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ABSTRACT
In this paper, we describe our proposed approach for par-
ticipating in the Third Emotion Recognition in the Wild
Challenge (EmotiW 2015). We focus on the sub-challenge of
Audio-Video Based Emotion Recognition using the AFEW
dataset. The AFEW dataset consists of 7 emotion groups
corresponding to the 7 basic emotions. Each group includes
multiple videos from movie clips with people acting a cer-
tain emotion. In our approach, we extract LBP-TOP-based
video features, openEAR energy/spectral-based audio fea-
tures, and CNN (convolutional neural network) based deep
image features by fine-tuning a pre-trained model with extra
emotion images from the web. For each type of features, we
run an SVM grid search to find the best RBF kernel. Then
multi-kernel learning is employed to combine the RBF ker-
nels to accomplish the feature fusion and generate a fused
RBF kernel. Running multi-class SVM classification, we
achieve a 45.23% test accuracy on the AFEW dataset. We
then apply a decision optimization method to adjust the
label distribution closer to the ground truth, by setting off-
sets for some of the classifiers’ prediction confidence score.
By applying this modification, the test accuracy increases
to 50.46%, which is a significant improvement comparing to
the baseline accuracy 39.33% .

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Appli-
cations; I.5.4 [Pattern Recognition]: Applications

Keywords
Emotion recognition; multimodal features; deep learning;
multi kernel learning

1. INTRODUCTION
Emotion recognition, which aims to obtain the type of emo-
tion from captured data, which is either an image or a video
clip, has been an interesting research topic for decades. In
most existing works, emotions are classified into seven cat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICMI 2015, November 9–13, 2015, Seattle, WA, USA.
c© 2015 ACM. ISBN 978-1-4503-3912-4/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2818346.2830583

egories: Anger, Disgust, Fear, Happiness, Neutral, Sadness
and Surprise. In this paper, we will use the same seven basic
emotions. Several emotion datasets are available and many
approaches have been applied to these existing datasets [20,
26].The EmotiW challenges in the past few years also fol-
lowed the same categories of emotions. In the EmotiW 2015
challenge [8, 11], the AFEW5.0 is released by the organiz-
ers. The AFEW dataset contains short audio-video clips
labeled with the above seven categories in both training and
validation datasets. This challenge is a continuation of the
EmotiW 2013 and 2014 [9, 10] challenges and the task is
to assign an emotion label to the video clips from the un-
labeled test dataset that is also provided by the organizers.
Comparing to popular datasets, there are no restrictions on
the faces in the EmotiW videos. The unconstrained lighting
conditions, face poses and image qualities make the emotion
recognition much more challenging. As shown in Figure 1,
in some of the frames, detecting the face itself is also a chal-
lenge.

We propose a multi-feature fusion-based approach to tackle
the EmotiW 2015 challenge. The approaches for emotion
recognition on common datasets and the methods presented
during the previous challenges inspired us to use a combi-
nation of engineered and learned features. In our approach,
we first extract multimodal features from the images and
videos, which include LBP-TOP features from videos, gen-
erating audio features from openEAR and extracting two
CNN-based features from the fine-tuned model in two levels.
Then we build SVM kernels using grid search and fuse the
kernels by using Multi-Kernel Learning (MKL). We apply
multi-class SVM classification to compute the fused kernel,
then optimize the multi-class decision rules to obtain the
final result.

The four main ideas proposed in our work are as follows.
(1) Hybrid features - two engineered features and two deep-
learning features. The two engineered features include LBP-
TOP features [29] and openEAR-based audio features [12].
The feature selection rules are defined artificially. We fur-
ther use CNN-based deep learning to extract learned fea-
tures from image frames. (2) Multimodal features - video
(spatial-temporal), audio (temporal), and image (spatial)
deep features. We extract our features from multiple as-
pects. Since a video contains both temporal and spatial
information, we try to take advantage of both. The LBP-
TOP features take both individual and consequitive frames
into consideration, obtaining both temporal and spatial in-



Figure 1: Examples of challenging data.

