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ABSTRACT  

In our previous studies, vehicle surfaces’ vibrations caused by operating engines measured by Laser Doppler Vibrometer 
(LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door 
sedans, pick-ups and buses, and different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel 
engines and 2-axle diesel engines. The results are achieved by employing methods based on a great array of machine 
learning classifiers such as AdaBoost, random forests, neural network and support vector machines. However, to achieve 
effective Intelligence, Surveillance and Reconnaissance (ISR) in utmost interest to military applications, signals directly 
picked up from vehicle surfaces are problematic: in a contested environment, enemies can intentionally change or 
conceal vehicle surfaces and thus compromising the vibration signals taken by the LDV thus counter-measuring the 
efficacy of the LDV’s remote sensing prowess. We hence need a more reliable approach to pick authentic vibrations of 
vehicle engines from a trustworthy surface, not the ones fully controlled by enemies. Toward this end, we propose to 
pre-plant a number of retro-reflective and well-vibrating small objects such as flat metal sheets/bars along the road, so 
that when the vehicles move close to these objects their engines will cause the objects’ surface to vibrate, which in turn 
will be picked up by the LDV. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are 
rigidly connected to the engines, these vibrations are much weaker in magnitudes. However, the fact that they are 
difficult to be contaminated by enemies makes it an exceedingly appealing approach. In this work we conducted a 
systematic study on different types of objects that could be pre-planted in the environment. We tested different types of 
engines ranging from shavers, electric fans, and coffee machines over different surfaces such as white board, cement 
wall, and steel cases to investigate the characteristics of the LDV signals on these surfaces, in both the time and spectral 
domains. Preliminary results in engine classification using several machine learning algorithms point to the right 
direction on the choice of type of object surfaces to be planted for LDV measurements. This method has great potential 
to be exploited in contested, uncooperative environment for a more effective ISR. 
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1. INTRODUCTION  
In Intelligence, Surveillance and Reconnaissance (ISR) applications that is of utmost importance for military 

institutions and law enforcements agencies, Laser Doppler Vibrometry (LDV) sensors have gained increasing popularity.  

The benefits provided by use of LDV sensors can be summarized below. 

1) Non-contact and non-invasive measurement: no mass or pressure is ever applied during LDV’s measurement 
process, hence the long-range sensing is achieved without even being noticed. The laser beams employed by 
most LDVs are mostly eye safe.  

2) High spatial and spectral resolution in a long range: the wide range of amplitudes and frequencies offered by 
LDV sensing data from a relatively long distance, to as far as 100 feet, confer researchers and developers 
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valuable information to work on in both spatial and frequency domains for intensive analysis, classification and 
clustering.  

Recent promising applications of LDV for explosive detection by Adams and colleagues [1], have been the cover-
page news of national news for its non-invasive nature and precision attained, which could revolutionize the homeland 
security and international security against crimes and terrorism. LDV’s applications go far more than this: it has been 
widely used in art museums to protect and detect possible cracks from valuable frescos [2], used by civil engineers for 
effective railway inspection and building structure inspections have been reported by engineering researchers across the 
world [3]. 

In this work being sponsored by NSF I/UCRC center for surveillance research, the main theme is to examine means 
to classify suspicious vehicles in a manner that is extremely hard, if not impossible, to counter-measure. Many previous 
efforts have been made to address the issues of classifying vehicles making use of LDV data with varying degrees of 
success. In [4] the auto-correlation function of LDV signals was employed as the workhorse to distinguish engine type, 
speed, and number of cylinders with impressive precision. Averbuch and colleagues developed a diffusion map based 
framework to detect moving vehicles based on wavelet packets within the dynamic programming framework [5]. In [6], 
a prototype automatic vehicle classification system was developed, where a grid of accelerometers are installed on 
roadways to characterize road vibrations and the number of axles is classified accordingly. The corresponding 
performance compared with the ground truth is exceedingly valuable at about 99%. Note here accelerometer data is used 
instead of LDV data in the classification. The relevance to our LDV sensory data based classification will be revealed 
later. In [7] the original Mel-frequency cepstral coefficients (MFCC) after a principal component analysis (PCA) 
dimension reduction was fed to a forward Neural network to classify different Arabic speakers. In [8], vehicle operating 
conditions were classified using 11 extracted features, including MFCC and others such as zero-crossings, dominant 
frequencies and Flux. In [9], engine classifications for parked vehicles of four different types of engines were achieved 
by our group, where some initial success has been evidence in the use of the new tone-pitch vibration index and neural 
network.  

