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ABSTRACT  

Recently Laser Doppler Vibrometry (LDV) has been widely employed to achieve long-range sensing for the purpose of 
Intelligence, Surveillance and Reconnaissance (ISR) in military applications, due to its high spatial and spectral 
resolutions in vibration measurements that facilitates effective analysis using signal processing and machine learning 
techniques. Based on the collaboration of The City College of New York and the Air Force Research Laboratory in the 
last several years, we have developed a bank of algorithms to classify different types of vehicles, such as sedans, vans, 
pickups, motor-cycles and buses, and identify various kinds of engines, such as Inline-4, V6, 1- and 2-axle truck engines. 
Thanks to the similarities of the LDV signals to acoustic and other time-series signals, a large of body of existing 
approaches in literature has been employed, such as speech coding, time series representation, Fourier analysis, pyramid 
analysis, support vector machine, random forest, neural network, and deep learning algorithms. We have found that the 
classification results based on some of these methods are extremely promising. For instance, our vehicle engine 
classification algorithm based on the pyramid Fourier analysis of the engine vibration and fundamental frequencies of 
vehicle surfaces over the data collected by our LDV in the summer of 2014 have consistently attained 96% precision. In 
laboratory studies or well-controlled environments, a great array of high quality LDV measured points all over the 
vehicles are permitted by the vehicle owners, therefore extensive classifier training can be conducted to effectively 
capture the innate properties of surfaces in the space and spectral domains. However, in real contested environments, 
which are of utmost interest and practical importance to military applications, the uncooperative vehicles are either fast 
moving or purposively concealed and thus not many high quality LDV measurements can be made. In this work an 
intensive study is performed to compare the performance in vehicle classifications under the cooperative and 
uncooperative environments via LDV measurements based on a content-based indexing approach. The method uses an 
iterative Fourier analysis and an artificial feed-forward neural network. As our empirical studies have suggested, even in 
uncooperative and contested environments, with adequate training dataset for similar vehicles, our classification 
approach can still yield promising recognition rates. 
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1. INTRODUCTION  
For the purpose of Intelligence, Surveillance and Reconnaissance (ISR) in military applications, Laser Doppler 

Vibrometry (LDV) sensors, as illustrated in Fig. 1, have been extensively employed to achieve long-range sensing. A 
LDV works by sending out a laser beam to a reflective surface, which is then reflected back to and received by the LDV, 
therefore the amplitude and frequency of the surface vibrations are extracted from the Doppler shifts between the 
outgoing laser beams and the reflected ones.  Many advantages are provided by use of LDV sensors. Two most 
outstanding ones are given below. 

1) Non-contact and non-invasive measurement: no mass or pressure is ever applied during LDV’s measurement 
process, thus achieving long-range sensing in a non-invasive manner for ISR purposes, and causing no extra 

                                                
1 This work is released by Air Force Research Laboratory with PA approval # 88ABW-2014-5269. 
2 This work is supported by NSF I/UCRC Center for Surveillance Research, The Wright State University Site. 
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damages in non-contact civil engineering applications. The laser beams employed by most LDVs are mostly eye 
safe (only some high power types may cause damage to human eyes if stared directly for a long duration). By 
contrast, a small dose of radiation from CT or X-ray in medical applications can have enormous side effects to 
human cells; while the water penetration and/or corrosion are always the annoying side effects in traditional 
ultrasonic structural tests. 

2) High spatial and spectral resolution in a long range: the expansive and wide range of amplitudes and 
frequencies offered by LDV sensors from a relatively long distance give researchers and developers valuable 
information in both spatial and frequency domains for intensive analysis, classification and clustering. Based on 
our experiments, LDV signals with a COTS sensor shown in Fig. 1 from as far as 100 feet are of excellent 
qualities. 

The use of LDV in many research and development subjects has become increasingly more popular due precisely to the 
foregoing advantages. Recent promising applications of LDV for bomb detection, artwork (fresco) scanning in museums 
[1], railway inspection and building structure inspection [2] [3] have been reported by engineering researchers across the 
world. 