formation. The audio conveys temporal information in a
different modality, and the CNN features contain rich spa-
tial information from the image. (3) The fine-tuning of the
pre-trained deep learning model for extracting the two-level
deep features. We propose using fine-tuning approach to
solve the problem of insufficient images for training a deep
CNN structure [13]. We apply our emotion data to train a
pertained model for ImageNet [7] and obtain a fine-tuned
structure. The fine-tuned model help us extract freatures
from two levels of the CNN structure. (4) Multi-class SVM
decision optimization to increase the overall emotion classi-
fication accuracy. We use multi-class SVM and also dig into
the multi-class decision rules and figure out a decision score
adjusting method to increase the overall accuracy.

The rest of the paper is organized as follows. In the next sec-
tion, we review some of the most influential methods of emo-
tion detection which are related to our proposed approach.
Section 3 introduces the details of our method. The exper-
iments and the results are explained in Section 4. Finally,
the conclusions of our approach are presented in Section 5.

2. RELATED WORK
Most existing facial emotion recognition approaches have fo-
cused on recognizing emotions of frontal faces, such as the
images in CK+ [20]. Shan, et al [22], proposed a LBP-based
feature extractor combined with an SVM for classification.
In the method proposed by Xiao, et al [28], comparing to
training one model for all emotions, a separate model is
trained for each emotion, which improves the performance.
Wang, et al [27] modeled facial emotion as a complex ac-
tivity that consists of temporally overlapping sequence of
face events. Then, an Interval Temporal Bayesian Network
(ITBN) was used to capture the complex temporal informa-
tion. Zhao, et al [29] proposed LBP-TOP features to capture
the dynamics of the video by transforming the video frames
to an x-y-t cube and extracting LBP features from the x-
t and y-t planes. The results on the CK+ dataset showed
that these features are effective in recognizing emotions in
videos.

During recent years, the vision community has been exposed
to the wide spread of Deep Learning [25, 24]. Deep learn-
ing approaches are also used in emotion detection in many
applications. Liu, et al [19] proposed a Boosted Deep Be-
lief Network to perform feature learning, feature selection
and classifier construction for emotion recognition. Differ-
ent DBN models for unsupervised feature learning in audio-
visual emotion recognition have been compared in the work
done by Kim, et al [15]. Li, et al [17] used CNNs on images
collected from the web. To prove the effectiveness of CNNs,
they compared their performance on CK+ to the state of
the art methods.

Many interesting approaches have been proposed in the EmotiW
challenge. Karan, et al [23] extracted multiple channels of
features such as Bag of Word (BoW), Histogram of Oriented
Gradient (HOG), GIST, etc. To make all these features
contribute to the final prediction, Multi-Kernel Learning
(MKL) [2] was employed. The results showed that this fea-
ture fusion method improves the accuracy. A similar method
is proposed by Chen, et al [6]. Liu, et al [18] also suggested
a feature fusion approach for the challenge, which used Rie-
mannian manifold to model the video features. Kahou, et
al [14] trained a CNN-based on images obtained from the
web and then used the class probabilities as deep features.
DBNs were used to get valuable features from the audio
channel. Afterwards, a random search algorithm [4] was ap-
plied, which achieved promising recognition rates.

3. THE PROPOSED APPROACH
The pipeline of our proposed approach includes 4 major
parts: the hybrid multimodal features, the fine-tuning of
a pre-trained CNN model for extracting deep image fea-
tures, the multi-kernel learning for feature fusion, and the
SVM-based multi-class emotion recognition structure with
decision optimization. We will describe each part in the
following subsections.

3.1 Hybrid multimodal features
The multimodal features that we utilize include the follow-
ing three types: LBP-TOP-based video features, openEAR
energy/spectral-based audio features, and CNN-based deep
image features. The video and audio features convey spatial
and temporal information. The learned Deep features focus
more on emotion representation in (spatial) images. Our hy-
pothesis is that the combination of both engineered (video
and audio features) and learned features (CNNs features )
can make the approach more robust.

