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Abstract

This paper presents a novel approach to automatic traffic monitoring using 2D spatio-

temporal images. A TV camera is mounted above a highway to monitor the traffic through two

slice windows, and a panoramic view image and an epipolar plane image are formed for each

lane. Our real-time vision system for automatic traffic monitoring, VISATRAM, is an

inexpensive system with a PC486 and a frame grabber. The system can not only count vehicles

and estimate their speeds, but also classify them using 3D measurements. The system has been

tested with real road images under various light conditions, including shadows in daytime and

lights at night.

Keywords: Intelligent vehicle/highway system, traffic monitoring, spatio-temporal

image, epipolar plane image, panoramic view image

                                           

* The author is currently on a leave in the Computer Science Department, University of Massachusetts at

Amherst, MA 01003. Email: zhu@cs.umass.edu, or zhuzhg@mail.tsinghua.edu.cn. This work was supported by

China Advanced Research Project during 1993-1997.  An earlier version of this paper is presented in the

1996 IEEE Workshop on Application of Computer Vision [15].



2

1. Introduction

Automatic traffic monitoring plays an important role in an Intelligent Vehicle/Highway

System (IVHS). A vision-based approach is promising since it requires no pavement

reconstruction and has more potential advantages, such as larger detection areas, and more

flexibility than inductive loops. However, traffic flow raises interesting but difficult problems for

image processing. Various light conditions create a need for robust algorithms, which require a

large amount of computational power to meet the real-time operations of a traffic monitoring

system. Many research efforts have been made in this area, and there exist several commercial

products (e.g., [1,2]); but there are room for significant improvement in performance and

capability of visual traffic monitoring systems.

A successful and widely used vision system for real traffic monitoring applications must

meet the following four basic requirements.

• Easy installation and calibration. This is important for on-site setup, reconfiguration and

operation by non-expert personnel.

• Environmental adaptation. The real system should work in different light conditions,

including heavy shadows under strong sunlight, dim illumination in the evening, vehicle

headlights at night and abrupt light changes. The basic problem is the background updating

and vehicle separation.

• Accurate vehicle speed and size estimation is needed for applications such as intersection

control, traffic surveillance, speed trap detection, vehicle classification and other special

studies.

• Real-time operation and low cost. These are a key factor for the wide use of an on-line

traffic monitoring system.

1.1. Related works

D’Agostino [3] discussed the potentials of a commercial machine vision system for traffic

monitoring and control. The basic requirements are low cost and robust performance, which have

not been fully met till now. For the system described in [3], problems of shadows and nighttime

operation had not been solved. For example, the system cannot classify vehicles during
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nighttime. Vehicle speed was estimated by setting up two inspection zones. The system needs

expensive special image processing hardware.

A background updating method for road traffic scenes is discussed in [4]. This system

extracts vehicles using a subtraction-spatio differentiation method to remove the adverse effects

of vehicle shadows. The background updating method is based on the change ratio between the

road surface brightness of the current input image and that of the old background image. Since

every full frame of a video sequence must be processed, a specially designed HITACHI-IP/200

parallel image processor was used for real-time detection of a three-lane flow of vehicles. In

addition, the system must determine if vehicle(s) appearing in two successive frames are the

same. The problem of estimating vehicle speed was not addressed.

In other systems, vehicle shapes are modeled using complex models [5-8], which cannot be

processed in real-time with low-cost hardware. Sullivan [5] used a wire-frame model for the

vehicle. Based on an estimated pose and full calibration parameters of the camera, the model is

back-projected to the image and edges of the model are then matched to lines in the image. The

system requires full calibration of both intrinsic and extrinsic parameters, which is tedious and

sensitive to noise.

Yuan et al [6] extract a vehicle and estimate its length, width, height and the number of units

of the vehicle from a single perspective image captured by a camera placed at the roadside. The

ultimate goal of their system is to classify vehicles into many categories, therefore reducing the

gap between the requirement and the availability. However their approach encounters the general

problems in image segmentation, and the methods to identify the roof, side and front of a vehicle

are quite ad hoc. In a more recent article [7], vehicles and their wheels are extracted by using a

more sophisticated image segmentation method and a deformable model of the vehicle. All of

these approaches may achieve more profound goals, but real-time implementation with low-cost

hardware is still difficult. Moreover, with all these methods, the entire vehicle is assumed to be

fully visible in a single image, which is not always true.

Ferrier et al [8] obtained real-time performance by tracking the occluding contour using

intensity/motion information. Initial calibration of a projection relationship between an image

and the ground plane enable metric information to be derived from the image positions and

velocities without full calibration. A tracking technique used in their paper is designed to be



4

resilient against the vibration of the camera. Real-time performance was achieved on a SUN IPX

with a Datacell S2200 image capture board. An underlying assumption is that the tracked outline

of the vehicle is roughly plane shape. This weak perspective viewing condition can only be

satisfied if the camera is far enough above the road being viewed. In order to calibrate the

camera, markers should be placed and measured for locations lacking any existing road markers.

Effects of headlights at night were not discussed in the paper.

Kilger [9] at Simens AG showed that real-time traffic monitoring is possible with low-cost

hardware. A bounding box, especially the width of this box was used as the geometric model for

robust classification of vehicles in a real-time application under the difficult illumination

conditions typically found on a sunny day with heavy shadows. Shadows are separated from

vehicles by investigating an edge image of detected regions. The speed of a vehicle is estimated

by tracking the middle point of the vehicle’s front edge in the image sequence, where a constant

speed assumption is made. However speed estimation results were not mentioned. The box

model is applied directly to perspective images; no 3D measurements of vehicles were

conducted.