One major hurdle blocking the effective utility of existing ISR approaches is the ease of counter-measure from the 
adversaries: if they know their vehicle surfaces are to be measured by the LDV sensors, they may put on some special 
materials (plastics boards) or treatments (thick paints) over their vehicle surfaces which can significantly compromise the 
signals measured by the laser points of the LDV. As one crucial objective of our on-going ISR researches using LDV 
sensors for reliable target detection, we endeavor to find means for classification without worrying about the counter-
measures by adversaries. One way to do it is to not directly measure the vehicle surfaces that are under full control of the 
adversaries, instead, the LDV sensors should only pick up signals from surfaces owned and pre-planted in the 
environment by the detectors with full knowledge of the surface physics and vibration phenomenology that may arise 
over the surface. However, it remain unknown what type of surfaces could be employed toward this end. In this paper, 
experiments and performances are reported and analyzed on the different choices of surfaces for engine classification 
purpose, which has a crucial role to play in our eventual choice of external objects to be put on the field for ISR utilities. 

In the next section, the representational index of LDV signals, the spectral tone-pitch vibration index, and the 
rationale behind it are described. The methodology for data collection and machine learning strategies employed in this 
study are presented in Sec. 3. Sec. 4 concludes this paper with more remarks. 

 

2. SPECTRAL TONE-PITCH VIBRATION INDEXING FOR LDV MEASUREMENTS 

Because of the immense success of speech recognition and music encoding [10], techniques such as MFCC and 
short-term Fourier transform, which have been found to be exceedingly useful in speech representations, were used to 
encode and index LDV signals in most state-of-the-art analysis approaches, such as those briefly reviewed in Sec. 1. 
However, to effectively exploit the LDV signals for ISR purposes, the literal use of speech coding and recognition 
methods are problematic since they are carefully tailored to take advantage of human auditory systems (HAS). In vehicle 
classification applications, HAS has no role to play, and the careful exploitations achieved by approaches such as MFCC 
is irrelevant. Instead, the vibration data collected by LDV sensors should be treated as a sequence of physical data or 
time series: the running vehicle engine is the periodic vibrating source propagating/dissipating its energy over the rigid 
surface of vehicles as vibrational waves, what a LDV sensor picks up is the vibrations or waves on the vehicle surfaces. 
Since the measurement point subtended by the LDV sensor is extremely small, in the order of merely micro meters, the 
surface where the LDV collects the vibrations can be treated mathematically as perfect 2-D planes or sheets, thus in our 
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following mathematical analysis, although the vehicle surfaces are 3-D surfaces, the geometry around the laser 
measurement points is in essence only of two dimension. The planar wave partial differential equation (PDE) is as below 
is thus the commanding equation of the nature of the function u(x,t): 

∆𝑢 = 𝑎  𝑢!!                                                                                                                                                                                (1) 

Where ∆ is the Laplacian operator, a is a certain constant related to the permeation speed of the surface vibrations on the 
vehicle surfaces. The default signals measured by LDV sensors are the velocities, i.e., ut, according to Eq. (1), to 
correlate the LDV measurements to the vibrations on the vehicle surfaces, the second time derivatives, 𝑢!!, the 
accelerometers, should be used as the proxy for the vibrations on the vehicle surfaces. 

