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Abstract 

 
Vehicle images captured by traffic and surveillance 

video cameras in various conditions usually exhibit 
several unexpected variations that worsen vehicle 
classification. These factors include occlusions, motion 
blur, and changes in perspective views. Complete and 
normalized views of vehicle images, if being able to 
reconstructed from the unsatisfactory data, will facilitate 
more accurate data labeling, feature extraction and multi-
class vehicle classification. We propose a multimodal 
temporal panorama (MTP) approach to accurately 
extracting and reconstructing moving vehicles in real-time 
using a remote multimodal (audio/video) monitoring 
system. The MTP representation consists of: 1) a 
panoramic view image (PVI) for detecting vehicles using 
the concept of 1D vertical detection line; 2) an epipolar 
plane image (EPI), generated from 1D epipolar lines 
along the vehicles’ moving paths, to characterize their 
speeds and directions; and 3) corresponding audio signals 
collected at the vehicle detection point to reduce false 
target detection in the PVI. Using the MTP approach, 
reconstructed vehicles all have the same side views, with 
less or no occlusions and motion blur. Using SVM 
classifiers for multiclass problems indicates that the 
classification accuracy using reconstruction results 
improves about 10% over that using corresponding 
vehicle images from original video for a dataset of about 
140 vehicles. Our ultimate goal is to use the audio-visual 
vehicle data for multimodal vehicle classification and 
anomaly detection. 

1. Introduction 
In applications such as traffic monitoring [1, 2] and 

check-point vehicle inspection [3] where the cameras are 
set in well-chosen standpoints and stationary, the detection 
of vehicles and anomaly could be made easy by the use of 
motion detection and background subtraction. However, 
the vehicle classification and identification could be quite 
challenging. For vehicle detection, most methods [4, 5] 
assume that the desired vehicles can be detected by image 
differencing. Then various kinds of vehicle features like 
shapes, textures, etc. are extracted easily to make the 

vehicle classification straightforward. However, several 
environmental variations will significantly affect the 
accuracy of vehicle classification. This will be even more 
the case for long-range vehicle detection and inspection, 
where the sensors (cameras) can only be set in a remote 
location. In such a scenario, the standpoints of and views 
from the sensors to a road could be constrained due to 
large distances, and occlusions such as tress and other 
facilities. This will result in failure of vehicle detection 
and degrade the accuracy of later vehicle classification and 
recognition. Another environmental variation is that the 
perspective views (ranges, directions) of captured vehicles 
which also vary greatly. When a vehicle is observed along 
a lane, it will have different appearances/resolutions in 
different video frames over the period of time the vehicle 
can be seen. Also, the video data of the vehicle could be in 
low resolution and subject to motion blur. In addition to 
the vision-based approaches, there are some systems [6-9] 
using other sensors, such as sonar, infrared cameras, or 
laser Doppler vibrometer (LDV) to detect vehicles on 
road. It has been shown that the use of multimodal sensors 
provide better performances in object detection and 
classification.  

In this paper we use a long-range multimodal sensor 
platform developed in [9] to monitor the road traffic that 
includes both visual and audio information. In our 
approach, we represent both visual and audio data in a 
multimodal temporal panorama (MTP) that we proposed 
in [8], which shows detection, motion, and acoustic 
information simultaneously. MTP provides a very 
effective user interface to visualize and analyze the 
alignment of the video and acoustic information of 
passing-by vehicles, thus facilitating the joint detection 
and classification of vehicles using both visual and audio 
information. It provides: 1) multi-modal information 
including visual presentation from a panoramic view 
image, motion presentation from an epipolar plane image, 
and acoustic information from an audio wave scroll; 2) 
real time detection, reconstruction of the vehicles’ visual 
appearances, synchronized with their acoustic signatures; 
and (3) a very effective user interface for training data 
labeling in both video and audio domains. While the work 
described in [8] focuses on data representation and user 
interface for data labeling, in this paper we extend the 
work and have made three new contributions. First a 
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robust vehicle reconstruction algorithm is developed using 
both panoramic view images and epipolar plane images, 
and error analysis is performed. Since the generation of 
the MTP is done in real time, the reconstruction takes 
place immediately after a vehicle is detected. Second, 
audio information is used to remove some false detecting 
targets before reconstruction, even though our ultimate 
goal is to perform multimodal vehicle classification. 
Third, we generate a dataset of about 140 different types 
of vehicles, and perform vehicle classification comparison 
between reconstructed vehicle images and their 
corresponding images from the original videos. We note 
that the classification of the reconstructed vehicle images 
has significant performance improvement over that of the 
corresponding unreconstructed vehicles.    