Zielke et al [10] proposed a method for detecting and tracking cars based on symmetry. This

method can be used in situations where a camera is mounted on another vehicle in the same lane.

However it will not be the best viewing position for monitoring traffic. A fully symmetrical view

of a vehicle within an image is possible only from some particular vantage points.

In order to extract landmarks for global localization of the mobile robot, Zheng and Tsuji

[11] proposed a panoramic representation of roadside scenes. Careful study is needed on how to

use this panoramic representation for traffic monitoring. In motion analysis, Baker et al [12] first

introduced the concept of epipolar plane image (EPI) analysis. In the application of traffic

monitoring, Nakanishi and Ishii[13] presented a method for extracting images of laterally

moving vehicles from image sequences based on EPI analysis. Problems of occlusion and

background updating under typical daylight variations were addressed. They detected the locus

of a vehicle using Hough transform and classified the vehicle type based on silhouette analysis.

Their experiments were carried out in a Sparc Station 1; however, real-time operations and

nighttime operations were not mentioned.



5

While developing algorithms for visual traffic monitoring are needed, the evaluation of these

algorithms is also an important aspect for real applications. Due to technology limitations, these

algorithms have traditionally been evaluated at a macroscopic level by comparing counts

obtained by loop detectors with an image-based detection system. Bullock and Mantri [14]

presented a multimedia data model for investigating the microscopic performance of video

detection algorithms. Because video data tends to consume huge quantities of storage, disk-space

requirements are an obvious concern. A compact visual representation of traffic events for

examination and evaluation needs to be developed.

1.2. Overview of our approach

In this paper we present a novel approach to automatic traffic monitoring using 2D spatio-

temporal images. A TV camera is mounted above the highway to monitor the traffic through two

slice windows for each traffic lane (Fig. 1). One slice window is a “detection line” perpendicular

to the lane and the other is a “tracking line” along the lane. Two types of 2D spatio-temporal

(ST) images are combined in our system: the panoramic view image (PVI) [11] and the epipolar

plane image (EPI) [12]. The problems of vehicle counting, speed estimation and vehicle

classification are solved through analyzing these two 2D ST images. An inexpensive real-time

system, VISATRAM (VIsion System for Automatic TRAffic Monitoring), with a PC486 and a

commercially available frame grabber has been tested with real road images.

Our approach has the following features and advantages:

(1) Real-time and robust performance: VISATRAM is a real-time visual system working

robustly under various light conditions including shadows and vehicle lighting. It can

automatically cope with both slow and sudden illumination changes. The system can

automatically recover from false sensing or abrupt changes in environment.

(2) Enhanced functions. Our system can not only count vehicles and estimate their speed, but

also classify the passing vehicles using 3D measurements (length, width and height). Moreover,

robust speed and height estimation are obtained from the loci of a vehicle’s front and rear edges

instead of using only the vehicle’s locations at two different instants as in [3,4,8]. The detection

results are visually superimposed on the live video screen.
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(3) Low cost and efficient computation. Traffic parameters are obtained by 2D spatio-

temporal image techniques implemented using an inexpensive image processing system: a

PC486 and a cheap frame grabber. Only a few scan lines are processed in each frame. ST images

are more generic and simpler than frame-by-frame images in this special application. Narrow

spatial viewing windows are compensated for by dense temporal sequences, and vehicles that are

partially viewed in a single frame can be reconstructed using ST images.

(4) Easy installation and calibration. The camera system can be installed without disturbing

the traffic flow. Once the hardware is installed, a detection line and tracking lines can be easily

re-defined or re-positioned on a video screen to adapt for changing traffic control and/or data

collection requirements. Camera parameters for the 2D ST image geometry can be easily decided

without actually measuring any 3D coordinates of the road environment. Instead, camera

calibration is realized using only the known size of a passing vehicle.

(5) Compact visual representation. PVIs are a compressed and panoramic representation of a

traffic flow and they can be saved on hard disk for further examination and study. ST images are

also suitable for performance analysis of a traffic monitoring system when the ground truth

information is not available.

This paper is organized as follows: In the next section, the 2D ST geometry and an image

rectification technique are described. Section 3 presents methods of acquiring the necessary

vehicle metric measurements, namely, speed and 3D size, using 2D ST images. A calibration

method and error analysis will also be given in Section 3. Section 4 discusses image processing

techniques used for vehicle separation and locus tracking. A background updating method is

included in this section. The experimental results with real-time performance and compact visual

representation for traffic flow will be provided in Section 5. Section 6 is a brief conclusion.

2. Spatio-Temporal Geometry

2.1. Camera setting and ST image geometry

In the ideal system setup of VISATRAM, a camera is mounted over the center of a highway,

although other camera settings are possible. The pan/zoom/tilt settings should be fixed to retain

detection configurations. We assume that vehicles move away from the camera with constant
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speeds along straight lanes in the camera’s field of view (FOV) (Fig. 1). This setting is suitable

for the detection and tracking of a vehicle, since the vehicle enters into the FOV in the high-

resolution end of the image, and a tracking line can be determined according to the position of

each vehicle in the lane. Moreover the locus of any point on the vehicle will be a straight line in

the rectified epipolar plane image (Fig. 2, Fig.4). This setting also reduces the negative effect of

a vehicle’s headlight at night, since the light is not directly reflected to the camera. The system is

designed to work in conditions that include heavy shadows, dim light, and nighttime conditions.