3.1.1 LBP-TOP video features
Local Binary Pattern (LBP) has been effectively used in
many computer vision applications. LBP can be used to
describe image appearance by comparing local nearby pixels
and generated patterns. A video can be described as a set
of consecutive frames. Extracting LBP features from each
frame and concatenating the features for the entire video
results in lots of redundant information and the temporal
characteristics of the video are also lost. Zhao, et al [29]
proposed the LBP-TOP (LBP of Three Orthogonal Planes)
features. Instead of extracting LBP features from the video
frame by frame, we regard the video as a cube with x-y-t
coordinates, where the x-y plane represent the spatial image



plane and the t axis corresponds to the time. The time
axis contains rich temporal information. We extract LBP
features on all three planes: x-y, x-t and y-t.

3.1.2 OpenEAR audio features
The speed or strength of the voice during speech can be use-
ful indicators of different emotions. Emotions can be con-
veyed by voice through changes in pitch, loudness, timbre,
speech rate, and pauses which is different from linguistic and
semantic information. Study shows that anger and sadness
are perceived most easily by using audio information, fol-
lowed by fear and happiness [3]. To extract audio features,
the openEAR tool is used. The tool can provide audio in-
formation including energy/spectral low-level features and
also voice related features. These features form vectors of
length 1583.

3.1.3 CNN-based deep image features
CNN-based deep learning is proved to be effective in image-
based classification [16]. CNNs can be used to classify the
images directly, or as a feature extractor to generate image
features for other classifiers [25]. The CNN features are ex-
tracted through different CNN layers. Kahou [14] proposed
to use CNN’s predicted probabilities for 7 emotions as fea-
tures, which is obtained from the last layer of the CNN.
For videos, features of multiple frames are concatenated to
form video features. In our approach, we also extract the
probability distribution of the seven emotions from images
of a video clip. Since we believe that the penultimate layer
features may convey more useful information, we extract
features from the penultimate layer as well. To make it sim-
ple, we call the probability features CNN-1 and the penul-
timate features CNN-2. In order to extract deep features
from the CNN that are both robust and representative to
the facial experession images, in the absence of sufficient
number of facial images for training, we propose a unique
fine-tuning method by using extra emotion images to up-
date a pre-trained model. We will give more details about
the fine-tuning method in the following subsection.

3.2 Fine-tuning a pre-trained model for deep
image features

A simple-structured CNN trained on a small dataset is un-
able to learn the features deeply. Fine-tuning a pre-trained
model with extra data can solve this problem. AlexNet is
designed for ImageNet classification and shows very good
performance [16]. We use AlexNet as our pre-trained model.
Then, we need to fine-tune this model by training it on ex-
tra emotion images. Li [17] constructed the CIFE dataset
by collecting more than 10 thousand instances of the 7 emo-
tion classes. The number of samples of different emotions
in the CIFE dataset are: Anger (1785), Disgust (266), Fear
(781), Happiness (3636), Neutral (644), Sadness(2485) and
Surprise(997). The images are from the web and most of
them are not posed. The author reported a 83% recogni-
tion rate. This is the dataset we have used in our previous
work. Since the number of samples in different classes are
not balanced in CIFE, we have added some images to classes
with fewer samples (for example Disgust and Fear) to bal-
ance the class sizes. After this modification, the number
of samples for the 7 emotions become: Anger (1905), Dis-
gust (975), Fear (1381), Happiness (3636), Neutral (2381),

Sadness(2485) and Surprise(1993). As our first attempt, we
have tried to see if we could use the same three-layer CNN
structure as used by Li [17] to extract the learned features.
However, with the same structure, the accuracy dropped
from 83% to 65% with the balanced dataset. We have also
observed the original high performance of 83% in Li’s work
was due to the unbalanced dataset: the recognition rates for
disgust and fear classes were very low, for both the original
dataset and the balanced dataset, and hence adding new
samples decreased the overall performance. The reason for
the low performance is that the three-layer structure is un-
able to learn the features deeply enough compared to the
complicated structure of AlexNet for ImageNet test. There-
fore, we choose to utilize the deeper structure of AlexNet as
shown in Figure 2.