The rest of paper is organized as follows. Section 2 
discusses some related work. Section 3 shows the data 
representation and detection using the MTP. Section 4 
describes the vehicle reconstruction algorithm. Section 5 
provides the reconstruction error analysis. Section 6 
presents the multiclass vehicle classification method. 
Experimental results for both error analysis and vehicle 
classification are shown in Section 7. Some ongoing work 
on multimodal vehicle classification is discussed in 
Section 8. Conclusions are provided in Section 9. 

2. Related Work 
The main usage of panoramic view images (PVIs) in 

[10, 11] was for scene understanding. A 1D slit scanning 
approach was used to construct route panoramas when a 
camera was mounted on a moving vehicle. In these works, 
the resulted PVIs do not require inter-frame matching of 
video images. Epipolar plane images (EPIs), combined 
PVIs, are used to track the motion of vehicles [12, 13] for 
the purpose of automatic traffic monitoring. However, 
they are not interested in real time vehicle reconstruction 
to improve the classification. Also, all these papers only 
deal with video data. In our paper we also capture and 
process acoustic data of moving vehicles using a laser 
Doppler Vibrometer (LDV) to reduce false target 
detection in the visual modality to limit the reconstruction 
only on vehicle candidates, and to facilitate multimodal 
vehicle classification. Works using both audio and video 
for surveillance can be found in [14, 15]. In their 
approaches, the full video images are processed, which are 
sometimes computationally expensive but unnecessary. 
The synchronized, manual labeling of the audio and video 
data for training classifiers could be very tedious. Also, 
the environmental variations, such as the changes of the 
entire background or presence of other stationary objects, 
could not be handled properly. These heavily affect the 
classification accuracy. In [16], the authors used entropy 
as an underlying measurement to calculate traffic flows 
and vehicles speed. However, these approaches cannot 

further classify vehicles to more detailed types for proving 
more accurate information. Therefore, it is important not 
only to represent multimodal information but also to 
perform vehicle reconstruction in order to improve vehicle 
classification accuracy. 

3. Multimodal Data Processing 

3.1. Data Representation 

We capture both visual and audio data simultaneously 
and represent them in the multimodal temporal panorama 
(MTP) [8]. The MTP has two layers: a temporal synopsis 
layer (Fig. 1) and a layer of snapshots for individual 
vehicles. In the synopsis, there are mainly three 
synchronized panoramas: a 2D spatial-temporal 
panoramic view image (PVI) concatenated from 1D 
vertical detection lines from a selected column location of 
all video frames; a 2D spatial-temporal epipolar plane 
image (EPI) concatenated from 1D horizontal epipolar 
lines along the direction of vehicles’ motion; and an audio 
wave scroll for visualizing vehicles’ sounds. The PVI and 
the EPI are used for the target detection and the motion 
estimation of vehicles, respectively. The temporal energy 
from a window of audio signals can be calculated to 
indicate a silent background period or a sounding target, 
thus, can reduce false target detection from previous two 
panoramas. Then in the snapshot layer, the occlusion-free, 
motion-blur-free, and view-invariant visual reconstruction 
of each vehicle (with both shape and motion information) 
and the acoustic signatures (e.g. spectrogram) are 
recorded. The MTP facilitates the synchronization and 
integration of the information across the three modalities, 
both for automatic and interactive vehicle and traffic 
analysis, thus providing more succinct and reliable 
information for tasks like moving vehicle detection and 
classification using visual, motion, and audio information. 
The 1D scanning technique for generating multimodal 

