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Persistent Aerial Video Registration and Fast
Multi-view Mosaicing
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Abstract—Capturing aerial imagery at high resolutions often
leads to very low frame rate video streams, well under Full
Motion Video standards, due to bandwidth, storage, and cost
constraints. Low frame rates make registration difficult when an
aircraft is moving at high speeds or when GPS contains large
errors or it fails. We present a method that takes advantage
of persistent cyclic video data collections to perform an online
registration with drift correction. We split the persistent aerial
imagery collection into individual cycles of the scene, identify
and correct the registration errors on the first cycle in a batch
operation, and then use the corrected base cycle as a reference
pass to register and correct subsequent passes online. A set of
multi-view panoramic mosaics is then constructed for each aerial
pass for representation, presentation and exploitation of the 3D
dynamic scene. These sets of mosaics are all in alignment to
the reference cycle allowing their direct use in change detection,
tracking, and 3D reconstruction/visualization algorithms. Stereo
viewing with adaptive baselines and varying view angles is
realized by choosing a pair of mosaics from a set of multi-view
mosaics. Further, the mosaics for the second pass and later can
be generated and visualized online as their is no further batch
error correction.

Index Terms—Image registration, aerial imagery, stereo-
viewing, drift correction, wide field-of-view, persistent imaging

I. INTRODUCTION

Persistent aerial imaging at high resolutions is vital for
many applications such as search and rescue, surveillance,
and mapping applications. The challenges that arise in storing,
presenting, and exploiting aerial data are especially critical
for time-sensitive operations such as search and rescue, and
surveillance. The ability to create wide field-of-view panora-
mas, 3D reconstructions, 3D visualizations, and automated
change detection and tracking would all help operators parse
information quicker.

While there are many challenges related to sensor limita-
tions, scene geometry, computation, and storage, we address
two problems with a fast solution. First, persistent capture
at high resolutions leads to low frame rates, well under Full
Motion Video standards. In aerial capture scenarios, this leads
to images with a low amount of overlap from frame to frame,
50% or less. Scene features can sometimes only be seen
from two consecutive frames making registration problematic.
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The second problem is the large amount of frame data being
generated. At high resolutions it is difficult or prohibitively
costly to capture full motion video, a storage device may
be running at its bandwidth capacity while capturing 20+
megapixel images at 2-5 frames per second, continuously
for up to hours at a time. There is a need to efficiently
summarize and present (visualize) all of the data to operators
and algorithms exploiting the video data. For the use of this
paper, we will use the term ”video” to refer to both full motion
video and low frame rate video capture.

Aerial vehicles and platforms can image a large area of
interest by continuously sweeping an area, either by circling
above the area or by forward and back sweeps of the area.
In most cases these continuous data collections are interested
in detecting changes and tracking movers in unpredictable
and cluttered environments. This can generate hours of video
collection which may have to be analyzed by human operators.
In these cases it is useful to provide operators a mapping
of the aerial data as it is received, as well as cues to the
changes that are detected over time. The video being captured
in these cyclic patterns also exhibit strong motion parallax as
the collection is often happening at various altitudes.

Typically the first critical step in making sense of the
enormous amounts of persistent aerial video data is registra-
tion. Bundle adjustment is a robust registration method that
produces accurate results but it is a computationally costly
method. There is a need for online methods that produce
results that approach the accuracy of bundle adjustment while
still generating results immediately. Subsequent exploitation
algorithms, such as 3D reconstruction, change detection, track-
ing, will depend on the correctness of the imageries registra-
tion. SLAM (simultaneous localization and mapping) methods
are often applied in such scenarios, but SLAM can also be
affected by the small amount of video frame overlap.

Multi-view stereo mosaics produce a representation of aerial
videos that preserves 3D and moving target information while
spatially condensing unchanging static structures in the video.
These mosaics work well at representing an area after a single
sweep, but in persistent surveillance cases their use needs to be
extended to handle the multiple sweeps of the area of interest.