In the AlexNet structure, there are 5 convolutional layers,
3 fully connected layers, and 60 million parameter in to-
tal. Our first guess was that training the AlexNet on our
data would results in better classification accuracy. The
only problem was the need for larger number of images, as
the ImageNet requires millions of images during training.
Therefore, we instead propose a CNN fine-tuning method
to train a deeper model based on AlexNet. The rationale is
that although our task is different from the ImageNet, which
focuses on object classification, similar low level filters could
be used in emotion recognition. Based on this hypothesis,
we can use the AlexNet and utilize our relatively ’small’
dataset to update and fine-tune parts of its parameters for
adapting it to emotion recognition.

As shown in Figure 2, the parameters of the convolutional
layers 1 through 4 are not changed. Our new dataset is used
to update the parameters of the convolutional layer 5 and the
first fully connect layer, without changing their structures.
In the original AlexNet, the number of units of the second
fully connected layer and the third layer are 4096 and 1000
respectively. Since the number of classes in our dataset is
just 7, we needed to change the structure in these two layers.
We reduced the number of neurons in the penultimate layer
to 256, and the third fully connected layer to 7. To train
and fine-tune the CNN model, we set the learning rate to
0.01 and the training batch size to 256 images. The number
of training iterations is chosen to be 800. The classification
accuracy by using this model is 78.9% on the balanced CIFE
dataset, which shows that the fine-tuning leads to a much
better performance than our first attempt of using a three-
layer CNN structure.

After the fine-tuning, the model is trained and tested on ad-
ditional images from the web and then fine-tuned again using
the training face images provided for the EmotiW 2015 chal-
lenge. By fine-tuning the CNN model, we obtain a model
which works well on web images and is hopefully suitable
for the challenge faces as well. For utilizing the model, deep
image features are extracted from the CNN. Note that the
input data that we need to process include videos with dif-
ferent lengths. In order to obtain normalized features, we
need to make the number of samples equal in all videos. In
our approach, we decided to set the number of samples for
all videos to 32, experimentally. Hence, we need to down-
sample the frames for videos with more than 32 samples
and interpolate for those videos with fewer than 32 samples.



Figure 2: Fine-tuning of the Alexnet

Figure 3: Normalizing the video frames

This process is illustrated in Figure 3. Then we use our fine-
tuned CNN model to extract the features from the ”normal-
ized”videos. Unlike the work done by Kahou [14] where only
the probability vector of the 7 emotions was used, we also
extract the penultimate layer features. So we can obtain 2
vectors of lengths 32x7=224 and 32x256=8192, respectively.

3.3 Multiple kernel learning
So far we have explained how we obtain the four types of
features we intend to use: LBP-TOP from the videos, ope-
nEAR from the audio, and CNN-1 and CNN-2 from the
images. Now the next question is how to effectively com-
bine these features to achieve better a emotion recognition
rate. Similar to the work done in [23], we decide to use
MKL+SVM: multi-kernel learning with SVMs [21, 5, 2].
SVM is a well-known and widely used classifier. The goal
of the SVM classifier is to find a hyperplane through the
objective function in Equation 1.

max[

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajyiyjK(xi, xj)] (1)

with
N∑
i=1

aiyi = 0, 0 ≤ ai ≤ C (2)

where x represents the sample and y represents the corre-
sponding label, which is either 1 or -1. C is the penalty
factor. K is the SVM kernel, which employs a kernel func-
tion (such as RBF in Equation 5 in Section 4) to encode
the samples to generate an N xN matrix, where N is the
number of samples. The a parameters can be learned by
optimization which results in a binary SVM classifier.

The MKL+SVM method is based on SVM, where the only
difference is the kernel. The kernel in MKL is a linear com-
bination of SVM kernels as described in Equation 3.