Many previous efforts have been made to address the issues of 
classifying vehicles making use of LDV data with varying degrees of 
success. Wang and collaborators at the City College of New York 
(CCNY) and the Air Force Research Laboratory (AFRL) [4] developed 
a method to detect and classify civilian vehicles based on multimodal 
audio-visual features, including visual tokens using global geometric 
features and local structure features (Histogram of Oriented Gradients), 
as well as various LDV features, such as short term energy. Radial-
based support vector machine was employed to classify vehicles with 
promising performances.  In [5] Smith and colleagues at AFRL put forward a hierarchical vehicle classification 
approached using laser-vibrometry data was developed, where a wide array of time and frequency domain features such 
as spectral flux, Mel-frequency cepstral coefficients (MFCCs), and number of zero-crossings are tested and 
automatically selected by a parameter selection procedure to generate a tree of different types of vehicles such as vans 
and sedans.  

In the following sections, signatures of LDV signals of utmost importance for classifications will be developed. 

 

2. VEHICLE ENGINE INDEXING AND CLASSIFICATION USING LDV MEASUREMENTS 

LDV data are 1-dimensional signals similar to other sound or music data. Thanks to the immense success of speech 
recognition and music encoding [6], techniques of widely use with great success such as MFCC and short-term Fourier 
transform, were employed to encode and index LDV signals in most state-of-the-art LDV analysis approaches. However, 
to effectively exploit the LDV signals for ISR purposes, the direct use of speech coding methods are problematic since 
they have been carefully tailored to take advantage of human auditory systems (HAS). Two most outstanding 
methodologies behind the success of speech coding are the following two data suppression approaches: 

1) Logarithmic transformation for magnitude suppression: HAS’s sensitivity is not linear to the magnitude I of 
sound, but in direct proportion to its logarithmic transformation, namely, the essential loudness L is determined 
by log(I): 

𝐿 = 10 ∗ log
𝐼
𝐼!
,   

Where I0 is the HAS’s hearing threshold. Because of this, in MFCC the logarithm transformation of the Fourier 
magnitudes applies, which attained great success to exploit/cheat HAS. 

2) Octave band collection for signal length suppression: HAS’s sensitivity decreases as the frequency of the 
sound signal increases. This gives rise to a new quantization methodology referred to as octave band 
quantization: when formulating the digital representation of sound signals, a binning or histogramming 
procedure applies, that is, the values within the same bin or bracket are summed as one value; the size of the 

Figure 1. The LDV sensor used in our tests. 
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bins doubles in the sequence. As an illustration, for a signal of length 15 of constant value 1s: [1 1 1 1 1 1 1 1 1 
1 1 1 1], the resultant octave band collection produces a length-4 vector [1 2 4 8]. 

 
However, in vehicle classification applications, HAS is no longer the judge for the recognition quality, these great 

efforts to successfully exploit the HAS for optimal encoding and recognition purposes are inappropriate or even 
irrelevant any more. Instead, the vibration data collected by LDV sensors should be treated as a sequence of physical 
data or time series: the running vehicle engine is the periodic vibrating source propagating/dissipating its energy over the 
rigid surface of vehicles as vibrational waves, what a LDV sensor picks up is the vibrations or waves on the surface. 
Since the measurement point subtended by the LDV sensor is extremely small, in the order of merely micro meters, the 
surface where the LDV collects the vibrations can be treated mathematically as perfect 2-D planes or sheets, thus in our 
following mathematical analysis, although the vehicle surfaces are of 3-D surfaces, the geometry around the laser 
measurement points is in essence only of two dimensional. The focal points should thus be the phenomenology of 
periodic vibrations on rigid surfaces and the corresponding mathematics, e.g., partial different equations (PDE) for 
waves, and physics, e.g., fundamental frequencies of sheets, modeling and analysis. Most of those concepts and ideas 
targeted for the HAS should be carefully re-examined in this new direction of classification endeavors. 

 
Based on the preceding arguments, using features directly from prior successful efforts of human speech recognition 

is problematic.  To achieve desirable classification results, it is necessary to develop new features by taking account of 
the special nature of vehicle engines. After intensive exploratory data analysis of vehicle engine data available to us from 
the measurement experiments to be detailed in the next section, in order to develop the representations of different 
vehicle engines for effective classification, the following special signatures are observed: 

 
1. Time unit: unlike MFCC where the duration is usually around 40 milliseconds, we will have to encode the rich 

details of the operating conditions of vehicle engines with RPM ranging from several hundred up to several 
thousand. We observed that the RPM resolution with magnitude of about 60 is hard to be picked up by LDV 
sensors, that is, the largest possible frequency resolution must be at least 1Hz (60 RPM). Hence a duration with 
at least 1 second must be subtended by the representation to attain adequate resolution of the frequency details 
of the vehicle engines. By trials and errors we found a duration 1.25 seconds provides the optimal performance. 