 
Figure 1. An example of the multimodal temporal panorama 
(MTP) synopsis layer that consists of a PVI, an EPI, and an 
audio wave scroll (from top to bottom). Red boxes show 
correct targets. Blue ovals show false targets. Yellow arrows 
point to meaningful sounding targets. False targets can be 
eliminated since they are considered as background from 
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temporal panorama does not require the whole body of a 
vehicle in the field of view. Instead a stationary camera 
monitoring an area of interest is sufficient to detect a 
passing-by moving vehicle that can only be partially 
viewed from the camera. With this simple technique, there 
are three main advantages. First, there will be less or no 
occlusions. Second, the projections of all vehicles have the 
same standard side view. Third, motion blur is removed 
after the vehicle is reconstructed using the PVI and EPI. 
Furthermore, the acoustic signals of a vehicle that passes 
the checkpoint are also recorded using a LDV from a large 
distance and aligned with video panoramas in the time 
axis.  

Fig. 2 shows the creation of the MTP. The PVI is 
generated by consisting of a vertical slit of single pixel 
cross all frames. The least occluded line in the scene is 
selected initially. Then, an epipolar line on the horizontal 
direction is selected to track the motion of a vehicle on the 
road that forms the EPI. The epipolar line, which indicates 
the moving path of a vehicle, is determined once the 
vehicle is detected via PVI. It is a line that connects a 
point on the vehicle to the vanishing point of two parallel 
lines on the road sides. The audio information is obtained 
to remove some false target detection before perform 
vehicle reconstruction. 

3.2. Real Time Target Detection 

Adaptive Gaussian mixture model for background 
subtraction [17, 18] are applied on both PVI and EPI 
during the generation of these two spatio-temporal images 
that produce a panoramic detection image (PDI) and a 
motion detection image (MDI), respectively. Only a small 
window of background containing a few liens needs to be 
trained initially, and then new incoming lines are 
accumulated to update the model. It is much faster than 
performing the subtraction on the whole frames. Also the 
result is more consistent since there is little variation in 

consecutive background lines over time in the video 
sequence. The process is performed online for every new 
frame, so the detection is done in real time. The total 
spectral energy of the acoustic signals obtained from the 
LDV is calculated in the audio detection “image” (ADI) 
from a starting time ts to a finishing time tf when a possible 
object is detected in the PVI. Note that the LDV has 
advantage that can capture the acoustic signals of the 
target (vehicle) by pointing its laser beam from a large 
distance to a retro-reflective surface that is right at the 
check point where the vehicle passes. The results in the 
ADI combined with PDI and MDI can determine the 
likelihood ψ of a target g at ith frame as: 
 

߰ሺ ݃ሻ ൌ ሺ ݃|ܲܫܦ, ,ܫܦܯ	 ,ሻܫܦܣ	 ݅	ݎ݂ ∈ ሾݐ௦,  ሿ  (1)ݐ
 

Thus, the addition information from the ADI can reduce 
some false targets that are not moving vehicles.   
 The original frame shot of the object, which is used to 
compare with reconstructed result, can be retrieved by 
measuring the boundary of detected object in the PVI. The 
EPI is used for acquiring column pixel locations of the 
vehicle in the horizontal direction, thus can be used to 
estimate the moving direction and speed of a vehicle. 
Together, the reconstruction can be performed.   

4. Reconstruction Algorithm 
Vehicle reconstruction is necessary since the vehicles 

may be occluded by other stationary objects, such as 
bushes, trees, parked vehicles or others. The motion blur is 
mostly caused by the interlacing of the camera, and can be 
removed after reconstruction. In addition, reconstructed 
vehicles all have the same views, which should improve 
the recognition and classification performance while 
keeping classifiers simple.  

The general idea of reconstruction is demonstrated in 
Fig. 3. Each vertical line in the detected region in the PVI 
indicates a particular time frame It in the original video. 

      

    
Figure 2. MTP representation(top), a scene with many 
occlusions (bottom left), and initial selection of an area with 
least occluded vertical detection line and edges of the road for 
determine the multiple epipolar lines (bottom right).  

