the CNN structure.
Fully connected layers of a CNN can be directly fed into the
input of LSTM blocks. To better represent the fully con-
nected features, multiple LSTM kernels can act as a layer
to represent temporal features. As shown in Figure 1, the
CNN model turns each image image into a feature 1-D vec-
tor. The first frame of an image sequence at time t1 is sent to



the LSTM layer at t1. The LSTM layer will produce output
feature h1 for the first frame, then at time t2, a new frame
is sent to the LSTM layer and the new output feature is pro-
duced based on x2 and h1, and so on so forth. Here we use
hi(i = 1...n) to represent the ith LSTM feature; in Figure
1 n = 24 (the number of frames in a temporal sequence).
In different tasks, either only the last LSTM feature hn or
the whole LSTM features {h1, h2, ...hn} are used for final
prediction. In our case, we believe that all the frames can
contribute to the AU detection. Therefore, we use all the
LSTM features; in our experiments, the number of frames
is 24.

LSTM can effectively fuse the temporal information in
a sequence. Similar to the convolutional layers, more than
one LSTM layers can be stacked to form an LSTM Net in
order to achieve a deeper understanding of the temporal re-
lationships. As shown in Figure 1, the LSTM Net has 2
LSTM layers stacked for AU detection. To see if LSTM is
useful in AU detection, we have conducted experiments to
compare LSTM-based temporal fusion versus static image
AU prediction. In order to find the best structure of LSTM,
we also compared different depth of LSTM layers in Sec-
tion 5 below.

5. Experimental Evaluation

5.1. Datasets and Metrics

Dataset. AU datasets are harder to obtain compared to
other tasks such as image classification. The reason is that
there are multiple AUs on one face which requires much
more manual labeling work. Here we give a brief review of
the AU datasets referred by and compared in this paper.

(1) DISFA: 26 human subjects are involved in the DISFA
dataset. The subjects are asked to watch videos while spon-
taneous facial expressions are obtained. The AUs are la-
beled with intensities from 0 to 5. We can obtain more than
100,000 AU-labeled images from the videos, but there are
much more inactive images than the active ones. The diver-
sity of people also makes it hard to train a robust model.

(2) BP4D: There are 23 female and 18 male young adults
involved in the BP4D dataset. Both 2D and 3D videos are
captured while the subjects show different facial expres-
sions. Each subject participates in 8 sessions of experi-
ments, so there are 328 videos captured in total. AUs are
labeled by watching the videos. The number of valid AU
frames in each video varies from several hundred to thou-
sands. There are around 140,000 images with AU labels
that we could use.

To train a deep learning model, we need a larger num-
ber of image samples, and the diversity of the samples is
also important. Following a common experimental setting
in the AU detection community, we choose BP4D to train
our model and conduct a 3-fold cross validation. We first

split the dataset into 3 folds based on subject IDs. Each time
two folds are used for training and the third fold for test-
ing. For the DISFA dataset, we use the trained model from
BP4D to directly extract the last fully connected layer fea-
ture with a length of 2048 to represent the images in DISFA.
We run the same cross-validation evaluation experiments as
the ones we performed with BP4D based on the extracted
features using BP4D.

Metrics. One part of our task is to detect if the AUs
are active or not, which is a multi-label binary classification
problem. For a binary classification task especially when
samples are not balanced, F1 score can better describe the
performance of the algorithm [24, 6]. In our evaluation,
we compute F1 scores for 12 AUs in BP4D and 8 AUs in
DISFA. F1 scores can be compared directly as an indica-
tor of the performance of different algorithms on each AU.
The overall performance of the algorithm is described by
the average F1 score.

5.2. Adaptive Learning vs. Conventional CNN

We proposed our ROI Nets for the adaptive region learn-
ing in Section 3. Compared to the conventional CNNs
which share the same set of convolutional filters for the
whole feature map, we hypothesize that by learning ROIs
separately, a better understanding of AUs can be achieved.
To validate this hypothesis, we train 2 neural networks on
the BP4D dataset: a fine-tuned VGG model - FVGG, and
the ROI Nets (on top of the basic VGG model). 12 AUs are
used together, so the loss function is based on the predicted
results for the 12 AUs. To prevent extreme loss explode
which will stop the training, we added offsets to the loss
function as

Loss = −Σ(l·log(
p+ 0.05

1.05
)+(1−l)·log(

1.05− p
1.05

)) (6)

where l is the label and p is the generated probability for an
AU.