Auto iris is permitted and somewhat advantageous for vehicle separation and background

updating.
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The behaviors of vehicles moving on a road can be calculated by monitoring traffic through

two slice windows (Fig. 1), a detection line and a tracking line, and by further generating a

panoramic view image (PVI) and an epipolar plane image (EPI). Inside the 3D ST image cube

xyt, PVI and EPI are two kinds of representative 2D intersecting planes that reveal most of the

traffic flow information (Fig. 2). The PVI is formed by piling up the horizontal detection lines

from consecutive frames, conceptually one scanline from each frame. The EPI, on the other

hand, is formed for each lane by piling up the tracking line of consecutive frames along the

epipolar line. Fig. 4 shows one of the examples. The PVI shows the presence of a vehicle, and its

width W and duration time T across the detection line, while the EPI tells us the speed V, length

L and height h of the vehicle. The size and class of the vehicle can be easily obtained by

integrating measurements from the above two sources. Based on these measurements, other

traffic parameters such as volume, occupancy, headway, etc., can also be recovered easily.

2.2. ST image rectification

The camera is calibrated in order to find the relationship between the world coordinates and

the image coordinates. It should be noted that our approach is quite different from the traditional

methods of calibration in that no 3D measurements are needed, thus the algorithm is simple and

straightforward. At first, the focus of expansion (FOE) is estimated by using the lane boundaries.

For example, in Fig. 2, the FOE is the intersection of the two boundary lines AD and BC of a

lane. Any image projection p of a 3D point on a passing vehicle will moves along the epipolar

line passing through both point p and the FOE (Fig. 2). A “tracking line” in each frame is defined

as a line segment (e.g., EF in Fig. 2) along the epipolar line, and an EPI is formed. However the

locus of point p in the original EPI will not be a straight line if the optical axis is not

perpendicular to the road surface, which is mostly the case in a practical setting (Fig. 4(2)).

Therefore, we re-project the sensor image to a rectified image plane parallel to the road surface.

The rectification is made only along the selected epipolar line inside a lane using the cross-ratio

invariance (Fig. 3)

constant)(
2313

2313

21

21 λ==
pppp

PPPP

pppp

PPPP
(1)



9

Image plane

p

FOE

  P1    P2 (P
’
2)    P    P3

O

plane parallel to road surface

p1
p2

p3

Y

Z

y0y

yc

Fig. 3. Image rectification

In equation (1), P1, P2 and P3 are known points on a reference plane parallel to the road

surface, and p1, p2 and p3 are their corresponding image points. Point p represents the image of

any point P on the reference plane. ji PP  is the signed distance between points Pi and Pj , etc..

Without measuring any absolute coordinates in the world, we use the fact that the real size of a

moving vehicle is not changed. In equation (1) it means 1223 PPPP = , where P3 and P2 are the y

coordinates, at the same instant, of two points on the top of the vehicle with the same height,

while P1 is the new y coordinate of point P2 at the instant when P3 moves to P2 (P′2). Their

corresponding points in the EPI, p1, p2, p′2 and p3, are shown in Fig. 4(2)). In this way the

original EPI with a curved locus is transformed to a rectified EPI with a straight locus, whose

slope is proportional to the speed of the vehicle.

If the spatial coordinates in the original and rectified EPIs are denoted as yc and y

respectively (Fig. 3), we have
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where ccc yyy 321 ,, can be measured from the original EPI, and y1, y2 and y3 can be determined by

giving coordinate y2 and the length 1223 PPPP = . For any point (y,t) in the rectified EPI , we can

find its correspondence (yc,t) by using equation

)()(

)()(

21

1221

yyyy

yyyyyy
y

cc
c

−λ−−
−λ−−

=  (3)

Fig. 4(3) shows the rectified EPI of Fig. 4(2). It should be pointed out that the point y = 0 is

not necessarily the point y0 where the optical axis of the rectified virtual camera pierces through

(Fig. 3, Fig. 4).
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Fig. 4. 2D ST images

2.3. 2D ST image models

After the image rectification, the image coordinates, (x,t) in the PVI and (y,t) in the rectified

EPI, of a 3D point (X,Y,Z), are measured in a rectified “ virtual camera” and  a rectified image

plane under the pinhole camera model, as (Fig. 5, Fig. 6)
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where H is the height of the camera above the road , h is the height of a point on the vehicle (i.e.,

Z = H-h ), θ  is the angle between the road surface and the plane passing through the optical

center and the detection line, and fx and fy are the equivalent focal lengths for the PVI and

rectified EPI respectively. The focal lengths fx and fy may not be the same due to the aspect ratio

of the camera and the rectification of the EPI. The coordinates x(t), y(t), X(t) and Y(t) are all

functions of time t. A calibration method is given in Section 3.2.