 

 

 
Figure 3. Reconstruction procedure (top) and samples of 
original images (middle) and  reconstruction results (bottom) 
for Nissan Altima, Honda Accord and Honda Pilot  
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The slope m of the vehicle’s locus at the corresponding 
time t in the EPI shows the relative speed vt of a moving 
vehicle as: 

௧ݒ ൌ ݉ ൌ	
డ௫

డ௧
         (2) 

 

In other words, it equals to the number of pixels in the 
motion direction in the original image that need to be 
extracted. The speed of the vehicle is used to accurately 
align the even and odd fields of the image pieces into a 
single image piece of a frame so that the original image 
resolution in the vertical direction is restored. The sign of 
the slope indicates the direction the vehicle moves to. So, 
if the vehicle moves from left to right, the image piece to 
the left of the vertical detection line (here defined as 
referenced line rl,) is extracted. If the vehicle moves from 
right to left, the image piece to the right of the rl is used. 
This is because the concatenation of PVI is in the left-to-
right (or time increasing order). Then the image slice St at 
time t is: 

 

ܵ௧ ൌ ௧ܫ
, ܬ ൌ ሼ݆|݆ ∈ ሺ݈ݎ, ݈ݎ    ௧ሻሽ     (3)ݒ

 

where J is the number of columns in the original time 
frame need to be selected. If the number is not an integer, 
then interpolation between two consecutive frames is 
applied. Although, the camera does not need to be 
perpendicular to the moving path of the vehicle, the 
segmented image pieces cannot be horizontal aligned 
smoothly if there is a rolling angle of the camera. An 
affine transformation is used to rectify those image pieces: 
 

ܵ௧ ↦ ఊܵ௧ܣ  ܾ         (4) 
 

where A is the rotation matrix has rolling angle  , and b 
is translation vector.  If the true rolling angle is not known 
in advance, it can still be calculate from the initial image 
shot as: 

ߛ ൌ tanିଵ
ாି
ாೣିೣ

          (5) 
 

where (Epx, Epy) is the intersection point of the referenced 
vertical line and selected epipolar line; and (Vpx, Vpy) is 
the vanishing point of any two parallel lines showing the 
roads structure. Then the reconstructed image IR for a 
vehicle is the integration of all image pieces from starting 
time ts to finishing time tf when the vehicle is observed 
through the reference vertical detection line:  

ோܫ ൌ ⋃ ௧ܫఊܣ
௧

ୀ௧ೞ
          (6) 

5. Error Analysis 
To show the accuracy of reconstructed image results, 

we perform error analysis under two cases depending on 
whether the true sizes of vehicles are known or not. For 
the first case, giving the true length L and the true height 
H of a vehicle, the relative errors of a vehicle in the length 
L and in the height L are: 

 

 ൌ
หିᇲห


, ᇱܮ ൌ

ூಽ
ಽ

	       (7) 

	ு ൌ
|ுିுᇲ|

ு
, ᇱܪ ൌ

ூಹ
ಹ

       (8) 
 

where L′ and H′ are the length and the height in 
reconstructed result, respectively. IL and IH are the width 
and the height of the reconstructed vehicle image in pixels. 
fL is the focal length in horizontal direction, and fH is the 
focal length in vertical direction. Dm is the distance of a 
vehicle at the mth lane. We also perform a theoretical error 
analysis in order to compare with the actual errors 
calculated with Eq. (7) and Eq. (8). The theoretical relative 
errors in length ’L and in height ’L are: 
 

ߝ
ᇱ ൌ |

ఋ


|, ܮߜ ൌ


ಽ
        (9)ܫߜ

ுߝ
ᇱ ൌ |

ఋு

ு
|, ܪߜ ൌ


ಹ
 ு       (10)ܫߜ

 

where ܫߜுand ܫߜare the measurement errors in the height 
and length directions of the image of a vehicle (in pixels). 
 If a vehicle’s size is not known, we manually measure 
the length L″ and the height H″ of the vehicle in the 
original image corresponding to the reconstructed image at 
time tm, where tm is the time the vehicle half way passes 
through the detection line. Note that the vehicle may be 
partially occluded at the front or the rear part, or cannot be 
fully displayed in individual image frames. Therefore we 
combine the image frames at time ts or tf that have the 
vehicle partially displayed so that the correct length and 
height can be measured. Here ts and tf are the starting and 
finishing time the vehicle is detected. Then, the calculation 
of the relative errors for the unknown vehicle is just a 
matter of substituting L″ and H″ for L and H in Eqs. (7) 
and (8), respectively. 