To achieve desirable classification results, it is necessary to develop new features by taking account of the special 
nature of vehicle engines and their interplays with surfaces. After intensive exploratory data analysis of available vehicle 
engine data, the following special signatures are observed: 

 
1. Time unit: to encode the rich details of the operating conditions of vehicle engines with RPM ranging from 

several hundred up to several thousand, we observed that the RPM resolution with magnitude lower than 60 is 
hard to be noticed by LDV sensors, that is, the largest possible frequency resolution must be at least 1Hz (60 
RPM). Hence a duration with about 1 second must be subtended by the representation to attain adequate 
resolution of the frequency details of the vehicle engines. We found that a duration of 1.25 seconds provides the 
optimal performance. 

2. We don’t find the logarithmic transformation suppression used almost by default in most speech encoding work 
to be necessarily useful. Conversely, Fourier magnitudes (phase information is discarded in this work) in 
different bands have different roles, as discussed below. 
a) Very low AC bands (<5 Hz) are mostly caused by factors other than engines, e.g., wind and turn of driving 

wheel, which should thus be discarded.  
b) Very high AC bands (>120 Hz) are mostly due to random noise: in theory some vehicle may attain 7200 

RPM, but those signals are seriously compromised/corrupted by overwhelming noises with low signal to 
signal ratio due to variations in low AC bands. Fourier coefficients in these bands are thus also dropped. 

c) For relatively high AC bands (in-between 50-120 Hz): the signals are corrupted considerably by noises, yet 
generally the noises are of smaller magnitudes. Instead of using the original Fourier magnitudes, which 
over-stressed noises, after trying out suppressing transforms such as square root, cubic root, we found that 
the logarithmic transform over these relatively higher bands results in the most valuable performance in 
suppressing noises while keeping useful signals as much as possible. 

d) Some strong signals due to the fundamental frequencies/modes of the vehicle surfaces are standing 
frequencies, i.e., the peaking magnitudes present repeatedly all through the entire spectra with strong and 
compactly supported energy. Simply suppressing or even dropping these valuable signals in higher bands 
will lose valuable information about the vehicle engines and the surfaces. Consequently, in view of the 
compactness of energy and periodicity of these special phenomenology, a second Fourier transform applies 
to the magnitudes of the first Fourier transform, these compact and periodic signals corresponding to the 
fundamental frequencies of the vehicle surface are well preserved in the relatively lower bands of the 
double Fourier transformation domain. The objective of this second application of Fourier transform is 
similar to the efforts made in music encoding to capture the pitch information [11], this part of information 
saved in our vibration representation is thus called the pitch index. While those encoded in cases b) and c) 
are the ordinary spectral domain, which is the actual tone information.  
 

Based on the preceding exploratory studies, the following spectral tone-pitch vibration indexing scheme is 
formulated below. 

 
1) Basic representative unit is the vibration data d with duration s=1.25 second  
2) Apply Fourier transform to d and only keep the magnitudes:  

                                    Fd = |FFT(d)|                                                                          (2) 
3) High frequency detail suppression: 

           Fd(1 : Hhigh) = Fd(1 : Hhigh);   Fd(Hhigh+1 : end) = |log(Fd(Hhigh+1 : end))|                    (3) 
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4) Band passing step: 
                                    Sd = Fd(Hhigh : 2*Hhigh),                                                                (4) 

5) Apply another Fourier transform on Fd use the band-passed Pd to represent the pitch information of d: 
                                    Pd = |FFT(Fd)(Hlow : Hhigh) |                                                              (5) 

6) The vector [Sd, Pd] is the spectral-pitch vibration index of the time series d of duration s 
 
From our intensive tests, this spectral domain index carries sufficient information to classify different types of 

vehicle engines for all datasets in AFRL or CCNY available to us with increasingly challenging properties. We tried out 
more than ten different ready-made indexes such as MFCC and STFT, combined with different mature classifiers such as 
kNN (k-Nearest Neighbor), random forests, AdaBoost [12], however, none of them can deliver accuracies consistently 
higher than 60%. Almost all of them can only yield accuracies 30~40% in our moving vehicle dataset, which is not much 
better than the random guess 25%. Therefore in this work we only report classification results based on the preceding 
tone-pitch index as the representation of engine types. 