3.  Vehicle Metric Measurements

3.1. Speed and size estimation

In order to simplify the 3D estimation, a cuboid vehicle model is assumed. When a vehicle

moves away from the camera, Loci of the vehicle in the rectified EPI are bounded by the loci of

the front and the rear (Fig. 4). The point on the rear that appears in the EPI is roughly considered

as ground point (i.e., Z = H) and the point on the front is considered as a roof point of the

vehicle. By differentiating equation (5) we have
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Under constant speed assumption during the monitoring period, the speed of the vehicle on the

road is V = 
t

tY

∂
∂ )(

, and the slope of the locus in the image is v = 
t

ty

∂
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. So we have

V
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The speed V and of the vehicle can be estimated by computing the locus slope, vg , of a ground

point (e.g., the bottom of the rear or its shadow, i.e., h = 0) as

 g
y

v
f

H
V = (6)
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Then the height h of the vehicle can be estimated using the locus slope of a point in the front, vh :

)1( 
h

g

v

v
Hh −= (7)

The EPI approach is superior to the two-frame approach in simplicity and robustness. There is no

correspondence problem. Speed is estimated using more than two points in a locus. All we need

to do is to extract the (straight) locus and calculate the slope.

The length and width of a vehicle can be calculated by combining the information from both

PVI and EPI. Sometimes the front and the rear of a vehicle cannot be presented in a single frame

if the vehicle is too large. But there is no problem in the ST image approach. The length L of a

vehicle can be calculated as the production of speed V and the duration time T during which the

vehicle is passing through the detection line (Actual calculation of time T will be given in

subsection 3.3). Compensating for the projective distortion, the vehicle length can be further

modified as

θhctgVTL -= (8)

The geometry is shown in Fig. 5 and an example is shown in the PVI in Fig. 4(1).
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h ctgθ
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Fig. 5. Length computation
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Let Lx  and Rx  be the x coordinates of the left and right boundaries of the vehicle in the PVI,

and Lh  and Rh  be the heights of the corresponding boundaries respectively. These heights can

be decided by the following equation ( Fig. 6)


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
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>>
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Hence the vehicle width can be calculated as (Fig. 7)
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In the example in Fig. 4(1), we have hL=0 and hR = h.
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Fig. 6. Three cases for heights             Fig. 7. Width computation

  Based on these real-time measurements, other traffic parameters for each lane, such as class,

volume, occupancy, headway, mean speed, etc., can be estimated without difficulty. The

definitions of real-time parameters and statistical parameters are listed in Table 1 and Table 2

respectively.
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Table 1. Real-time parameters

Parameter Notation

in equations

Definition and unit Symbol

in Fig. 13

length  L Length

width  W Width

height  H

3D size measured as

L×W×h

(m3) Height

speed  V Measured in  km / hr Speed

class
Classified by  size

e.g., small, media, huge,...
Kind

Table 2. Statistical parameters

Parameters Definitions Symbol

in Fig. 13

Unit

Volume Number of vehicles detected
during the time intervals

Volume number

occupancy lane occupancy measured in
percent of time

Occupy %

headway Average time interval between
vehicles

Headway seconds

mean speed average vehicle speed in the
lane

M-Speed km/hr

3.2. System calibration

      In order to obtain the metric information for a vehicle, the camera system should be

calibrated first. H, fx, fy and θ  can be easily decided by a simple calibration procedure using the

PVI and rectified EPI of a moving vehicle of known size (length, width and height).
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First, H, y0 and fy can be decided by the loci of three image points in the EPI, giving the

height (h) and length (L) of a cuboid-shaped vehicle (Fig. 8). The coordinates of the vehicle need

not to be measured. For three particular points (X,Y,H), (X,Y,H-h) and (X,Y+L,H-h) on the

vehicle, and their y coordinates y1, y2 and y3 in the EPI, we can obtain the following results from

equations (5) and (7):
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where 
t

y
v

t

y
v

∂
∂

=
∂

∂
= 2

2
1

1 , , and fy is in pixels. It should be noted that only the height H and

length L are used in the above equations, but the coordinates X and Y are not included.

    Similarly, giving the width (W) and length (L) of a moving vehicle and its PVI and EPI, fx

and θ can be estimated from equation (5) to (10)
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where T, V, h, (xR,hR) and (xL,hL) can be obtained from the PVI and the EPI, and fx is in pixels.

3.3. Real calculations and error analysis

In this subsection, we give a theoretical analysis of the metric estimation of our ST approach,

given the image resolution, vehicle speed, vehicle size, temporal sampling rate, and the

localization errors. It is helpful to give an idea of error bound of the ST approach, and it also

reveals some aspects of what are the real computations for the metric measures. The real error

statistics need far more engineering work of on-site tests, and it will be briefly discussed in

Section 5.

(1) Width estimation

The width of a vehicle, W, is estimated in a PVI. From equations (4) and (10), the error of

width estimation can be roughly calculated as

w
f

H
W

x
δδ ⋅= (13)

where δw is the localization error of width in the PVI.