6. Audio and Visual Vehicle Features 
Various visual and audio features could be extracted 

from the multimodal data and integrated for vehicle 
classification. Based on the reconstruction, vehicles’ 
visual images are invariant to perspective views, so the 
size information of vehicles could be useful to distinguish 
small vehicles (sedans) and large vehicles (buses). For 
multiclass classification, histograms of oriented gradients 
(HOG) feature, which keeps the texture and local structure 
statistically, is used. We apply the HOG feature for both 
reconstructed vehicle images and their corresponding 
original images for comparison of classification. The 
audio information can provide complementary acoustic 
signatures in addition to the visual features. The Mel-
frequency cepstral coefficients (MFCC) are used for audio 
features. They are commonly used to perceptually 
represent the frequency band responses of the human 
auditory system. They are good at characterizing the 
spectral variations and sharpness of acoustic signatures. In 
experimental results, we will show that the combination of 



IEEE Workshop of Applications of Computer Vision 2012 

5 
 

both audio and visual features could provide improvement 
than using individual features in vehicle classification.  

To perform multiclass vehicle classification, we use a 
linear based support vector machine (SVM) [19] for the 
small dataset. One-against-one classifiers are used to 
choose the best class. Other techniques, such as, one-
versus-all, or constructing multi-class SVMs could also be 
used but are not described here.    

7. Experimental Results 
In our experiment, we used a Canon 50i PTZ camera to 

capture video sequences at a two-lane road from a distance 
of about 25 meters. The road side contains a lot of trees 
and other objects such that the views of the moving 
vehicles are always partially occluded. Also, the PTZ 
camera captures analog signals, so we have to handle the 
interlaced scanning to reduce motion blur as well. The 
resolution of the camera is 720x480 pixels with a frame 
rate of 30 frames/second. In order to improve the detection 
rate by removing false targets via reconstruction, we also 
recorded vehicles’ acoustic signals using the mono sound 
track of a sound card at 22.5 KHz sample rare and 16 bit 
resolution from a laser Doppler vibrometer (LDV) when 
its laser beam was pointed to a retro-reflective surface 
(e.g. a traffic sign) close to the “check point” for vehicles. 
The LDV, acted as a long range remote microphone, is 
basically a non-contact long range vibration sensor that is 
able to capture acoustic and vibrational signals of vehicles 
that vibrate the retro-reflective surface. The data were 
collected at different times over a period of two weeks. 

7.1. Reconstruction Error Analysis 

The road has two lanes of opposite directions, with one 
is about 24.8 meters and the other is about 26.8 meters to 
the platform. The focal length of the camera is 10.5 mm 
under 15x zoom. We used three known vehicles, Nissan 
Altima, Honda Accord, and Honda Pilot to evaluate the 
accuracy of vehicle reconstruction, each passing through 
the check point for 10 times. Some of the reconstruction 
results as well as their corresponding frame shots are 
shown in (Fig. 3 bottom). The actual relative error and 
theoretical relative error results are shown in Table 1.  The 
theoretical errors are obtained by assuming the 
measurement errors in the height and length directions of 
the image of a vehicle (ܫߜு and ܫߜ, in Eqs. 9 and 10) are 

both one pixel. The actual reconstruction errors are 
comparable to the corresponding theoretical errors, and the 
average reconstruction error in both length and height is 
about 4%. 

7.2. Classification of Reconstructed Images 

In our current dataset, there are 140 vehicle images 
reconstructed; their corresponding original images are also 
captured for comparison. We divide and label them in four 
groups: sedan, van, pickup truck and bus.  There are 89 
samples for training and 51 samples for testing. The image 
features extracted are histograms of gradients (HOGs). 
Each vehicle image is divided into 6x3 grids and each grid 
has 9 bins so that the result HOG feature vector for a 
vehicle image has 162 dimensions. Linear SVMs are used 
as the baseline classifier throughout the comparison. We 
use LIBSVM 3.1 [20] to solve the multiclass problem 
using the one-against-one technique. The testing accuracy 
using reconstructed results is about 80.39% and the 
confusion matrix is shown in Table 2. 