Kmkl(xi, xj) =

M∑
m=1

bmKm(xi, xj) (3)

with

bm ≥ 0,
m∑

m=1

bm = 1 (4)

where b is the coefficient of the SVM kernels Km (m=1, ...,
M). So, each channel of features will generate an SVM ker-
nel, then MKL finds the best coefficients to linearly combine
these individual kernels. In this work, the type of the kernels
are chosen to be Radius Basic Functions (RBFs).

3.4 SVM-based system structure
SVMs are initially used for binary classification. In our ap-
proach, we use multiple binary SVM classifiers to accomplish
the classification task of 7 emotions. In many applications,



Figure 4: Framework for multi-class SVM prediction

SVM-based multi-class classification is realized by generat-
ing and integrating multiple binary SVM models. For an
n-class problem, n binary SVM models are trained individu-
ally. Then, the confidence (l) of each sample belonging to a
specific class is computed by the corresponding SVM. These
n confidence values then need to be combined. The easiest
and most commonly used way for combining the results is to
pick the maximum score and assign the corresponding label
to the sample. This may not be the best method to per-
form multi-class classification, especially when the binary
classifiers’ accuracies are different due to different number
of positive samples used to train them. We propose to solve
this problem either by giving a weight (m) to each classifier,
or by setting offsets (c) for them, as shown in figure 4, to
optimize the recognition results based on the training data.
We will explain this method in more details later in section
4.2.

4. EXPERIMENT
In this section, we will discuss the critical components in
boosting up the accuracy of emotion recognition with chal-
lenging video clips. These components include the construc-
tion of the hybrid features from both engineered and learned
features, and the optimization of the final classification deci-
sions based on the results of the seven SVM-based classifiers.
Then we will discuss our experimental results, emphasizing
the role of these two important steps.

4.1 Constructing the features
As discussed earlier, MKL is applied to the RBF kernels.
Thus, before using MKL, we need to transform the extracted
features to RBF kernels. There are two parameters for the
RBF-based SVM that need to be determined: The penalty
factor C and the parameter r which appears in the RBF
Equation 5.

K(x, x′) = exp(−r||x− x′||) (5)

All SVM classifiers will share the same penalty factor. To
make it easy to compute and combine the kernels, we set
the penalty factor to the default value 1. For determining r,
we perform a grid search for each feature and evaluate the
performance of the corresponding SVM on the validation
dataset. To achieve the goal of multi-class classification, we
use a one-vs-all scheme for each of the emotion classes. This
will yield seven classification scores from -1 to 1 for each
sample. The scores express the confidence of each classifier
in assigning the corresponding class label to that particular

Table 1: Comparison of the classification accuracy of
different features on each emotion (L-T represents
LBP-TOP)

A D F H N Sa Su r
L-T 0.75 0 0.04 0.74 0.61 0.17 0.17 0.1
Audio 0.74 0 0.32 0.32 0.52 0.22 0.02 0.1
CNN-1 0.47 0.12 0.15 0.65 0.34 0.32 0.13 0.1
CNN-2 0.58 0.15 0.13 0.67 0.54 0.42 0.23 0.0001

sample. For each sample, the class corresponding to the
maximum confidence is selected.

As mentioned before, the best r values for generating the
RBF kernels is determined by a grid search. Table 1 shows
the r parameter as well as the accuracy for each feature. In
this table, we use A, D, F, H, N, Sa, Su to represents Anger,
Disgust, Fear, Happiness, Neutral, Sadness and Surprise,
respectively. The video features perform very well in rec-
ognizing anger, happiness and neutral, but terrible in fear,
disgust and sadness. The audio features basically follow the
same pattern, but work best in fear. For the deep features,
CNN-2 almost outperforms CNN-1 in all classifiers. In the
emotions where the video features work best, the CNN-1
does not demonstrate high accuracy, but in emotions like
sadness and surprise, the CNN-2 performs much better. The
difference in performance could be due to the different fo-
cuses of learned and engineered features. The LBP based
features represent the facial ”texture” well, so for expres-
sions like happy, angry and neutral, the difference in tex-
ture is easier for the LBP features to capture and represent.
On the other hand, the deep learning features are based on
the comparison of different samples and minimizing the loss.
So, these features not only capture lower level characteris-
tics like texture, but also some higher level information that
differentiate similar emotions. These observations actually
draw our attention towards the use of MKL.