(2). Length estimation

    From equation (8), the length can be roughly estimated as VTL = , where speed V is estimated

in an EPI and the duration T is calculated in the PVI.  Hence the length error can be computed as

VTTVL δδδ ⋅+⋅= (14)

The estimation of speed error δV will be given later. Here we discuss how to estimate duration

error δT. To avoid missing a fast-moving vehicle in a single “detection line” of the conceptual

PVI, we use a “detection slice” of n scanlines per frame. Hence an extended PVI is constructed

by extract n scanlines from each successive frame. The translation of the vehicle in the image

should be less than n, otherwise parts of the front and/or rear of the vehicle would be missed in
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the extended PVI (Fig. 9 (1)). Therefore n  varies according to the mean speed (V ) of a lane

during a certain time interval

H

V
fn x

τ≥ (15)

where τ  is the temporal sample rate. Ideally, our system can monitor the road at a speed of 50

fields per second for the PAL system, so we have 50/1=τ second / frame (s/f). Note that we use

fx instead of fy in equation (15) since fx is used for the PVI geometry. Assume that the vehicle

occupies NPVI lines in the extended PVI (Fig. 9(1)). Then the duration T can be calculated as

τ
n

N
T PVI= (16)

NPVI

n

x

n t

 

y

t

Ny

NEPI

locus

(1) Extended PVI                        (2) EPI

Fig. 9.  Metric Measures in PVI and EPI

We therefore have

τδδ
n

N
T PVI= (17)

where δNPVI is the localization error of the length in the extended PVI. From equation (16) and

(8) with h=0, given the speed of the vehicle, the number of lines of a vehicle can be predicted as
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V

V

H

L
f

V

nL
N xPVI ≥=

τ
(18)

Equation (18) give us an idea of how many lines a vehicle occupies in the extended PVI. The

number of lines is inversely proportional to the speed; however it will be a function of the

vehicle’s length L only if the scanlines per frame are dynamically changed with the speed itself,

i.e., V = V.

(3) Speed estimation

We can also estimate the number of frames in which a vehicle covers the tracking line in the

effective field of view in y direction, LFOV (Fig. 9(2))

τVLN FOVEPI = (19)

From equation (6) we have

τ
s

f

H
V

y
⋅= (20)

where s is the slope of the image locus of a ground point measured in pixels. So the absolute

error and the relative error of speed can be computed as

s
f

H
V

y
δ

τ
δ ⋅= ,  

s

s

V

V δδ = (21)

If only two points on the locus are used to calculate the slope, then we have (Fig. 9(2))

222   ,
EPI

EPIyyEPI

EPI

y

N

NNNN
s

N

N
s

δδ
δ

⋅+⋅
== (22)

where Ny is the effective image resolution in y direction, yNδ  and EPINδ  are the localization

errors for yN  and EPIN  respectively. The accuracy is improved in our approach in that the slope

is estimated by fitting the locus using least square mean method. The procedure can be

considered as approximately calculating the average of 
N EPI

2
 slope values 2s  that come from
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N EPI

2
pairs of points. If the errors 2sδ  are independent Gaussian noises, then the error of s can be

reduced to
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(4). Height estimation

From equation (7) the absolute error of height estimation can be calculated as

2
v

vv

s

ssss
Hh

δδδ ⋅+⋅
= (24)

where sv is the slope of the locus of the point on the vehicle’s roof measured in pixels/frame.

Table 3. Error analysis*

V  (km/hr)  0  10  50  80  120  160

 n  1  1 (≈1.08)  6 (>5.39)  9 (>8.62) 13 (>12.9) 18 (>17.2)

 NPVI  /  72  86  81  78  81

 T (s)  /  1.44  0.287  0.180  0.120  0.09

EPIN  /  238  48  30  20  15

δV (km/hr)  0  2.71e-3  0.204  0.787  2.56  5.96

δV/V  /  0.03%  0.41%  0.98%  2.13%  3.72%

VδT (m)  0  0.111  0.093  0.099  0.103  0.099

δL (m)  /  0.112  0.109  0.138  0.188  0.248

δW (m) 0.103  0.103  0.103  0.103  0.103  0.103

δh (m)  /  0.004  0.059  0.142  0.312  0.556

*  NPVI  is estimated when L = 4 m and δh is estimated when h = 2 m. Note that V and

δV are given in km/hr, and should be converted into m/s for other computations.
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Suppose H=10 m, f = 5*256 /6.6 (pixels) (i.e., a 5 mm focal length camera with target size of

6.6 mm and an image size of 256 pixels), yN = 256, LFOV =13.2m. Assume that the localization

errors are 2 pixels for all the measurements in images, i.e., δw = 2, PVINδ =2, yNδ =2, EPINδ  =

2. Table 3 gives theoretical results of speed and size estimation under different vehicle speeds.

The length error is estimated when L = 4 m. The absolute error of height is computed for a 2-

meter high vehicle at different speeds. Note that the width error and duration error (VδT) are

irrelevant to the vehicle’s speed; however, the length error is a function of speed. The number (n)

of scanlines in the detection window is estimated using the given speed V. For references, NPVI

and NEPI are also given in Table 3.

4. Vehicle Separation and Locus Tracking

4.1. Vehicle extraction

Vehicles are separated from the road surface, shadows and vehicle lights by fusing multiple

cues including intensity, spatio-temporal changes, and models of vehicles and the environment.

The basic principles are summarized as follows.

1) Background subtracting. Intensity differences always exist between vehicles and a road

surface. In the daytime those portions whose intensities are higher than that of the road are

directly classified as belonging to a vehicle. Those portions with lower intensities need further

analysis. Intensities of shadows are always lower than the intensity of the road. At night the

intensities of areas onto which a vehicle’s lights project are higher than those of the road surface,

therefore further investigation is needed.

2) ST differentiating. There are rich intensity changes inside the vehicle, especially in the

longitudinal direction of a vehicle and around its boundary; while the intensities of shadow areas

are nearly constant and areas where the vehicle’s lights project have no distinctive edges.