2. Analysis domain: a great array of time-domain features such as zero-crossings, short-term moving averages 
have been tested, but none of them presented noticeable usefulness. Even as part of the machine learning 
committee together with other spectral domain (after Fourier transformation) features, no considerable 
performance increase was evidenced by using time-domain features. Consequently in this work we only focus 
on analysis in the spectral domain. 

3. We don’t find the logarithmic transformation suppression to be beneficial. We have also found that still Fourier 
coefficients in different bands play different roles: 
a) Very low AC bands (<5 Hz) are mostly caused by other factors, e.g., wind and turn of driving wheel,  

which are irrelevant to vehicle engines and should thus be discarded.  
b) Very high AC bands (>120 Hz) are mostly due to random noise: in theory some vehicle may attain 7200 

RPM, but those signals are buried by overwhelming noises due to variations in low AC bands. Fourier 
coefficients in these bands are thus also dropped. 

c) For relatively high AC bands (in-between 50-120 Hz): 
the signals are corrupted considerably by noises, yet 
generally the noises are of smaller magnitudes (not 
always). Instead of using the original Fourier 
magnitudes, which will over-stressed noises, after trying 
out suppressing transforms such as square root, cubic 
root, we found that the logarithmic transform over these 
relatively higher bands can yield the best result in 

suppressing noises while keeping useful signals as 
much as possible. 

d) In Cases b) and c), the higher AC bands are either 

Figure 2 periodic peaks due to fundamental 
frequency. 
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suppressed or discarded altogether to reduce the impacts of noise in those bands. However, As depicted in 
Fig. 2, some strong signals due to the fundamental frequency of the vehicle surfaces are standing 
frequencies, i.e., the peaking magnitudes present repeatedly all through the entire spectra with strong and 
compactly supported energy. Simply suppressing or even dropping these valuable signals in higher bands 
will lose valuable information about the vehicle engines and the surfaces. Consequently, in view of the 
compactness of energy and periodicity of these special phenomenology, a second Fourier transform applies 
to the signal, these compact and periodic signals corresponding to the fundamental frequencies of the 
vehicle surface are well preserved in the relatively lower bands of the double Fourier transformation 
domain. The second application of Fourier transform over the magnitudes of the results of the first Fourier 
transform is similar to the pitch information in music encoding [7], this part of information kept in our 
vibration representation is thus called the pitch index. While those encoded in cases b) and c) are the 
ordinary spectral domain, which is the actual tone information. If we view the vehicle as a large music 
instrument blew by the engine, the signals picked up by the LDV contain the tone (first application of 
Fourier transform) and pitch information as a complete picture of the signature of vehicle engines. 

e) Last but not the least, the default measurements made by LDV are velocity, a first derivative ut of vibrating 
distance u. However, the partial differential equation (PDE) for a 2-D wave function on a plane is 

∆𝑢   = 𝑎  𝑢!!                                                                                                                                                                                (1) 
Where ∆  is the Laplacian operator: the sum uxx+uyy of the second spatial derivatives of u. As afore-
mentioned, the place for the small laser point is an actual 2-D space, according to the foregoing wave PDE, 
to measure the innate vibration 𝑢!!   of the vehicle surface as a proxy of the engine’s vibrations, the second 
time derivation  𝑢!! should be employed. Consequently in our work the recorded LDV data are further 
differentiated to change it to the correct representation of the vehicle surface vibration 𝑢!!.  
 

Based on the preceding exploratory studies, the following vibration tone-pitch indexing scheme is formulated 
below. 

 
1) Basic representative unit is the vibration data d with duration s = 1.25 seconds  
2) Apply Fourier transform to d and only keep the magnitudes:  

                                    Fd = |FFT(d)|                                                                          (2) 
3) High frequency detail suppression: 

           Fd(1 : Hhigh) = Fd(1 : Hhigh);   Fd(Hhigh+1 : end) = |log(Fd(Hhigh+1 : end))|                    (3) 
4) Band passing step: 

                                    Sd = Fd(Hhigh : 2*Hhigh),                                                                (4) 
5) Apply another Fourier transform on Fd use the band-passed Pd to represent the pitch information of d: 

                                    Pd = |FFT(Fd)(Hlow : Hhigh) |                                                              (5) 
6) The vector [Sd, Pd] is the spectral-pitch vibration index of the time series d of duration s 

 
From our test, this spectral domain index carries sufficient information to classify different types of vehicle engines 

for all three sets of experimental data with increasingly challenging properties. We tried out more than ten different 
ready-made indexes such as MFCC and STFT, combined with different mature classifiers such as kNN (k-Nearest 
Neighbor), random forests, AdaBoost and variant LogitBoost [8], however, none of them can deliver accuracies higher 
than 60%. Almost all of them can only yield accuracies 30~40%, not much better than the random guess 25%. Therefore 
in this work we only report classification results based on our tone-pitch index as the representation of engine types. 