 
 
3. EXPERIMENTS AND CLASSIFICATION REPORTS 

3.1. The setup and dataset of experimental data for surfaces 
The main objective of this study is to determine the type of surfaces that can be used to pick up the vibrations of 

external engines. In CCNY parking lot, we have tried to use traffic cones, the cement base of lighting poles, the steel 
base of lighting poles, the stop signs, and surfaces of another car as the external surface to measure the vibrations of the 
target external vehicles, but in vain: the signals picked up 
from these various surfaces cannot generate signals 
strong enough to distinguish the different operating 
conditions of all vehicles we tested. A more careful 
choice of surfaces other than those available in the 
parking lot is thus needed. To resolve this issue, in this 
lab test, three different types of surfaces inside our lab 
are used: the surface of a white board, the cement wall, 
and the surface of a steel cabin. As shown in Fig. 1. For 
each type of surface, we ran three types of engines: a 
shaver, a coffee machine and an electric fan from 
different distances: 1 feet, 3 feet and 5 feet away from 
the measuring position. And for each surface and each 
engine, we focus the laser vibe on the reflective tapes 
(the small red squares in Fig. 1) and record the vibrations 
impacted on these surfaces by the three engines, each 
recording lasts for 5 seconds. We would like to see 
among these three surfaces by use of the preceding tone-
pitch indexes, which surface can distinguish the three 
engines using a classifier.  For each experimental layout we recorded for at least multiple times to ensure we have 
adequate number of data points (>500) to work on. To further test the possible ramifications for signals of different 
durations, the 5-second recordings are digitally partitioned (with possible overlapping) into segments with 3-second and 
2-second duration. 

 
3.2. Procedures of classification performance evaluations 
In our performance tests, as usual in machine learning [13], the dataset for the three engines and three different 

surfaces are partitioned into three separate sets for different purposes: the training data: to train the classifiers, cross-
validation (CV) set: the data different from the training data, used to tune the parameters for different classifier and find 
the one with optimal performance, and test set: the data not part of the training and CV data, used to provide the 
performance of each classifier selected from the CV procedure. In this work, the choices of these three datasets are 
entirely randomized: 20%, 30% and 50% of the data points collected as described in 3.1 are randomly selected using 

Figure 1. Three surfaces to pick up the external engine signals. 
Left: upper—white board; lower—cement wall. Right: a steel 
cabin. Red squares: reflective tapes for laser vibe signal 
measurements. 
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random partitioning of all the data. We ran this simulation five times, the average performances for all classifiers are 
reported. 

 
As described in Sec. 2, the duration of the basic unit of our vibration tone-pitch index is 1.25 seconds; however, 

each data recording segment d for all three afore-mentioned datasets is longer than that (2, 3 or 5 seconds). From the data 
d a large set of overlapping sequences of duration 1.25 seconds are first formulated. For a k-second (k=2,3,5 in our tests) 
measurement, from the ith  1.25-second segment si, if the next (i+1)st segment si+1 is formed by shifting the 1.25-second 
window by 0.25 second, in total d can give rise to several 1.25-second segment (depending on the value of k), whose 
tone-pitch indexes are generated as an array of positive data points corresponding to the engine type label the original 
data d subtended. As can be seen, this so-called framing procedure in the training phase can generate more training data 
points to render the attained classifier more reliable. Whereas in the CV and test phase, to determine the label of a given 
data d, we just need to first frame it into an array of 1.25-second overlapping data sequence si’s, the class label li  of each 
si is next dictated by the trained classifier. The final label of d is arrived at by casting the majority vote of all the 
associated li’s.  

To seek out the best classifier(s) for our task, thanks to the MATLAB’s various toolboxes such as statistics, image 
processing, computer vision, and neural network, we can easily call upon a wide array of different classifiers to produce 
evidential reports of our experimental datasets. There are more than ten different classifiers that are available, after 
intensive tests, the most competitive ones are used in this work to report the classification performances: they are 
Adaboost, kNN, random forest, LogitBoost, and Neural network. More mathematical and algorithmic details of these 
mature classifiers can be readily found in most machine learning textbooks, e.g., [13]. Except the neural network with 20 
neurons in the hidden layer, all other classifiers yield accuracies less than 60% in a consistent manner. Since we are only 
interested in finding the optimal surfaces as a proxy of external engines, we here only tabulate performances produced by 
the best classifier on this dataset, i.e., the neural network using tone-pitch index. 