The two models are both based on static images. During
each iteration, we randomly select 50 images as a batch to
compute the training loss. SGD is employed for back propa-
gation. The VGG net pretrained parameters are used for ini-
tializing the model, and the parameters of the first 8 convo-
lutional layers are not updated during training. This makes
the set of parameters smaller, which helps the training algo-
rithm converge. We use the proposed structure (VGG Net
+ ROI Nets) in Section 3 to train the adaptive region learn-
ing mode – which is still called ROI Nets. The new de-
signed regional convolutional filters are initialized follow-
ing a Gaussian distribution. For the conventional fine-tuned
VGG (FVGG) net, only the last prediction layer of the basic
VGG model is replaced with a fully-connected layer with
12 kernels. We use sigmoid activation functions for the 12



AU probability generators. The two deep models both start
with the same learning rate 0.001 which is decreased when
the loss is stable. Momentum for both models is set to 0.9.

The final models with both the ROI Nets and FVGG are
obtained after training the deep net 20,000 times. We then
compare the F1 scores for each AU. The results are shown
in Figure 4. We can see that region learning with ROI Nets
yields significant improvement over FVGG, on average by
12.4%.

Figure 4. Comparison of FVGG and ROI-Nets in AU detection on
BP4D

Figure 5. Comparison of single and multi-label learning on BP4D

Figure 6. Comparison of static image and temporal fusion in AU
detection on BP4D

5.3. Single vs. Multi-label AU Detection

In our proposed ROI Nets, the regions are determined
based on the positions where the AUs take place. Since each
AU has corresponding regions, we may use only the local

learned features to represent the AU for detection. This sin-
gle AU detection approach differs from the approach we use
for the adaptive region learning evaluation (Figure 1) where
we concatenate all the AUs features as one fused feature.
Our hypothesis is, by concatenating multiple AU features,
we may obtain valuable global information as a supplement
for individual AU detection or to provide more correlations.
However, it’s also possible that it brings some noise to the
“purity” of an AU feature. To validate our hypothesis, we
conduct an experiment to compare single AU detection and
multi-label AU detection. In multi-label AU detection, one
image is labeled with multiple AUs. In this case, we cannot
guarantee that we are able to provide the same number of
positive and negative samples for all AUs. But for single
AU detection, since the training for each AU is performed
separately, we can prepare the training data for each AU in
a way that the training data is always balanced during train-
ing. The AU detection results for single vs multiple AU
detection is shown in Figure 5.

By comparison, we can clearly see that even without
equal positive and negative sample distributions, the multi-
label AU detection slightly outperforms the single AU de-
tection approach in most AUs, on average by 1.3%. That
implies that the global information does have an impact on
the fusion learning. We have some more interesting findings
if we look into the different AU detection results. For the
under-represented AUs (where the AU shows up less fre-
quently in the dataset), such as AU2, AU15, AU23, the bal-
ancing of training samples (as in the single AU detection)
can boost the performance more significantly. Whereas for
some highly related AUs such as AU6 and AU12, both for
happy, the multi-label learning has a higher chance to learn
this correlation and improve the AU detection for these two
AUs.

5.4. Temporal vs. Static

A facial action always has a temporal component, hence
knowing the previous state of a facial expression can defi-
nitely improve the AU detection. We proposed the LSTM
layers for fusing the temporal information with static image
features; 512 LSTM kernels are employed to construct each
LSTM layer. From our previous evaluations, the best per-
formance was obtained for static images with the ROI Nets.
In this experiment, we use the ROI model as a baseline to
compare with region cropping recurrent temporal model.

The number of frames fed to the LSTM layers is set to
24 as we follow the settings in most LSTM based action
recognition approaches (usually 15-30). More frames may
produce better results, but this requires more computing re-
sources. In terms of selecting the 24 frames, We actually
have tried using the preceding 23 frames (plus the current
frame), but it turned out that the final results were similar to
just using one target frame probably due to the very close



Table 2. F1 score on BP4D dataset (ROI: ROI Nets; R-Ti: ROI Nets + i-layer LSTM Net )

AU LSVM JPML[29] DRML[30] CPM[28] CNN+LSTM[3] FVGG ROI R-T1 R-T2 FERA[12]
1 23.2 32.6 36.4 43.4 31.4 27.8 36.2 47.1 45.8 28
2 22.8 25.6 41.8 40.7 31.1 27.6 31.6 56.2 48.0 28
4 23.1 37.4 43.0 43.4 71.4 18.3 43.4 52.4 45.9 34
6 27.2 42.3 55.0 59.2 63.3 69.7 77.1 78.5 76.7 70
7 47.1 50.5 67.0 61.3 77.1 69.1 73.7 80.8 79.6 78

