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Abstract: Gatherings of thousands to millions of people frequently occur for an enormous variety of events, and automated
counting of these high-density crowds is useful for safety, management, and measuring significance of an event.
In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep
neural networks is less effective than our alternative inverse k-nearest neighbor (ikNN) maps, even when used
directly in existing state-of-the-art network structures. We also provide a new network architecture MUD-ikNN,
which uses multi-scale drop-in replacement upsampling via transposed convolutions to take full advantage of
the provided ikNN labeling. This upsampling combined with the ikNN maps further improves crowd counting
accuracy. Our new network architecture performs favorably in comparison with the state-of-the-art. However,
our labeling and upsampling techniques are generally applicable to existing crowd counting architectures.

1 Introduction

Every year, gatherings of thousands to millions
occur for protests, festivals, pilgrimages, marathons,
concerts, and sports events. For any of these events,
there are countless reasons to desire to know how many
people are present. For those hosting the event, both
real-time management and future event planning is
dependent on how many people are present, where they
are located, and when they are present. For security
purposes, knowing how quickly evacuations can be
executed and where crowding might pose a threat to
individuals is dependent on the size of the crowds. In
journalism, crowd sizes are frequently used to measure
the significance of an event, and systems which can
accurately report on the event size are important for a
rigorous evaluation.

Many systems have been proposed for crowd count-
ing purposes, with most recent state-of-the-art methods
being based on convolutional neural networks (CNNs).
To the best of our knowledge, every CNN-based dense
crowd counting approach in recent years relies on us-
ing a density map of individuals, primarily with a
Gaussian-based distribution of density values centered
on individuals labeled in the ground truth images. Of-
ten, these density maps are generated with the Gaus-
sian distribution kernel sizes being dependent on a

k-Nearest Neighbor (kNN) distance to other individu-
als [Zhang et al., 2016]. In this work, we explain how
this generally accepted density map labeling is lacking
and how an alternative inverse kNN (ikNN) labeling
scheme, which does not explicitly represent crowd den-
sity, provides improved counting accuracy. We will
show how a single ikNN map provides information
similar to the accumulation of many density maps with
different Gaussian spreads, in a form which is better
suited for neural network training. This labeling pro-
vides a significant gradient spatially across the entire
label while still providing precise location information
of individual pedestrians (with the only exception be-
ing exactly overlapping head labelings). We show that
by simply replacing density map training in an existing
state-of-the-art network with our ikNN map training,
the testing accuracy of the network improves. This is
the first major contribution of the paper.

Additionally, coupling multi-scale drop-in replace-
ment upsampling with densely connected convolu-
tional networks [Huang et al., 2017] and our proposed
ikNN mapping, we provide a new network structure,
MUD-ikNN, which performs favorably compared to
existing state-of-the-art methods. Our network inte-
grates multi-scale upsampling with transposed convo-
lutions [Zeiler et al., 2010] to make effective use of the
full ground truth label, particularly with respect to our



ikNN labeling scheme. The transposed convolutions
are used to spatially upsample intermediate feature
maps to the ground truth label map size for comparison.
This approach provides several benefits. First, it al-
lows the features of any layer to be used in the full map
comparison, where many existing methods require a
special network branch for this comparison. Notably,
this upsampling, comparison, and following regression
module can be used at any point in any CNN, with the
only change being the parameters of the transposed
convolution. This makes the module useful not only
in our specific network structure, but also applicable
in future state-of-the-art, general-purpose CNNs. Sec-
ond, as this allows features which have passed through
different levels of convolutions to be compared to the
ground truth label map, this intrinsically provides a
multi-scale comparison without any dedicated addi-
tional network branches, thus preventing redundant
parameters which occur in separate branches. Third,
because the transposed convolution can provide any
amount of upsampling (with the features being used
to specify the upsampling transformation), the upsam-
pled size can be the full ground truth label size. In
contrast, most existing works used a severely reduced
size label map for comparison. These reduced sizes
remove potentially useful training information. Al-
though some recent works use full-size labels, they
require specially crafted network architectures to ac-
complish this comparison. Our proposed upsampling
structure can easily be added to most networks, in-
cluding widely used general-purpose networks, such
as DenseNet. This proposed network structure is the
second major contribution of the paper.