 
 
3. EXPERIMENTS AND CLASSIFICATION REPORTS 

3.1. Three sets of experimental data 
To test the viability of our new vibration indext, well-controlled LDV measurements of vehicles are needed. As a 

team sponsored by the Air Force Summer Faculty Fellowship Program (SFFP) in the summer 2014 and NSF I/UCRC 
Center for Surveillance Research since September 2015 to now, we conducted three sets of experiments with different 
targets in mind. 
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Dataset 1—the WSU 2014 dataset 
(WSU-14) 

During the summer of 2014, from 
June 30 to August 5, together with several 
other summer interns and AFRL scientists, 
the first two authors (Wei and Liu) 
participated in an AFRL project headed by 
the last two authors (Mendoza-Schrock 
and Vongsy). In this project our team 
collected LDV measurements in the 
parking lot of the Nutter Center of Wright State University (WSU) for 12 civilian vehicles with four different types of 
engines, namely, Inline-4 (I4) and V-6 (V6) for 4-door sedans, 1-axle (1A) and 2-axle (2A) diesel engines for semi-
trucks. All of them are collected multiple times under different weather conditions. During measurement time for each 
vehicle, the vehicle was put in parking; the driver was asked to vary the pushing of the gas pedal to let engine run at the 
condition Idle (no pedal pushing), 2000 RPM (rotations per minute), sweep (the RPM indicator moves slowly from idle 
to 3000 rpm and backwards), and Idle with fan/radio on. As shown in Fig. 33, 24 small squares of reflective tapes were 
put around the vehicle surfaces: three on the front and back bumpers each, six on the passenger side, and 12 on the driver 
side. The LDV sensor was wheeled around the vehicle recording four run conditions for each of the 24 locations for a 
duration of 30 seconds—during the 30-second recording the LDV is stationary and the driver was asked to perform and 
literally stick to the 4 designated operating conditions. One complete measurement of a vehicle hence generated around 
100 30-second LDV measurements. The same vehicle was measured at least twice at different times to see if the 
variations in temperatures and other weather conditions will significantly change the performance of classification. 

 
Dataset 2—the CCNY Nov. 2014 dataset (CCNY-14) 

In November 2014, three months after the first dataset collection in WSU, sponsored by the NSF CSR grant, the first 
two authors conducted data collections on two more I4 vehicles in CCNY parking lot, shown in Fig. 2, using exactly the 
same methodologies used in the WSU dataset: The operating conditions and placements of reflective tapes as just 
described in dataset 1 are the same. These two cars are not the used in the dataset 1 collection, and the weather condition 
is even more different from the ones in the summer. This set of data should serve as yet another even more challenging 
test data to inspect the performance of our vehicle engine classification algorithms. 

 
Dataset 3—the CCNY Jan. 2015 dataset (CCNY-15a and b) 

In Jan. 2015, in CCNY parking lot the first two authors performed 
another data collection: this time instead of always taking LDV 
measurements over parking vehicles where no movements are involved, 
which is unrealistic in real world scenarios, two subsets of experimental data 
were collected on the long reflective tape placed on the passenger side of an 
I4 car, as demonstrated in Fig. 4.  

a) The car was parked and not moving, while the driver was 
performing the three operating conditions (excluding the 4th 
condition—radio on, which was found to be entirely 
undistinguishable from Idle from the two previous datasets) as 
before, instead of letting the LDV sensor fixating on one small square of reflective tapes for a certain 
duration a the measurement of the surface vibration, the sensor now panned from the front to the back end 
or from back-forth while recoding the vibrations from the tape. The purpose of this mobile test is to see 
when the sensor is moving during data collection, if the signals recorded on the vehicle surface are still of 

                                                
3 The two vehicles shown are those taken in the second dataset—the CCNY dataset. The AFRL vehicles’ dataset is not 
shown here for security reasons. The placements of reflective tapes on the vehicle surfaces and LDV measurement 
procedures are the same: the first two authors participated in both dataset collections using the same LDV sensor shown 
in Fig. 1. 