10 77.2 72.2 66.3 62.1 45.0 78.1 85.0 87.8 85.3 81
12 63.7 74.1 65.8 68.5 82.6 63.2 87.0 89.4 87.2 78
14 64.3 65.7 54.1 52.5 72.9 36.4 62.6 74.8 71.6 75
15 18.4 38.1 36.7 34.0 33.2 26.1 45.7 58.5 48.0 20
17 33.0 40.0 48.0 54.3 53.9 50.7 58.0 68.4 59.5 36
23 19.4 30.4 31.7 39.5 38.6 22.8 38.3 40.4 37.5 41
24 20.7 42.3 30.0 37.8 37.0 35.9 37.4 59.4 51.1 -

Avg 35.3 45.9 48.3 50.0 53.2 43.8 56.4 66.1 61.4 51.7

similarity of nearby frames (within 1 second). So our so-
lution here is to randomly obtain additional 23 frames tem-
porally before to the current frame. The random selection
of only 23 samples made them more representative for the
videos, more effective in computing and also can provide
a larger number of non-redundant training data for deep
learning. The LSTM Net is trained after the ROI Nets are
trained, which means that we first obtain the ROI model
and then the ROI based features are used to train the LSTM
model. We do this to make it easier for the model to con-
verge; jointly training the CNN & LSTM might be more
effective and this is an interesting future work.

To find the best LSTM structure, we tried 1 (in R-T1),
2 (in R-T2) and 3 (in R-T3) stacked LSTM layers for AU
detection, as demonstrated in Figure 1. The AU detection
results are shown in Figure 6. We can clearly observe the
improvement in AU detection due to applying the LSTM
layers. By comparison, R-T1 gives the best performance:
the average F1 score is also improved by 9.7% using R-T1
over ROI Nets. Another conclusion we can make here is
that with more LSTM layers, the performance decreases, as
the ROI features are sufficient to represent the AU images
and one LSTM layer is enough to reveal the temporal cor-
rections.

5.5. Comparison with Baselines

To compare our approaches with state of the art meth-
ods, we have collected the F1 measures of the most pop-
ular methods in same 3-fold settings based on BP4D (Ta-
ble 2). The approaches includes a traditional SVM-based
method, a 2-D landmark feature based approach, JPML
[29], the Confidence Preserving Machine (CPM) [28],
DRML – a block-based region learning static CNN [30],
and CNN+LSTM – a recurrent net fusing LSTM with sim-
ple CNN [3].

Table 3. F1 score on DISFA dataset
AU LSVM APL[30] DRML[30] FVGG ROI R-T1
1 10.8 11.4 17.3 32.5 41.5 42.6
2 10.0 12.0 17.7 24.3 26.4 27.2
4 21.8 30.1 37.4 61.0 66.4 65.5
6 15.7 12.4 29.0 34.2 50.7 55.5
9 11.5 10.1 10.7 1.67 8.5 22.8

12 70.4 65.9 37.7 72.1 89.3 82.9
25 12.0 21.4 38.5 87.3 88.9 88.3
26 22.1 26.9 20.1 7.1 15.6 25.9

Avg 21.8 23.8 26.7 40.2 48.5 51.3

For our proposed approaches, we first use the FVGG as
the baseline approach. Then, we show the results of adap-
tive ROI Nets based on static images. Finally, we test our
ROI Nets + our LSTM based recurrent approach with one
and two LSTM layers (RC+T1, RC+T2). All the results
can be seen in Table 2. On average, our best model R-T1
achieves a 12.9% improvement compared to the state of the
art approaches. Across the 12 AUs, our R-T1 model out-
performs the best in the literature except for AU4, where
CNN+LSTM performs the best.

We have also compared with the FERA 2015 BP4D-
based challenge winner approach (the last column in Table
2) [12]. Our approach shares the same setting with its base-
line using the same training and developing data whereas
the winner result was based on test dataset; but we hope
this could show the potential of our approach: it outper-
forms both its baseline (not shown here) and the winner’s
result with most of the AUs.