In this paper we present a method that takes advantage
of the properties of persistent cyclic video data collections
to perform an online registration with drift correction. We
assume that there is an area of interest being imaged by an
aircraft which continuously circles above or sweeps an area
with a continuous flight pattern. We split the persistent aerial
imagery collection into individual cycles of the scene. We
identify and correct the registration errors on the first cycle in
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a batch operation, and then use the corrected base cycle as a
reference pass to register and correct subsequent passes online.
Multi-view stereo mosaics are then constructed for each aerial
pass for representation, presentation and exploitation of the
3D scene that includes moving targets (movers). These sets of
mosaics are all in alignment to the reference cycle allowing
their direct use in change detection, tracking, and 3D recon-
struction/visualization algorithms. Further, the mosaics for the
second pass and later can be generated online as there is no
further batch error correction.

The main contributions of the paper relate to the tasks of
image registration and mosaicing for video data collection
patterns that are persistent and cyclic. First, we present a
method that produces a base reference for the alignment of
video frames, from the video itself (a base cycle from the
cyclic video). With this, there isn’t a need to use an external
reference image for alignment (such as satellite images or
DEM’s, Digital Elevation Maps) which typically present a
problem to alignment as the video frames and external ref-
erence image are captured with different sensors at different
times. Second, both the base cycle and the subsequent cycles
have multiple views (layers) that exhibit motion parallax that
can be used for interactive stereo-viewing, 3D reconstruction
and mover detection. These multi-view panoramic mosaics
that are generated for each cycle allow for interactive stereo
viewing with varying baselines and varying view angles. These
sets of multi-view mosaics can also be used for more accurate
and robust 3D reconstruction [1]. Third, instead of directly
registering the upcoming video frames to a layer of the
base cycle, which is a multi-perspective image instead of a
perspective image, only the motion parameters of the video
frames that produce the base cycle are used to find the closest
image among them to the current video frame, therefore the
registration is between these two video frames. This allows all
the video frames from different cycles to be aligned together,
and multi-view mosaics can even be generated using frames
from multiple cycles.

The remainder of this paper is organized as follows: Section
II lists related works, Section III describes the details of our
method. Section IV presents results on real data and Section
V concludes the paper and presents future research directions.

II. RELATED WORK

Video panoramas and mosaics have become a common
way of representing the imagery of a scene captured by a
moving camera. Although panoramas have been studied and
understood for many years, the research indicates that one
of the biggest challenges to creating seamless and drift-free
panoramas is still in computing a correct image alignment for
long sequences with obvious motion parallax.

The works by Hsu et. al. [2], Shum and Szeliski [3], and
recently Lovegrove and Davidson [4] have proposed methods
that construct globally aligned panoramas for rotating cameras
by optimizing camera poses. In the case of [4] the method is
real-time with the use of GPU acceleration. The work of Zhu
et. al. [5] proposed a method for fast panorama generation
for rotating cameras with a global constraint. Alignment of

video images that are augmented with position metadata (from
GPS and INS/IMU sensors) has been studied in the work of
Heiner and Taylor [6], Oskiper et. al. [7], and Zhu et. al.
[8]. The panoramas obtained in these methods provide the
benefit of being geo-referenced, but the results will require
local alignment improvements due to GPS/INS sensor errors.
These also require additional hardware. Other approaches for
the global alignment of imagery are to use reference images
(e.g. satellite images), a known 3D model (such as a DEM)
or known scene landmarks. These methods have recently been
studied by Lin et. al. [9], and Zhu et. al. [10] and Oskiper et.
al. [11]. Olson et. al. [12] describe techniques for registering
images from sequences of aerial images captured of the same
terrain on different days. The goal of their work is to make
registration robust to changes in weather, by using both robust
template matching and SIFT-like feature matching. Motion
parallax is not involved in registration and no mosaics are
generated.