Importantly, these contributions are largely com-
plementary to, rather than alternatives to, existing ap-
proaches. Most approaches can easily replace their
density label comparison with our proposed ikNN map
comparison and upsampling map module, with little
to no modification of the rest of their method or net-
work architecture. As the ikNN label does not sum to
the count, the ikNN label and map module should go
hand-in-hand.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 proposes our new net-
work architecture for crowd counting, MUD-ikNN.
Section 4 details the proposed k-nearest neighbor
map labeling method and its justification. Section 5
presents experimental results on several crowd datasets
and analyzes the findings. Section 6 provides a few
concluding remarks.

2 Related Work

Many works use explicit detection of individ-
uals to count pedestrians [Wu and Nevatia, 2005,
Lin and Davis, 2010, Wang and Wang, 2011]. How-
ever, as the number of people in a single image
increase and a scene becomes crowded, these explicit
detection methods become limited by occlusion
effects. Early works to solve this problem relied
on global regression of the crowd count using low-
level features [Chan et al., 2008, Chen et al., 2012,
Chen et al., 2013]. While many of these methods
split the image into a grid to perform a global
regression on each cell, they still largely ignored
detailed spatial information of pedestrian locations.
[Lempitsky and Zisserman, 2010] introduced a
method of counting objects using density map regres-
sion, and this technique was shown to be particularly
effective for crowd counting by [Zhang et al., 2015].
Since then, to the best of our knowledge, every
CNN-based crowd counting method in recent years
has used density maps as a primary part of their cost
function [Idrees et al., 2018, Sam et al., 2017,
Sindagi and Patel, 2017, Zhang et al., 2015,
Zhang et al., 2016, Shen et al., 2018, Li et al., 2018,
Ranjan et al., 2018, Shi et al., 2018].

A primary advantage of the density maps is the
ability to provide a useful gradient for network train-
ing over large portions of the image spatially, which
helps the network identify which portion of the im-
age contains information signifying an increase in the
count. These density maps are usually modeled by rep-
resenting each labeled head position with a Dirac delta
function, and convolving this function with a 2D Gaus-
sian kernel [Lempitsky and Zisserman, 2010]. This
forms a density map where the sum of the total map
is equal to the total count of individuals, while the
density of a single individual is spread out over several
pixels of the map. The Gaussian convolution allows
a smoother gradient for the loss function of the CNN
to operate over, thereby allowing slightly misplaced
densities to result in a lower loss than significantly
misplaced densities.

In some works, the spread parameter of the
Gaussian kernel is often determined using a k-
nearest neighbor (kNN) distance to other head po-
sitions [Zhang et al., 2016]. This provides a form
of pseudo-perspective which results in pedestrians
which are more distant from the camera (and there-
fore smaller in the image) having their density spread
over a smaller number of density map pixels. While
this mapping will often imperfectly map perspective
(especially in sparsely crowded images), it works well
in practice. Whether adaptively chosen or fixed, the



Figure 1: An example of a crowd image and various kinds of labelings. From left to right, on top: the original image, the
density map, the kNN map with k = 1. On bottom: the inverse kNN map with k = 1, k = 3, and k = 1 shown with a log
scaling (for reader insight only). Note, in the case of the density map, any values a significant distance from a head labeling are
very small. In contrast, the inverse kNN map has a significant gradient even a significant distance from a head position.

Gaussian kernel size is dependent on arbitrarily chosen
parameters, usually fine-tuned for a specific dataset.
We compare with adaptive version in this work, due
to its success and being more closely related to our
method.

In a recent work [Idrees et al., 2018], the authors
used multiple scales of these kNN-based, Gaussian
convolved density maps to provide levels of spatial
information, from large Gaussian kernels (allowing
for a widespread training gradient) to small Gaussian
kernels (allowing for precise localization of density).
While this approach effectively integrates information
from multiple Gaussian scales, thus providing both
widespread and precise training information, the net-
work is left with redundant structures and how the
various scales are chosen is fairly ad hoc. Our alterna-
tive ikNN labeling method supersedes these multiple
scale density maps by providing both a smooth train-
ing gradient and precise label locations (in the form
of steep gradients) in a single label. Our new network
structure utilizes a single branch CNN structure for
multi-scale regression. Together with the ikNN label-
ing, it provides the benefits of numerous scales of these
density maps.