To further explore the capabilities of our proposed ap-
proach, we run the comparison on DISFA dataset as well.
Not as popular as BP4D, fewer state of the art approaches
have reported their results on DISFA. Based on our best
knowledge, there are less human subjects involved in



DISFA and the average AU occurrence rate is smaller than
that of BP4D, which is insufficient to gain good training re-
sults. Therefore we use the BP4D trained model (as in a
state of the art approach [30]) to extract features from all
the images in DISFA and conduct a 3-fold cross evaluation
with the extracted features. For static image evaluation, we
directly run a multi-label linear regression and for temporal
evaluation, we use the structure that shows the best perfor-
mance in the BP4D evaluation, that is, a one layer LSTM
to train the DISFA temporal model. The results are shown
in Table 3. As we can see, our R-T1 model leads to a 25%
improvement over the state of the art model.

5.6. Discussions

From the results in Tables 2 and 3, our proposed ap-
proaches have the best performance in both static and se-
quence image based AU detection. In the static images
based AU detection using deep learning, our ROI Nets
outperforms the state of the art deep learning approach,
DRML. Our proposed adaptive region cropping method
shares the same idea of learning different sets of convolu-
tional filters for different sub-regions, but our method has
the following advantages that make it different from the
state of the art:

1) Our sub-region selection is adaptive. DRML used a
straightforward image dividing strategy. Assuming the fa-
cial images are aligned, each image is equally divided into
8times8=64 sub-regions. This framework in easy to im-
plement, but we have to make sure that the face images are
actually aligned in the first place. In order to assure this
precondition, all the faces need to be transformed to a neu-
tral shape. This may cause information loss since the faces
of different individuals may have different shapes or sizes.
In addition, if the original faces are not in a frontal pose,
we may also lose some appearance features after changing
the pose. On the contrary, we select the regions of inter-
est adaptively. Our approach works based on the detected
landmarks and the positions of facial action muscles, which
are biologically meaningful. Also note that our approach is
robust to landmark position errors. This is because the fea-
ture maps in our network go through several pooling layers.
Imagine that the position detection error in the original im-
age of size 224×224 is 10 pixel. With the pooling layer
for cropping the feature map being of size 14×14, the error
turns to be less than 1 pixel. This significantly improves our
proposed adaptive region cropping net.

2) Our ROI Nets use learning transfer. A very deep pre-
trained network (VGG) is used as the base. DRML creates
a shallow convolutional network for the region based AU
detection. Instead of training everything from scratch, we
choose to borrow parameters from an existing very deep
CNN model. The main advantage of this approach is that
the pretrained model has been trained with millions of im-

ages. Although the tasks are different, the parameters are
transferable. With the pretrained model as the starting point
of our AU detection training, we can achieve a more pow-
erful model than by training a shallow neural network.

In sequential image based AU detection, Chu et al [22]
designed a network by combining both CNN and LSTM.
To obtain the spatiotemporal fusion features, the last layer
features of the CNN and LSTM nets are concatenated. Sim-
ilarly, Jaiswal et al [12] proposed using a CNN with a shal-
low region and shape mask to learn static CNN features
while LSTM is used to extract dynamic features from the
trained CNN model. Different from their uses of AlexNet
and a simple CNN for static image feature extraction, we
have proposed the adaptive region cropping convolutional
nets on top of a more sophisticated CNN model: VGG. We
have also used LSTM to fuse the temporal deep features as
well, but we have also compared different layers of LSTM
and observed that one layer LSTM shows the best perfor-
mance based on experiments.

6. Conclusion

In this paper, we have investigated three essential prob-
lems in AU detection: region adaption learning, temporal
fusion and single/multi-label AU learning. We have pro-
posed a novel approach to address these problems: We
first proposed the adaptive region of interest cropping nets,
which compared to conventional CNN, has been proven to
be able to learn separate filters for different regions and can
improve the accuracy of AU detection. We then analyzed
the proposed model by training it in a multi-label AU de-
tection manner and showed that the new model can outper-
form a single AU detection model. We finally explored the
LSTM-based temporal fusion approach, which boosted the
AU detection performance significantly, compared to static
image-based approaches. We also tried to find an optimal
structure of LSTM layers to connect with the proposed ROI
nets to achieve the best results for AU detection. The pro-
posed approach is evaluated on two popular AU detection
datasets: BP4D and DISFA, outperforming the state of the
art significantly, with an average improvement of around
13% and 25% on BP4D and DISFA respectively. Our future
work will be focused on building a dataset-independent AU
detection model and applying it to facial action detection in
real world applications.
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