Much of the work has dealt with rotating cameras, or
cameras that translate small distances. For panoramas from
aerial imagery, which causes large translations, the research
has focused on methods that make use of GPS/INS data [6],
[7], [8] and/or a 3D model and landmarks for global imagery
alignment [10], [11].

Constructing panoramas also require an algorithm to com-
bine the imagery such that seams between the images are not
noticeable. Peleg and Herman, in [13], described panoramas
that perform a blending of panorama pixels where multi-
ple aligned images overlap. The works of Agarwala et. al.
[14], Burt and Adelson [15], and Jia and Tang [16] have
all described general purpose methods for smooth seams in
combined imagery. Recently, Gao et. al. [17], have proposed
a method that uses a dual-homography warping to combine
images with two dominant planes with smooth seams. Con-
structing panoramas for long sequences has been studied by
Peleg and Herman [13], in Zheng’s work on Route Panoramas
[18], the parallel-perspective stereo mosaics of Zhu et. al. [19],
and the multi-viewpoint panorama work of Agarwala et. al.
[20].

The work of Sawhney, et.al. [21] considers video from mul-
tiple passes over a scene, determines a topology for the video
frames and constructs a mosaic by combining all imagery into
one sequence. Our work differs in that we consider long video
sequences over large areas and spans of time, and we preserve
3D parallax information by constructing multi-view mosaics
for each pass of the scene.

The general registration problem is addressed by bundle
adjustment [22] and SLAM [23] and Visual Odometry [24]
alignment components. Bundle Adjustment and its implemen-
tations work robustly in scenes where specific features are
viewed from many image frames with different views. In
persistent aerial scenarios where we have little scene view
overlap, bundle adjustment will achieve its best results only
after multiple sweeps of the scene have been taken, providing
enough features viewed from multiple frames. SLAM and
visual odometry will also face similar problems with a lack
of features to match in cases where the view overlap is small.
The use of keyframes would increase computation significantly
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Fig. 1. The CLIF 2007 sequence makes 4 approximately circular passes of an area. The units in both horizontal and vertical axes are in pixels. The dashed
black box represents the last frame. Red boxes represent every 50th frame. (a) Image alignment without error correction. (b) Image alignment after error
correction.

since every frame or two may become a keyframe.
In this work we have focused on long persistent video

sequences with large translational motion with an approximate
nadir view. However, the motion model is not a simple
linear motion that can be modeled by a linear push broom
imaging geometry [19]. The data we consider in this paper
has circular motion camera trajectories. We perform global
alignment using only the imagery itself since it is possible for
GPS/INS to fail and since some areas may not have accurate
or existing 3D DEM’s. We also propose a method to combine
long video sequences into multi-view stereo panoramas using
a layering approach.

III. PERSISTENT AERIAL VIDEO REGISTRATION WITH
DRIFT CORRECTION

In scenarios where persistent imaging of a large area is
required, an aerial vehicle will ”circle” above the area of
interest. Generally, the aerial vehicle will attempt to follow
some ideal cyclic path many times. Due to wind, vehicle
speed, and environment conditions each run of the path varies
from the ideal path and will likely capture images at different
locations and with different camera poses. Image registration
is therefore required to align the imagery across runs, and
ultimately to a georeferenced space.

Using on-board GPS/INS sensors is required to georef-
erence the imagery, and can also be used directly to align
the imagery for panorama purposes. But, the measures made
by GPS/INS devices come with errors due to hardware, and
used directly will produce panoramas with large apparent
errors and discontinuities. Additionally, GPS availability can
be compromised or spotty in many environments.

Using a solely image-based registration approach can pro-
duce seamless panorama results, as the errors between consec-
utive frame-to-frame registration are small. But solely image-
based registration approaches suffer from error accumulation
which often leads to large drifts over long imagery sequences.
Figure 1a, shows how drift can accumulate over 4 passes
of an area, the correct image path for this example was a
continuous circular flight as shown in Figure 1b. Using results
with significant drift in sequences that are known to produce
a cycle, will produce results like those in Figure 4a, where

the path is not closed. In the following subsections we present
our image-based approach to align images while eliminating
global drift for multi-pass aerial video. The base cycle is first
corrected in a batch operation and used as a reference for
online registration of subsequent cycles.