We also applied the same feature extraction method to 
the original images corresponding to the reconstructed 
results. Note that the original images may include partial 
occlusions, various side views and motion blur. The 
training size and testing size are as same as reconstructed 
samples. We also used the same classifier to be trained 
using the training set, but this time with the original 
images. The testing accuracy using the original images is 
about 70.59% on average and its confusion matrix is 
shown in Table 3. 

The comparison shows that the classification on the 
reconstructed results has about 10% improvement over 
that on original images because the reconstruction 
removes a lot of noises such as occlusions, motion blur 
and view changes. By comparing the confusion tables, it 
can be seen that the reconstruction has more impact to the 
classification of the sedans and the trucks, most probably 
because they have more variations than the vans and the 
busses in our experiments. 

7.3. Audio and Visual Classification 

In processing the multimodal temporal panoramas 
(MTPs), the audio information can be used to reduce false 
target detection. More importantly, audio signatures of 

Table 2. Performance improvement with reconstruction over 
original images (S-Sedans, V-Vans, T-Pickup Trucks, B-
Buses). Expected label in columns, actual lable in rows. 
 

Reconstruction results 
Accuracy: 80.39% 

 S V T B 
S 17 5 0 0 
V 1 18 0 0 
T 2 1 4 0 
B 0 0 1 2 

 

Original images 
Accuracy: 70.59% 

 S V T B 
S 13 9 0 0 
V 1 18 0 0 
T 3 1 3 0 
B 0 0 1 2 

 

 

Table1.Reconstruction error analysis for vehicles of known types 
 

Types Nissan 
Altima 

Honda 
Accord 

Honda 
Pilot 

Total 
Avg. Err. 

True L(mm) 4661 4811 4849 - 
Act. err. in L 3.87% 5.31% 3.86% 4.34% 
Theo. err. in L   3.87% 5.14% 3.70% 4.24% 
     

True H (mm) 1420 1445 1847 - 
Act. err in H 4.64% 5.37% 1.68% 3.90% 
Theo. err in H 4.46% 5.28% 1.29% 3.70% 
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vehicles can improve the classification performance by 
combining them with visual features extracted from the 
reconstructed vehicle images. We use the first 15 
coefficients of MFCCs and calculate their means and 
standard deviations into a feature vector of 30 dimensions. 
Results are then scaled to the same range with visual HOG 
features in order to integrate them. The experiment results 
on the current dataset show that there is about 8% 
improvement when using the combined audio and visual 
features over that using only the visual modality (Table 3). 

8. Conclusions 
In this paper, we represent multimodal data into a 

multimodal temporal panorama for real time vehicle 
detection and reconstruction. The combination of 
detection and motion estimation are used for vehicle 
reconstruction to remove occlusions, motion blur and 
variations of views. The classification analysis with a 
small dataset shows that the reconstructed results can 
provide significantly better accuracy in vehicle 
classification than their original images. Multimodal 
classification also shows promising results. In the future, 
we will generate a larger dataset with more visual and 
audio features types, and perform more comprehensive 
multimodal classification in terms of classifier designs, 
feature selection and performance analysis. 
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Table 3. Classification peroformance using audio feautre only, 
visual feautre only, and combination of both.  
 

Audio (MFCC) only 
Accuracy: 70.59% 
 S V T B 
S 20 2 0 0 
V 6 13 0 0 
T 1 4 2 0 
B 0 2 0 1 

 

Visual (HOG) only 
Accuracy: 80.39% 
 S V T B 
S 17 5 0 0 
V 1 18 0 0 
T 2 1 4 0 
B 0 0 1 2 

 

 Audio + Visual 
Accuracy: 88.24% 
 S V T B 
S 20 2 0 0 
V 1 18 0 0 
T 1 1 5 0 
B 0 0 1 2 

 