 
The test accuracy rates over all three surfaces are summarized in Tab. I. 
 
Table 1. Summary accuracy rates for the three surfaces in classifying the three engines using tone-pitch 
index and neural network with 20-hidden neurons. 
  

Data  White board Cement wall Steel cabin 

Test1: 2-second 46 78 90 

Test 2: 3-second 51 78 98 

Test 3: 5-second 59 82 96 

 
From Table 1 it can be consistently observed that the surface of steel cabin gives rise to the best quality signal as a 

proxy for external engines due to the following two causes: 1) The surface is metal, similar to that of vehicles, hence the 
fundamental frequencies as handled by tone-pitch index differ not much from vehicle surfaces. 2) The steel cabin is 
firmly placed on the ground with no other sources of vibrations except the ones due to the close-by engines. Conversely, 
the reason why our tests of using a different car to pick up external engines does not work is mostly because of the tires 
that significantly dampens vibrations from external engines. Surfaces like white board and traffic cones are too sensitive 
to vibrations other than the targeted engines, where the signals of interest are too seriously compromised to be useful. 
The hard surfaces like cement wall, steel/cement bases of lighting poles are overly rigid making them less sensitive to 
external vibrations, in our lab tests, they are better than the white board. In the parking lot tests, they can only pick up 
very strong vehicle engine vibrations (>3000 RPM).  

 

4. CONCLUDING REMARKS 

In this work, after careful examinations of various state-of-the-art speech encoding and recognition techniques, we 
presented our new spectral tone-pitch vibration index as the content-based concise representation of engine vibrations. 
Unlike other successful indexing approaches such as MFCC by exploiting the human auditory systems, this new index 
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attain its efficacy by dealing with the spectra of engine’s vibrations and the modes of vehicle surfaces. Consequently it 
has yielded promising results on our LDV measurements for stationary vehicle test data. However, to conduct ISR in 
situations of great interest to military applications, LDV measurements that are hard to counter-measure are of utmost 
importance.  

In this work, instead of picking up laser measurements directly 
from the target vehicles, which can be easily changed by putting on 
extra plastic covers and special paints, which makes our ensuing 
classification and identification difficult, we set out to take laser 
measurements from surfaces  that are outside the adversary vehicles 
and are pre-planted in the environment and under our control. After 
trying out a great array of different surfaces, our preliminary tests 
suggested that the surface of steel cabin can serve as a reliable object 
planted in the field to pick up close-by engines for classification and 
identification purposed. 

Furthermore, it remains a hard problem to use LDV to directly 
measure vehicles moving at normal speed since the duration of the 
measurements are too short and it is difficult to maintain the high 
quality of the resultant recording—the LDV must be 1) focused in 
order to ensure the data quality at a fixed distance, and 2) the surface 
focused by the LDV should have great reflectivity, the reflective tapes—those red squares shown in Fig. 1—are 
necessary, otherwise lots of noise will be present rendering the recorded signals hard to use. As shown in Fig. 2, in order 
to record data from moving vehicles, a very long and wide reflective tape has to be put on the car body from the front to 
the back bumper to ensure the data collection quality. Plus, to make sure the data collected can be up to several seconds, 
the car has to move extremely slowly,  therefore the available moving vehicle data are still a long way from the scenarios 
of practical utility for military’s ISR interest. However, the adversaries’ vehicle certainly will not permit us to put these 
necessary tapes and give us a duration long enough for the tone-pitch index to represent. The use of external objects in 
the background with reliable surfaces have the potential to avoid the foregoing troubles: the object surface is not only 
under our full control that the adversary have no way or knowledge to compromise it; furthermore, this surface is not 
moving and we can freely put reflective tapes to ensure the data quality. In the imminent future we will conduct intensive 
tests along this line on real moving vehicles in real urban traffic to further inspect the performance of this line of attack. 
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