A. Motion Estimation

Working with video data benefits image-based registration
methods since video frames are captured sequentially provid-
ing images with considerable overlap. Additionally illumina-
tion changes in naturally lit scenes will occur gradually in a
video sequence. For these reasons we use a standard frame-
to-frame registration approach to estimate camera motion.
We use a pyramidal block-based correlation method [5] to
determine the interframe affine parameters (translation (tu, tv),
rotation θ, and scale s) between consecutive frames. In our
simplified motion model the translation (tu, tv) accounts for
2D translational changes along the X and Y axis and small
pan and tilt angular changes of the camera; the rotation θ
accounts for heading changes between two frames; and the
scale s accounts for focal length and small altitude changes of
the camera. We are making an assumption about the planarity
of the scene, that while not true, it captures camera motion
based on a dominant plane that we exploit to construct multi-
view stereo mosaics.

B. Base Cycle Registration and Error Correction

We use the method presented in [25] and based on [26] to
estimate and correct the registration errors for a single pass on
a cyclic path. In [26], Sharp et. al., present an analytic method
to produce globally consistent registrations of multi-view data
in cycles. By performing pairwise registrations (and measuring
error) of each view of their 3D scan data, they were able
to compute the global error obtained, and they redistributed
that error in a weighted manner across all pairwise registra-
tions, yielding a globally and locally consistent registration.
Unlike bundle adjustment and other optimization methods, this
method only requires an error criterion, and does not require
that features be matched across all views or for registration to
continuously take place. Since the interframe alignment errors
are typically small (∼2-5 pixels), the redistribution fairly
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accurately reflects the true motion; additionally the weighted
process ensures a reasonable redistribution of errors.

This method is applied to the first full pass in a multi-pass
video sequence,which we call the base cycle, and apply as
follows:

We compute the interframe motion mk between consecutive
frames k − 1 to k of the base cycle. The global motion, Mk,
for any frame k is computed by taking the first frame of the
sequence as the global reference frame, such that:

Mk = mkMk−1 (1)

where:
M1 = I. (2)

With a complete base cycle consisting of K frames, the
computed MK should close the cycle assuming no errors.
More specifically, for testing purposes and to check the error,
we insert a copy of frame 1 at the end of the sequence as frame
(K + 1); ideally without errors we expect the global position
of frame (K + 1) as computed through accumulation, to be
identity, I, with regard to the first frame. (In practice we do
not use frame K+1, and we note that identifying frame K to
terminate the first cycle in the video is a separate problem. We
have taken the approach to automatically search for frame K
by matching each frame with frame 1, and selecting the frame
that best matches as in [5].) But due to the accumulation of
small errors at each frame that is not the case:

I = M1 6= MK+1 = mK+1MK (3)

Instead, MK+1 represents the total accumulated resid-
ual error in the cycle for each motion model parameter,
(Tures, T vres,Θres, Sres). We redistribute these errors across
all K base cycle frames such that the corrected global path is
constrained to a cycle. We take a weighted error redistribution
approach by assigning an error weight to each frame based
on a SAD (sum of absolute differences) error measure on
the pixel intensities of the overlapped region between frames.
Thus, each frame k is assigned:

wk = (SADk)/

K∑
i=1

SADi (4)

where the higher the weight, the more error is distributed to
that frame. We chose SAD empirically, but other error criteria
such as SSD, MSE, or RMSE can be used.