we compute coefficients for the kernels by running the MKL
algorithm [5]. The coefficients found for video, audio, CNN-
1 and CNN-2 features are 0.56, 0.08, 0.0, 0.36. It make
sense that the coefficient of CNN-1 is 0 since CNN-2 per-
forms better in most classes. This is also a strong evidence
of the effectiveness of extracting CNN-2. Having the coef-
ficients, we can construct the combined kernel and test it
on the validation data. By applying the multi-class SVM
classification using the fused kernel, we achieve an accuracy
of 48.52% on the validation dataset. The confusion matrix
of the combined kernel on the validation dataset is shown in
Table 2. Compared to the baseline approach that were pro-
vided by the organizers, our approach shows a 9% increase
in the accuracy. This is the best performance we achieved
on the validation data before we use decision optimization;
the model also achieves 45.23% accuracy when applied to
the test dataset, which is more accurate compared to the
39.33% accuracy of the baseline approach [1].

4.2 Decision optimization
As mentions in Section 3.4, we can use different methods to
decide the final classification results in a multi-class SVM.
In our initial approach, classification is performed by com-



Table 2: The confusion matrix of the best validation
result

A D F H N Sa Su
A 0.72 0.03 0.05 0.05 0.05 0.05 0.03
D 0.25 0.17 0.05 0.17 0.23 0.05 0.05
F 0.34 0.02 0.13 0.11 0.18 0.02 0.18
H 0.07 0.01 0.03 0.74 0.09 0.01 0.01
N 0.03 0.06 0.01 0.11 0.67 0.06 0.03
Sa 0.13 0.11 0.01 0.08 0.22 0.33 0.08
Su 0.17 0.04 0.08 0.10 0.30 0.02 0.26

Table 3: Test confusion matrix

A D F H N Sa Su
A 0.73 0.01 0.07 0.02 0.08 0.03 0.02
D 0.07 0.03 0.10 0.20 0.10 0.34 0.14
F 0.36 0.02 0.16 0.07 0.13 0.15 0.10
H 0.11 0.01 0.03 0.56 0.12 0.10 0.06
N 0.12 0.03 0.07 0.09 0.46 0.15 0.06
Sa 0.21 0.01 0.03 0.15 0.04 0.50 0.04
Su 0.18 0.07 0.14 0.07 0.11 0.26 0.15

paring all seven confidence probabilities and selecting the
index with the maximum probability value as the final la-
bel. A shortcoming of this approach is that some classifiers
are weaker as there are unbalanced number of samples across
the seven categories in the training dataset. So the output
of those classifiers tend to have lower confidence in classifi-
cation, which may affect the final classification accuracy.

Table 3 shows the sample distribution in the test dataset
across the seven classes estimated from the test accuracy
for our first submission in Section 4.1, shown in row 1 as
”Ground-truth”, even though we don’t know the ground
truth labels. It is obvious that the test dataset is very unbal-
anced and for some of the emotions, the number of samples
are either too low (surprise) or two high (neutral). This
leads us to the idea of modifying the decision rule by giving
higher scores to under-estimated classes. For instance, we
can increase the score for the neutral classifier, as we expect
to have more samples classified to that class. This is sim-
ilar to the use of priors in classification, like reinforcement
learning to adjust decision making based on feedback. Now
we need to determine the amount of change that we need to
apply to the scores.