3) Modeling of vehicles, shadows and lights. The symmetry and the length of a vehicle as

well as the minimum headway between two vehicles, can be used as models to group the
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different portions into a vehicle. The direction and size of a shadow area can be estimated by

using the knowledge of the sun’s position at different times of day. The fact that the headlights of

a vehicle always project in front of the vehicle can also be used for vehicle segmentation.

4) Merging multiple lanes. To handle the situation where a vehicle is crossing over lanes or

shadows of vehicles project onto other lanes, the detection line covers all the related lanes and all

the lanes are considered together.

Based on the above principles, we have designed an algorithm for vehicle detection and

separation. Theoretically, a single detection line g(x,t) is processed at each time t. The

background is initialized as b(x) and is updated according to different situations.

Step 1. Image pre-processing and background subtracting

In order to reduce the image noise and the effect of inevitable vibration of the camera, the

original PVI, the ST image g(x,t), is first smoothed in time and space

∑ ++=
∈Sji

j)i,tg(x f(x,t) 
),(

(25)

where S is the smoothing neighborhood. After smoothing, the background is subtracted from the

intensity image f(x,t)

b(x) f(x,t) - I(x,t) = (26)

Step 2. ST differentiating. The differentiation-of-subtraction (DoS) image d(x,t) is computed

as

t

txI
b

x

txI
atxd

∂
∂+

∂
∂= ),(),(

),( (27)

where a and b are weights for magnitudes of gradient components in x and t directions

respectively. In practice we set a > b in order to repress the effect of shadows, since edges of a

vehicle in the longitudinal direction are more fertile (Fig. 10).
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Fig. 10.  Vehicle separation from heavy shadows in daytime

|<-   lane1   ->|<-   lane2    ->|

(1) PVI f(x,t)

(2) Absolute Subtraction |I(x,t) |

(3) DoS image d(x,t) (4) Thresholding |I(x,t)|

(5) Thresholding the DoS (6) Temporal projection
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Step 3. Vehicle detection. For a given time t, a image point x, whose subtraction I(x,t) is

greater than a given threshold TI in daytime or whose DoS d(x,t) is greater than a given threshold

Td is regarded as a (possible) point on the vehicle, and a binary map is formed as



 >>

=
otherwise   ,0

)daytime in ),((or     ,1
),( Id TtxITd(x,t)

txe  (28)

In equation (28), intensities contribute to the detection for the brighter (parts of) vehicles, while

the DoSs play a vital role in general cases in separating the vehicle from the road, shadows and

headlights.

Spatio-projection is calculated along the detection line for each line as

∑
∈

=
WWx

txetq ),()( (29)

where WW is the width of the detection window for a lane. If q(t) is greater than a certain

threshold NWid (the minimum number of pixels in vehicle width), a possible vehicle line segment

is labeled.

Step 4. Grouping and separation. In a 2D PVI e(x,t), those labeled lines that satisfy the

criterion of minimum headway between vehicles, minimum duration time and minimum width of

a vehicle, are grouped to form a possible vehicle region. The length of the region along t axis is

the duration time (T) of this possible vehicle across the detection line.

During the time period T, we project the e(x,t) in the time axis as

∑
∈

=
Tt

txexp ),()( (30)

The left and right boundaries of the vehicle in the PVI are searched from both sides, and are

estimated as xL and xR if p(xi) (i=L,R) are greater than NLen, the minimum number of pixels in

vehicle length.

The image region of size (xL - xR)×T in the PVI is further analyzed to eliminate the shadows

or to separate two side-by-side vehicles, using the knowledge of the normal length/width ratio,

the approximate symmetry of the vehicle’s image, the model of daytime sunlight and shadow,
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and the headlight model at night. In this way, the final bounding box, (xL - xR)×T, of the vehicle

in the PVI is determined and the width can be calculated by using equations (9) and (10).

Fig. 10 shows an example in daytime operation. It can be seen in Fig. 10(1) that heavy

shadows of cars are cast on the road. Simple thresholding of the subtracted image cannot

separate the vehicles from the shadows (Fig. 10(2), Fig.9(4)). However, the shadow regions are

nearly intensity-smooth and edges of vehicles are distinct and fertile. Hence the differentiation-

of-subtraction (DoS) method followed by temporal- and spatio-projections are quite effective.

Fig. 10(5) shows the thresholding result of the DoS image in Fig. 10(3). In Fig. 10(6) temporal

projections are calculated for five possible vehicle regions within the two lanes annotated in

Fig.9(1). In this example, the fact that shadows are cast on the right of the vehicles is used to

verify the separation of shadows from vehicles.

vehci l e2

vehic le1

l igh t

(1). Original PVI  (2) Original EPI

p(x)

q (t ) roof locus

ground locus
locus
fi t t ing

t r ack ing
point

vehic le
bounda ry

star t  point

(3) Vehicle separation  (4) Locus tracking

Fig. 11. Vehicle separation and loci extraction at night
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Fig. 11 shows an example of vehicle detection and separation during nighttime operations.

The PVI in Fig. 11 (1) shows strong beams of headlights from the first vehicle. Fortunately most

of the headlight’s edges are not intuitive except the edge of the low beam of headlights near the

vehicle. The spatio- and temporal-projections are superimposed in the PVI of Fig. 11(3). The two

rectangles represent width×duration for the two vehicles. The estimated duration of the first

vehicle from the basic procedure will be larger than the actual duration. It can be further refined

by verifying that the region in front of the detected vehicle is really of headlights, and then using

the headlight model to guide the separation. Notice that there is a valley in spatio-projection q(t)

between the front of the first vehicle and the edge of the headlights.