The procedure for base cycle registration and error correc-
tion is then:

1) Compute global position of all K + 1 frames (M)
2) Determine the residual rotation and scale (Θres, Sres)

from MK+1

3) Compute updated global positions (M′) redistributing
(Θres, Sres)

4) Determine the residual translation (Tu′res, T v
′
res) from

M′K+1

5) Compute updated global positions (M′′) redistributing
(Tu′res, T v

′
res,Θres, Sres)

The translation parameters are dependent on rotation and scale
requiring that they be treated first. Once complete we have:

M′′K+1 = M′′1 = I. (5)

This yields a result which is globally consistent by redis-
tributing the error across the entire sequence. Section IV will
show examples of its use. The base cycle registration and error
correction presented here is a batch operation, that cannot be
applied until all of the frames are available. But it is not a
costly operation, because interframe computations are done
online, and the global batch operation simply operates on the
parameters of M, and does not require any additional image
matching and registration operations.

C. Online Registration of Subsequent Cycles

In persistent aerial video we may have an aerial platform
image the area of interest for hours. By using the method
described in the previous section we can isolate a single cycle
and correct any errors that accumulate over the sequence. It
would be possible then to apply the same method to each
subsequent cycle after the base cycle. The disadvantage with
such a strategy is that it can only be applied at the end of each
cycle. Furthermore, even though such a strategy could correct
the end-to-end errors in each cycle, there is no guarantee
that all the frames from across two or more cycles can be
aligned. It is more desirable to provide immediate results to
operators that are also registered to a single common reference.
Here we present a spatial-temporal registration method that
uses the corrected base cycle as a reference to perform an
online registration of the subsequent cycles. Such a registration
is desirable because it treats the error online to produce a
corrected global motion estimate for each frame, and cycles
are identified automatically.

We proceed by assuming that we have the corrected base
sequence M′′, which we now call MB from the previous
section for the K base frames. We then treat the remaining
sequence of frames as t, from 1 to the end of the sequence
n (which consists of an unknown number of cycles). As each
frame is being captured we compute a temporal interframe
parameter estimate from frames (t− 1) to t which we denote
as mt←t−1. We also compute a spatial interframe parameter
estimate from frame k to t which we denote as mt←k, where
k is a frame from all previous cycles (initially only the base
cycle) located nearest to frame t globally. We now compute
the global position estimate, Mt, by integrating the spatial and
temporal motion estimates for each frame t.

We take
M0 = MB

K (6)

so that we can compute

MT
t = mt←t−1Mt−1 (7)

as our temporal estimate. We also compute an error measure
for the temporal estimate, SADT

t , using the SAD measure.
The estimated global location MT

t is then used to determine
the nearest frame k from the base cycle, which we use to
compute

MS
t = mt←kM

B
k (8)

as our spatial estimate. We once again compute an error mea-
sure for the spatial estimate, SADS

t , between the overlapped
intensities of frames t and k using the SAD measure. We use
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Require: All Panos set to empty
1: procedure GENERATEPANORAMAS(Imgs, Panos)
2: N ← COUNT(Imgs)
3: L← COUNT(Panos)
4: for t← 1 to N do
5: img ← Imgs[t]
6: for l← 1 to L do
7: pano← Panos[l]
8: for all img(x, y) 6= empty do
9: (x′, y′)← PROJECT(img, x, y)

10: if pano(x′, y′) is empty then
11: pano(x′, y′)← img(x, y)
12: img(x, y)← empty

Fig. 2. GENERATEPANORAMAS procedure.

the error measures to weigh both results and integrate them
into a final result

Mt = wT
t M

T
t + wS

t M
S
t (9)

where
wT

t = (SADS
t )/(SADT

t + SADS
t ) (10)

wS
t = (SADT

t )/(SADT
t + SADS

t ). (11)

We note that on occasion a frame k may be unavailable due
to the motion trajectory temporarily leaving the ideal cyclic
path, or because errors are too great. To handle these cases,
we maintain a standard deviation of the spatial errors, along
with a mean motion model. When the errors are outside of 3
standard deviations we rely only on the temporal estimate. As
more cycles are taken, there will also be more frames in the
history to locate a frame k, we also use this for correction.