Figure 3. Two I4 cars with reflective tapes. Left: the passenger side; right: the 
front side. 

Figure 4 Tests of moving sensors or vehicles. 
The long reflective tapes placed along the 
passenger side. 
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acceptable qualities. We conducted this test several times with different recording durations to gain deeper 
insights into the mobile sensor case.  

b) This time the LDV sensor is stationary, while the car was moving back and forth when the LDV recorded 
the vibration, some minor re-adjustments may be applied just to make sure the laser point stayed on the 
reflective tapes to guarantee the data quality4. To allow for at least a data duration of at least several 
seconds, the car has to move very slowly. 

 
The third dataset is one step closer to the practical use of the LDV sensor in real world ISR applications, but still a 

small step since the movements involved are admittedly much slower than real urban traffics. 
 
3.2 Procedures of classification performance evaluations 
In our performance tests, as usual in machine learning [9], all the datasets available to use are partitioned into three 
separate sets for different purposes: 
1. Training and cross-validation (CV) data: one complete (4 operating conditions for all 24 measuring point) 

measurement of one randomly chosen vehicle for each of the four types of engines serves as the training and 
CV data. For each type, four randomly chosen points, each with all its four operating conditions, are opted as 
the training data; while the remainder data serve as the CV data points for each engine. The training data were 
used to train classifiers; whereas the CV data were used to tune the optimal parameters that give rise to the best 
possible classification accuracy for different classifiers, for instance, the number k in kNN, and number of 
neurons in the hidden layer of a neural network. 

2. Test data: All the measurements that were not used to train and validate the classifiers are kept as the objective 
data to produce the hard evidence of the classifiers’ performance. 

As described in the preceding section, the duration of the basic unit of our vibration tone-pitch index is 1.25 
seconds; however, each data recording segment d for all three afore-mentioned datasets is longer than that. From the data 
d a large set of overlapping sequences of duration 1.25 seconds are first formulated. For a 30-second measurement, from 
the ith  1.25-second segment si, if the next (i+1)st segment si+1 is formed by shifting the 1.25-second window by 0.25 
second, in total d can give rise to more than 100 1.25-second segment, whose tone-pitch indexes are generated as an 
array of positive data points corresponding to the engine type label the original data d subtended. As can be seen, this so-
called framing procedure in the training phase can generate more training data points to render the attained classifier 
more reliable. Whereas in the CV and test phase, to determine the label of a given data d, we just need to first frame it 
into an array of 1.25-second overlapping data sequence si’s, the class label li  of each si is next dictated by the trained 
classifier. The final label of d is arrived at by casting the majority vote of all the associated li’s.  

To seek out the best classifier(s) for our task, thanks to the MATLAB’s various toolboxes such as statistics, image 
processing, computer vision, and neural network, we can easily call upon a wide array of different classifiers to produce 
evidential reports of our experimental datasets. There are more than ten different classifiers that are available, after 
intensive tests, the most competitive ones are used in this work to report the classification performances: they are 
Adaboost, kNN, random forest, LogitBoost, and Neural network. More mathematical and algorithmic details of these 
mature classifiers can be readily found in most machine learning textbooks, e.g., [9].  

The CV and test accuracy rates over all four test datasets, i.e., the WSU 2014 summer set, the CCNY 2014 Nov. set, 
and the CCNY 2015 a) and b) sets, are summarized in Tab. I. 

 
Table 1. Summary accuracy rates using five classifiers for the four datasets 
  

Data  AdaBoost Random Forest kNN logitBoost Neural network 

CV 96 95 97 96 97 

Test1: WSU-14 75 74 68 75 96 

Test 2: CCNY-14 37 29 53 34 96 

                                                
4 So far without reflective tapes, the quality of the LDV measurements is still unacceptable.  
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Test 3: CCNY-15a 23 16 60 20 97 

Test 4: CCNY-15b 46 32 68 39 99 

 
From Table 1 it can be consistently observed that the neural network, the one chosen by the CV procedure to have 

the optimal performances has 20 neurons in the hidden layer, attained the best performances for all four test phases. 
Since the classifiers were trained using a small subset of WSU summer data, while the test data in Tests 2-4 were half a 
year later in entirely different weather (Fall and winter vs. summer), and different scenarios (moving sensor in test 3 and 
moving cars in test 4 to simulate the uncooperative scenarios), it is understandable that the four general classifiers failed 
miserably to as low as 16%, the accuracies of the NN are exceedingly outstanding: the linear combinations and sigmoid 
thresholding involved in this shallow network must have encoded the RPM and surface fundamental frequencies in the 
optimized manner.  