4.2.  Background updating

To make the system adaptive to varying light conditions, the background should be updated

from time to time. In our approach, only a small fraction of the image (several scan lines for the

PVI) needs to be updated. The background intensity of the PVI is initialized and then updated

whenever the detection lines are not covered by vehicles, shadows and vehicles' light. The

background is updated in the following three cases:

Case (1). The background changes gradually. Since the illumination change of the

background (i.e., the road surface) is slow, we use sufficient time slices (e.g., F = 100 frames)

before time t to update the background b(x). First, a weight function w(t) is estimated for each

time slice, as

∑
∈

=
WWx

txbtw |),(|)( (31)

For the current time t, the background is modified as
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where G(·) is the Gaussian function with G(0)=1.0 and G(±TI*WW)=0.01, and is very small if the

road has an average intensity change greater than TI due to a passing vehicle or shadows. In real
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implementation, G(·) is calculated off-line to generate a look-up table, and the summation in

equation (32) can be computed iteratively from time t-1 to time t.

Case (2). The background changes abruptly, for example, when a piece of cloud passes over

the road in daytime, or when the streetlights are turned on in the evening. If duration time T of an

assumed “vehicle” is greater than the maximum duration for the largest vehicle, then an abrupt

background change is assumed. In this case an alarm is given to indicate that the system enters a

recovery period. We make the assumption that the road image before and after an abrupt

illumination change satisfies the following linear relation

β+α= (x)b(x)b oldnew (33)

Differentiating both sides with x we have

(x)b(x)b oldnew ′α=′ (34)

Hence α can be estimated as

∑∑
∈∈

′′=α
WW Wx

old
Wx

new (x)b(x)b (35)

During the recovery period, the average difference between the spatial gradient ),( txf ′  of the

current image f(x,t) and that of the old background image b(x) is calculated as

∑ ′−′=
∈ WWx

oldt
W

g (x)btxf
W

(t)d |),(|
1 α (36)

where  ∑∑
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′′=α
WW Wx

old
Wx

newt (x)bt)(xf ,  (37)

It can be seen that if the current image is of road surface without vehicles, dg(t) should be very

small under the linear illumination change model of equation (33). Therefore the road

discrimination criterion is defined as




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(t)
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(t)  d

g

gσ (38)
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where MaxDg is the predefined maximum gradient difference for road image, and the

background is refreshed as

 (t)(t) ∑∑
∈∈

σσ
rr TxTx

new f(x,t)(x) =b (39)

where Tr is the recovery time interval. During the recovery period Tr and the previous “false

vehicle” period T, the passing vehicles may be missed by the system. So the PVI section during

these periods is saved and then be reprocessed afterward using the refreshed background

information.

Case (3). The background changes frequently. This situation may occur when energy-saving

street lamps are used at night or the camera vibrates violently due to the passing of heavy

vehicles. The intensities of the background change periodically while the light flashes (or the

camera vibrates) at a certain frequency, so the short headway and vehicle duration are detected

frequently. In this case the PVI is smoothed using a 5×5 or larger Gaussian operator according to

the frequency.

The intensity gradient TI  and the gradient threshold Td is also changed according to the

changes of the background, and the average difference between vehicles and the road surface at

different times of day.

4.3. Loci extraction

For real-time implementation, we use re-projection look-up tables (RLUTs) to map the

original epipolar lines to rectified ones. When vehicles move bottom-up in the image and the

detection line is set at the bottom of the image, the lateral position of the epipolar line for a

vehicle is selected adaptive to the position of the vehicle inside the lane. So we have several

(e.g., 2) LUTs for each lane.

While the EPI is being formed, the locus of the front and the rear of a vehicle are tracked at

the same time. Theoretically, it seems advantageous to rectify the EPI before we track the locus,

since the locus is straight after the rectification. However, in practice, the rectification procedure

will degrade the resolution of the image. We therefore re-project only the locus points after we

have tracked them in the original EPI; straight-line constraints can also be applied to guide the

tracking. The tracking of the loci of a vehicle’s front and rear is relatively easy since they are the
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border edges of the loci’s pattern of the vehicle. The cost function for the front or the rear loci

tracking of a gradient image G(y,t) of the EPI is

dGGGyyE κγβα ++−+−= **  (40)

where κγβα  and ,, are the normalized weight coefficients for the measurements of locus’s

straightness, gradient similarity, gradient magnitude and “border-ness” for the point (y,t). In

equation (40), y * is the estimated value for y using the straight locus constraint in the rectified

EPI; *G is the average gradient value of the tracked points; and d is the distance between the

point (y, t) and the outmost edge-like point. The start point of a locus is determined using the

detecting result in the PVI (labeled as “tacking point” in Fig. 11). The locus is tracked by using a

heuristic search method with the cost function expressed in equation (40). The values of

κγβα  and ,, are changed during tracking and in different light conditions. For example, at the

beginning of tracking, we set α=0 and β equals a small value, since a straight locus constraint

based on a few points is not reliable. The weights of locus straightness and gradient similarity

increase when a certain number of tracking points has been obtained. In nighttime operation the

weight κ is set to a relatively small value to reduce the negative effect of the vehicle’s headlights.