This weighing approach adds robustness to the registration
of persistent videos. In our implementation we have relied on
the SAD error measure as it has worked well in real world
scenarios. But other suitable error metrics (MSE, RMSE,
and SSD) can be substituted in. Furthermore, we have found
the simple weighting approach produces very good results,
even though this spatial-temporal registration approach can be
generalized to a more general framework such as one using
Extended Kalman Filtering; this would incorporate the error
dynamics of both spatial and temporal registration.

Additionally, as we have presented the method, no further
batch error correction is required. This permits us to begin
generating multi-view mosaics immediately on the subsequent
cycles. It also permits us to begin other video exploitation such
as change detection and moving object detection, since the
frames are all in reference to the error corrected base cycle.

D. A Layered Approach for Fast Multi-view Mosaic Genera-
tion

After computing the camera motion and correcting its global
drift we can construct a set of multi-view panoramas for
the video scene. We use a layered approach for fast multi-
view mosaic generation. The basic principle is the following.
Based on the global motion parameters, buffers for multiple
empty layers are created, and are laid out in the order of the
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Fig. 3. Illustration of the GENERATEPANORAMAS procedure. Under ideal
conditions, each multi-viewpoint panorama pano[i] is constructed from a
similar view angle on the scene.

1st layer, the 2nd layer, and so on, each below the previous
one, as can be seen in Figure 3. All of the original frames
are warped based on their global motion parameters and the
warped frames are laid out in the mosaic space. Starting from
the first layer at the top, pixels of each warped frame are placed
down through all the layers until they hit the first empty layer
and it gets drawn there. If it hits a layer (layer n) with existing
pixels at its location, it continues onto the next layer (layer
n+ 1), until it falls on an empty layer.

The procedure GENERATEPANORAMAS (Figure 2) outlines
our approach to constructing a set of multi-view panoramic
mosaics. The procedure takes as input an ordered sequence
of the video images (along with its computed parameters),
Imgs, and a reference to the ordered sequence of multi-
view panoramas, Panos. The procedure iterates through all of
the images in the sequence; then for each panorama, starting
with the top one, we draw all non-empty pixels in img onto
the current pano, and set those drawn pixels to empty; this
operation is performed for each of the multi-view panoramas.
The function PROJECT is not outlined, but simply maps (x, y)
in its local img coordinate space to (x′, y′) in the global
pano coordinate space using Mimg (which is the corrected
global position MB

k in the base frame, or Mt from eq. 9 in
subsequent cycles). Figure 3 shows an illustration of drawing
three image frames onto the first two multi-view panoramas.
Here we see that img[3] paints its leading slit onto pano[1],
and the following slit onto pano[2] and so on. Note that
the slits contributing to a particular panoramic layer come
from very similar perspective directions in the original images,
thus minimizing misalignments between slits. In the ideal
case, the camera performs a pure 1D translation in the Y -
direction, and each image contributes a single X column to
each panoramic layer and therefore it forms a perfect parallel-
perspective (pushbroom) mosaic [19]. In more general cases,
each layer approximates a multi-perspective panorama with
similar viewing directions. Thus two layers can form a pair of
multi-perspective stereo panoramas.

Our goal with this method is to provide 3D viewable results
quickly. Warping operations in particular can get computa-
tionally expensive as the imagery resolution keeps increasing.
Blending operations can produce ghosting which can make
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it distracting for some users when viewing the imagery on
a 3D display. Instead we rely on the fact that our drift
correction method has produced results with very minor local
misalignments that the viewer can cope with, in particular
because we performed the layered construction approach,
where similar views align into each layer. We understand that
this is a subjective issue and will vary from user to user.

The layered approach can be used to generate sets of
multi-view mosaics from both the base cycle as well as the
subsequent cycles. In fact multi-view mosaics can also be
generated from aligned image frames that come from all
cycles, providing the best imagery overlap for multi-view
mosaics. This will be left as a future work topic.