We assume that if the distribution of the estimated classes
is similar to the ”ground truth” class distribution, which
could be obtained from previous experience, we may have

Table 4: The number of samples for different emo-
tions

A D F H N Sa Su
Ground truth 79 29 66 108 159 71 27
Before optimization 136 15 40 99 109 102 38
After optimization 114 3 20 97 209 78 18

Table 5: Test confusion matrix after optimization

A D F H N Sa Su
A 0.69 0 0.13 0.03 0.22 0.05 0
D 0.07 0 0.07 0.21 0.21 0.34 0.10
F 0.32 0.02 0.12 0.07 0.32 0.09 0.06
H 0.08 0 0.09 0.58 0.26 0.03 0.03
N 0.06 0.13 0.19 0.07 0.69 0.11 0.03
Sa 0.15 0 0.03 0.13 0.20 0.48 0.01
Su 0.18 0 0.11 0.04 0.44 0.11 0.11

the chance to obtain higher accuracy by adjusting the deci-
sion rules. So in the decision level, we give offsets to some
classifiers, that is, we increase the score of those classes that
are assumed to be more ”popular” due to their higher num-
ber of samples. The distribution of the samples to the seven
classes estimated by our model before decision optimization
is shown in row 2 of Table 3. Based on Table 3 (first 2
rows), we apply this ”optimization” to two classes, neutral
and happiness. By trying different values for the offsets, we
found that increasing the weights by 0.03 and 0.1 will bring
the class distribution curve closer to the ground truth. This
can be seen in the last row of Table 3. Since we do not know
the ground truth, we can not be completely sure that we
are using the best pair of offsets. We believe that the values
of the offsets can further be optimized. The decision opti-
mization changes our final overall test accuracy to 50.24%,
more than 10% improvement over the baseline approach [1].
Our validation accuracy after decision optimization drops to
46.7%. This is understandable since the validation dataset is
pretty balanced in the number of samples across the classes.
The confusion matrices on the test dataset before and af-
ter decision optimization are shown in Table 4 and Table 5,
respectively. By comparing the two confusion matrices, we
can see that there is an increase in the accuracy of neutral
and happy classifiers and a slight drop in the other classi-
fiers. But overall, we have a significant improvement for the
test dataset.

4.3 Discussions
By employing the MKL method and decision level optimiza-
tion, we obtain the accuracy of 50.46%. Compared to the
baseline provided by the organizers, the improvement is sig-
nificant. We have three main contributions in our work:

1. Deep image features are obtained using the AlexNet
model. The features generated by AlexNet are very effective
in object classification. In order to take advantage of this
model, we proposed a fine-tuning method which keeps most
of the convolutional filters unchanged, but modifies part of
the structure of AlexNet. We apply a fine-tuning training
method on a dataset of images obtained from the web, plus
the challenge face images to adapt AlexNet to the challenge.

2. Mutli-kernel learning is used to fuse both the engineered
and learned features from different channels. These differ-
ent features (video, audio and images) emphasize on dif-
ferent characteristics. Optimized coefficients of the MKL
enables the combined classifier to have the benefit of all in-
dividual classifiers and therefore achieves a better overall
performance.



3. We utilize a decision optimization method for SVM-based
multi-class classification. Instead of treating the confidences
of all classifiers equally and assigning the class label corre-
sponding to the highest confidence score, we adjust the de-
cision mechanism by adding extra confidence to the classes
that are expected to have more samples classified correctly.
This brings the predicted distribution of the classes closer
to the ground truth. This may lead to some decrease in
the number of predicted samples belonging to some of the
classes, but overall, the classification accuracy is improved.

5. CONCLUSION
In this paper, we described the approach that we have pro-
posed and tested to participate in the EmotiW 2015 chal-
lenge. Our method combines hybrid and multimodal fea-
tures for emotion classification, which cover various channels
- video (spatial-temporal), audio (temporal) and image (spa-
tial), and include both engineered (LBP-TOP, openEAR),
and learned (CNN) features. The CNN features are obtained
from our fine-tuned model which is trained on additional im-
ages from the web and aligned face images provided by the
challenge. Two levels of CNN features are learned. The
features are combined using MKL by generating an RBF
kernel that is a weighted combination of individual kernels
from each classifier. It turned out that the CNN features
from the penultimate layer are more effective than the pre-
viously used CNN features (probability feature from the last
layer). After analyzing the distribution of the classification
results, we optimized the multi-class decision rules to make
the distribution of the predicted classes similar to the ground
truth data. The accuracy of classification after applying this
optimization is 50.46% which is significantly higher than the
accuracy of the baseline method.
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