When enough points have been obtained for both loci, Two straight lines are fitted to the

rectified loci. The speed and height can be obtained using equations (6) and (7), and the length

can be estimated using equation (8). Fig. 11 also shows the loci tracking and fitting results of

front and rear edges. The tracked points (white curves) are moved up 2 pixels for clarity of the

superimposed display.

5. Real-time Implementation

5.1. System overview

A Visual System for Automatic Traffic Monitoring, VISATRAM, has been implemented on

a PC486 with a frame grabber OFG-100 by Imaging Technology Inc. The resolution of each

frame is 576x768 pixels. VISATRAM can monitor two or three lanes simultaneously in the

current implementation. More lanes can be processed if a faster computer is used. A single
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detection slice window (conceptually a detection line) covers all lanes, therefore a single PVI is

formed. On the other hand one EPI is formed for each lane. In practice the PVI and EPIs are

processed while they are being formed, so the system is operated at frame rate (i.e., 25 frames

per second) while the captured images are active. Fig. 12 gives the system diagram. An example

of real-time operation is shown in Fig. 13. Two lanes were processed so one detection line and

two tracking lines are superimposed on the image. While a car was passing through the detection

line in the right lane, a rectangle is superimposed on the detection slice window. The display-box

of real-time parameters (Table 1) just above the car were those of the last vehicle. The statistical

parameters (Table 2) of each lane are on the top of the display-box of the real-time parameters.

yes

Initialization
(FOE, RLUTs, thresholds,

detection line, lanes)

PVI generation

Vehicle(PVI)?

Background
Updating(PVI)

Vehicle Accumulation
(PVI)

EPI
Generation

Background
Refresh(PVI)

Counts, Width,
Duration

Locus, Speed,
Height, Length

Parameters (class, volume, headway, speed, etc.)

Position
no

Fig. 12.  System diagram
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Fig. 13. An example of real-time operation

5.2 Real-time performance

The aim of VISATRAM is to obtain traffic parameters in real-time using inexpensive

hardware. This is realized by processing only the most relevant data along a detection line and a

few epipolar lines. The execution of the system can be divided into three steps.

Step 1. Image acquisition and transfer. For each frame of the video sequence, several

scanlines around the detection line are transferred into the memory to form the panoramic view

image (PVI). The pixels along each epipolar line of the corresponding lane are read and

transformed to an epipolar plane image (EPI). The transformations are carried out by LUT

operations.

Step 2. Image processing. The operations include ST image smoothing, background

subtracting and ST differentiation, and background updating.

Step 3. Vehicle detection and parameter estimation. This part consists of analyzing the PVI

and EPIs to obtain the 3D size and speed parameters.

We have carried out experiments on hours of traffic video sequences at different times of day

– in the morning with long-casting shadows, at the noon with heavy shadows, in the late
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afternoon when the sunlight is dim, and in the evening when street lamps are turned on. In these

experiments two or three lanes are processed by a PC 486/66. The size of the detection window

is n (1~5 scanlines)×768 (pixels) and the convolution kernel for smoothing is 3×3. The detection

rate is almost 100% (i.e., VISATRAM seldom misses a vehicle). Roughly speaking, the system

works well for vehicle classification and speed estimations in the daytime, and the measurements

are acceptable at night. However the judgement is made only by human observation since ground

truth is not available. Typical experimental results are shown in Table 4 and Table 5. Table 4

shows a statistical result for a 12-minute video of two-lane traffic monitoring. The real-time

performance shown in Table 5 indicates that the experimental system can work at frame rate. It

should be noted that more than half of the processing time is spent in the image acquisition step

because the I/O mapping mode has to be used for data transfer from the frame buffer of the

OFG-100 to the main memory. This problem can be easily solved using a frame grabber with

direct-mapped frame memory. Field rate performance (50 fields per second) is not a problem

using the currently available Pentium PC.

Table 4. Statistical results in one of the experiments

Lane Volume Headway (s) Occupancy (%) Mean speed (km/hr)

1 105 6.86 11.02 % 42.63

2 89 8.08 11.04 % 32.87

Table 5. Real-time performance

Total time(s) Total frames(f) Frame rate(f/s) Step 1 (s) Step 2(s) Step 3(s)

726.39

(100%)

17949 24.7

(real-time)

455.74

(62%)

212.42

(30%)

58.23

(8%)
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                                lane1       lane2

                               (1) PVI        (2) EPI of lane 1  (3) EPI of lane2

Fig. 14 Compact visual representation
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5.3 Compact visual representation

The 2D ST images, the PVI and the EPIs, are highly compressed visual representations for

most of the traffic information. Fig. 14 shows part of the ST images for a real highway traffic

scene. The representations can be used for traffic verification and off-line experiments and

research. Along with other image compression techniques, such as JPEG, huge traffic image

sequences can be highly compressed on the hard disk for future use. Further work is needed to

evaluate the system performance by comparing the results to the ground truth; the representation

of PVIs and EPIs provides an effective way to find the rough “ground truth” by manual

annotation of these images.

6.  Conclusions

We have developed a visual traffic monitoring system, VISATRAM, based on 2D spatio-

temporal image analysis. Experimental results with real traffic images are very encouraging. The

common difficult situations, such as daylight variation, shadows, and nighttime operations, have

been tested. The system is also very cost-effective and real-time performance has been achieved

on a simple 486/66 PC.
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