IV. RESULTS

We ran our implementation of the above algorithms on
the CLIF (Columbus Large Image Format) 2007 [27] data.
This dataset was captured by a persistent flyover of the Ohio
State University campus in Columbus, Ohio. The images are
captured by 6 cameras at approximately 2 frames per second.
In this work we have only considered a single camera, number
0 specifically. The dataset covers about four and a half cycles
over the campus. In the following experiments we consider
890 frames covering 4 complete cycles. We scaled (50%)
and cropped the images for runtime considerations, but full
resolution results are comparable to these results.

In the CLIF data set we observe that under real world
conditions small unexpected changes will pose problems to
our registration and mosaicing algorithms. In this dataset we
observed that at different locations on different passes, it
appears that the vehicle speed increased enough that there
was not enough overlap to perform image based registration.
One solution to this problem is to have onboard GPS and
inertial measurement devices to estimate the motion. With the
solution presented here we show that the base cycle provides
a reference to correct such cases when they occur after the
base cycle.

A. Registration Results

First we ran the entire sequence with our frame-to-frame
image based matcher and plotted the results in Figure 1a.
The estimated path begins at position (0, 0) illustrated by
the solid black frame. We plot every 50th frame in red, and
the final frame with a dashed black outline. While the four
cycles of the flight should actually cover the same area, it is
obvious from the plot that the estimated motion parameters of
the camera drift a lot in both location and scale due to the
accumulating errors in image registration. Figure 4a is a plot
of the original motion estimates for the base cycle and we can
see that even in the first cycle the last frame does not meet
the first frame of this cycle. Figure 4b shows it after applying
drift correction. Figure 4c shows the estimated motion paths
for three subsequent passes using the online spatial-temporal
registration method outlined above.

From Figure 4 we can see that the online spatial-temporal
approach maintains the corrected global path without large
drift for 3 subsequent cycles. At the bottom right of Figure

4c we can see that the last cycle significantly drifted from
the path, by inspecting the original imagery it can be seen
that this actually did happen in the imagery, and was handled
appropriately by our spatial-temporal method. For the result in
4c we did not separate any cycles beyond the base, all frames
where automatically aligned as they came in for 3 continuous
cycles after the base.

For comparison, Figure 5 shows the results of separating
each subsequent cycle and attempting to register them indepen-
dently. We can see that all of the cycles accumulate significant
drift, and while the cycles are over the same area, the drift
changes in different passes. For example, in cycles 3 and 4
we can see that the scale got larger, where in cycle 2 and the
base cycle, drift made the scale get smaller.

B. Mosaicing Results

Figure 6 shows the mosaicing results on the base cycle
and on cycle 2. Cycle 2, like the base cycle, has very minor
misalignments in a few places, particularly those with small
overlap. Figure 7 shows a close up view of buildings before
and after error correction in the mosaics of the base cycle.
Figure 7b shows that error correction rotated the scene and
changed its scale, and shows that it does not have easily
detectable misalignments. Overall the mosaics show that the
registration for subsequent cycles remains robust and without
significant drift. Additionally the mosaics across different
passes are aligned on the same reference coordinates, allowing
them to be used for change detection across passes, moving
object detection, and 3D viewing and reconstruction. Figure
8 shows a close up stereo view of two multi-view mosaics as
a red-cyan anaglyph. Viewing this image in 3D requires red-
cyan glasses (for left and right eye respectively) on a color
printout of this paper. Using the multi-view mosaics generated
from multiple cycles, we will be able to create a virtual 3D
fly-through with the freedom of choosing viewing locations,
viewing angles, and cycles for 3D perception, motion detection
and change detection, leading to a stronger 3D and motion
perception than simply viewing the original video sequences.