 

4. CONCLUDING REMARKS 

In this paper, after analyzing the properties of the state-of-the-art speech recognition methodologies, a new indexing 
scheme to better represent the contents of the LDV measurements for the purpose of engine type classification in the 
uncooperative environments, the vibration tone-pitch index is put forward as a result. Based on this index we run tests on 
four datasets we collected with the sponsorship from AF SFFP, AFRL, and NSF CSR from WSU, CCNY for parked or 
moving vehicles using stable or moving LDV sensors. We discovered that although most classifiers, such as adaboost, 
random forest, and kNN, cannot achieve desirable classification accuracies, the neural network with 20 neurons in the 
hidden layer is able to deliver consistently outstanding performance with accuracies consistently better than 96% in all 
CV and test cases. As reported in another paper by our group [10], even the deep net cannot attain this high level of 
performance in a consistent manner.  

Currently we are actively working on several fronts to make our work on LDV sensor based classification of more 
utility to ISR efforts. These include:  

1) Analyze the inner workings of the neural network with the hope of optimal spectrum feature selection, so that 
instead of using more than 100 numerical values (due to the tone-pitch index), we can use data of much reduced 
dimension to achieve similar classification performances [11].  

2) Right now the allowable movements of vehicles and sensors are still in very slow motion, which is far from the 
authentic uncooperative vehicles that will move much faster. Readjustments have to be made to the index to reduce the 
duration of coding vectors, namely, from 1.25 seconds to the order of 0.1 second, then the practical uncooperative 
vehicles can be realistically handled.  

3) Given the immense success of deep net [12] [13], we need to investigate more about the reason why it cannot 
achieve performances similar to the shallow neural network yet. One of the reasons could be the small size of the 
training data and lack of variety of training objects to sufficiently train the deep nets. In the current settings it may not be 
realistic for us to produce training data with size, say, more than millions of data points, that the deep net can have an 
edge. However, as more datasets are available, we will see if the deep net can improve its performances as abundantly 
evidenced in many other disciplines. 

 

REFERENCES 
 
[1]  P. Castellini, N. Paone and E. Tomasini, "The laser Doppler vibrometer as an instrument for non-intrusive 

diagnostic of works of art: application to fresco paintings," Optics & Lasers in Engineering, vol. 25, pp. 227-246, 
May 1996.  

[2]  D. Willemann, P. Castellini, G. Revel and E. Tomasini, "Structural Damage Assessment in Composite Material 
using Laser Doppler Vibrometry," in Int. Conf. on Vibration measurements by Laser Techniques, Ancona, Italy, 
2004.  

[3]  K. Kubota, "Development of a remote non-contact measurement system combining laser doppler vibrometer and 



 
 

 
 

 8 

total station for monitoring of structures," in The 3rd Int. Conf. on Structural Health monitoring of Intelligent 
Infrastructure, 2007.  

[4]  T. Wang, Z. Zhu and C. Taylor, "A multimodal temporal panorama approach for moving vehicle detection, 
reconstruction and classification," Computer Vision and Image Understanding, vol. 117, pp. 1724-1735, 2013.  

[5]  A. S. A. Smith, S. Kungas, M. Derking and O. Mendoza-Schrock, "Vechicle Classification using Laser-
Vibrometry," in SPIE DSS 111 Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent 
ISR V, 2014.  

[6]  X. Huang, A. Acero and H. Hon, Spoken Language Processing: A Guide to Theory, Algorithm, and System 
Development, Prentice-Hall, 2001.  

[7]  W. Hartmann, Principles of Music Acoustics, Springer, 2013.  
[8]  R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.  
[9]  K. P. Manning, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.  
[10]  J. Wei, K. Vongsy, O. Mendoza-Schrock and C. Liu, "Vehicle engine classification using spectdral tone-pitch 

vibration indexing and neural network," Int. J. of Surveillance and Monitoring Research, 2015 (in revision).  
[11]  J. Wei, "On Markov Earth Mover's Distance," Int. J. on Image and Graphics, 14(4), 2014.  
[12]  G. Hinton and R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, 

no. 5786, pp. 504-507, 2006.  
[13]  J. Wei, "Small moving object detection from video sequences," Int. J. of Image and Graphics, vol. 14, no. 3, 2013.  
 
 

 