C. Error Analysis

To determine how well our spatial-temporal registration
method performed we ran the complete four cycle (890 frame)
sequence three times, each time inserting frame 1 at a different
location to measure its alignment error. In the first run we
inserted the frame only at the end of cycle 2. In the second
run, we inserted frame 1 only at the end of cycle 3, and in the
third run, only at the end of cycle 4. This was done separately
for each cycle, so that inserting the frame in cycle 2, would not
affect the computed global position of frame 1 at the ends of
cycles 3 and 4, and so on. The purpose of this experiment was
to determine after some number of cycles whether the spatial-
temporal method continued to maintain a globally consistent
alignment, even without batch post-processing of each cycle.
Under ideal conditions, the inserted frame should always be
I, since the frame should pick itself as frame k in the spatial
estimate, but in practice this is not always the case. Table I
shows the results of the test for all runs. The table specifies
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Fig. 4. (a) Original Base Cycle. (b) Corrected Base Cycle. (c) 3 registered subsequent passes. Red boxes represent every 10th frame. The dashed black box
is the last frame.
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Fig. 5. Original registrations for subsequent cycles: (a) cycle 2 (b) cycle 3 (c) cycle 4. Red boxes represent every 10th frame. The dashed black box is the
last frame.
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Fig. 6. Mosaics for (a) base cycle and (b) cycle 2.
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Inserted in Spatial Pick Temporal Parameters Spatial Parameters
Cycle k (Tu, Tv,Θ, S) (Tu, Tv,Θ, S)

2 0 -0.4982 , 1.3306 , 0.0018 , 0.9986 0, 0, 0, 1
3 228 -13.9932, -75.6169, 0.0890, 0.9832 -0.5681 , 1.3147 , 0.0020 , 0.9986
4 0 -3.0000 , 5.4349 , 0.0107 , 0.9937 0, 0, 0, 1

TABLE I
ERROR ANALYSIS: THE TABLE LISTS THE ONLINE SPATIAL-TEMPORAL ESTIMATED PARAMETERS FOR THE REFERENCE FRAME AT THE END OF EACH

CYCLE. TRANSLATION IS MEASURED IN PIXELS.

(a) (b)

Fig. 7. Closeup of error correction in base cycle: (a) shows building prior to error correction, (b) shows the same buildings after correction.

which frame k was nearest in the spatial estimate. A spatial
pick of 0 means the frame matched itself, and for cycles 2
and 4 we can see that is the case, further we can see that
the temporal parameters were within 5 pixels of the correct
alignment in a mosaic area of about 5000x5000 pixels. With
cycle 3 we observe that the temporal parameter was off by
over 13 pixels in the X axis and 75 pixels in the Y axis,
and this caused the spatial pick k to be a frame other than
itself. Frame 228, is 2 frames from 0 and closing the loop in
the base cycle, and with this spatial estimate we see that we
are placed within a pixel and half from the correct position.
This demonstrates how the online weighing solution manages
to maintain the flyovers path without accumulating the large
drift as observed in Figure 1a and Figure 5.

To determine the effects of redistributing the error in the
base cycle we ran an experiment with each of the four cycles
as the base. In this experiment we found that the average
redistributed tu and tv shift to any one frame in all 4 cycles
ranged from 3.1 pixels to 5.5 pixels. Testing showed that
applying this error uniformly created a lot of local artifacts,
while the weighted method produced locally and globally
consistent results.

V. CONCLUSIONS

Here we have presented a spatial-temporal solution to
improve the registration of persistent aerial videos that have
low frame rates and low consecutive frame overlap. We
first identify a base cycle of the imagery which we use to
correct errors and construct a reference frame for the further
registration of subsequent cycles over the same area. We have
shown that for subsequent cycles the method can be applied
online and can be used to construct sets of multi-pass multi-
view mosaics, which are a useful representation for video data
archival, exploitation and visualization.

Fig. 8. A close up 3D view of the CLIF scene. Use red-cyan anaglyph
glasses to view on a color copy.

Our future work in data exploitation include using the
multi-pass multi-view mosaic representation for: mover de-
tection, change detection, 3D reconstruction. In addition, for
image registration, we will apply a more principled spatial-
temporal integrated registration framework such as the Ex-
tended Kalman Filter. For stereo mosaicing, we will investigate
methods to further improve alignment quality by utilizing
optimal seam selection and view interpolation techniques.
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