Though most CNN-based approaches use a re-
duced label size, some recent works [Shen et al., 2018,
Li et al., 2018, Cao et al., 2018, Laradji et al., 2018]
have begun using full resolution labels. In con-
trast even to these works, we provide a generalized
map module which can be added to existing net-
work structures. Specifically, the map module can
be used as a drop-in replacement for the density map
comparisons. This map module can be added to

most dense crowd counting architectures with little
or no modification to the original architecture. In
this paper, our proposed network is based off the
DenseNet201 [Huang et al., 2017], with our map mod-
ule added to the end of each DenseBlock.

Our ikNN mapping is obliquely related to a dis-
tance transform, which has been used for counting
in other applications [Arteta et al., 2016]. However,
the distance transform is analogous to a kNN map,
rather than our ikNN. Notably, the ikNN crowd la-
beling presents the network with a variable training
gradient to the network, with low values far from head
labelings and cusps at a head labeling. In contrast,
a kNN or distance transform provides constant train-
ing gradients everywhere. To our knowledge, neither
the distance transform nor a method analogous to our
ikNN labeling has been used for dense crowd count-
ing.

3 MUD-ikNN: A New Network
Architecture

We propose a new network structure, MUD-
ikNN, with both multi-scale upsampling using Dense-
Blocks [Huang et al., 2017] and our ikNN mapping
scheme. For providing a context of our proposed ikNN
mapping scheme, we will describe the network struc-
ture first, before the detailed description of the ikNN
mapping in Section 4). We show that the new MUD-
ikNN structure performs favorably compared with ex-
isting state-of-the-art networks. In addition to the use



Figure 2: A diagram of the proposed network architecture MUD-ikNN: multiscale regression with DenseBlocks and ikNN
mapping. Best viewed in color.

of ikNN maps playing a central role, we also demon-
strate how features with any spatial size can contribute
in the prediction of ikNN maps and counts through the
use of transposed convolutions. This allows features
of various scales from throughout the network to be
used for the prediction of the crowd. Throughout this
section, a ”label map” may refer to either our ikNN
map or a standard density map, as either can be used
with our network.

The proposed MUD-ikNN network structure is
shown in Figure 2. Our network uses the DenseBlock
structures from DenseNet201 [Huang et al., 2017] in
their entirety. DenseNet has been shown to be widely
applicable to various problems. The output of each
DenseBlock (plus transition layer) is used as the in-
put to the following DenseBlock, just as it is in
DenseNet201. However, each of these outputs is also
passed to a map module (excluding the final Dense-
Block output), which includes a transposed convolu-
tional layer, a map prediction layer, and a small count
regression module with four convolution layers. For
each transposed convolution, the kernel size and stride
are the same value, resulting in each spatial input el-
ement being transformed to multiple spatial output
elements. The kernel size/stride value is chosen for
each DenseBlock such that resulting map prediction
is the size of the ground truth label. This form of
upsampling using transposed convolutions allows the
feature depth dimensions to contribute to the gradients
of the map values in the predicted label map. Both the
stride and kernel size of the transposed convolutions
of our network are 8, 16, and 32 for the first three
Denseblocks, respectively.

The label map generated at after each DenseBlock
is individually compared against the ground truth label
map, each producing a loss which is then summed,

Lm =
∑
j

MSE(M̂j ,Mj) (1)

where j is the index of the DenseBlock that the output
came from, M is the ground truth label map, and M̂
is the predicted map labeling.

Each predicted label map is then also used as the
input to a small count regression module. This module
is a series of four convolutional layers, shown in the
inset of Figure 2. The sizes of these layers are specified
in Table 1. The regression module then has a singleton
output, corresponding to the predicted crowd count.

The mean of all predicted crowd counts from the
regression modules, three in Figure 2, and the out-
put of the final DenseBlock is used as the final count
prediction.

Lc = MSE


Ĉend +

m∑
j=1

Ĉj

m+ 1
, C

 (2)

with C being the ground truth count, Ĉend being the
regression count output by the final DenseBlock, and
Ĉj being the count from the jth map regression mod-
ule (j = 1, 2, ...,m;m = 3 in Figure 2). This results
in a total loss given by L = Lm + Lc.

This approach has multiple benefits. First, if an
appropriately sized stride and kernel size are specified,
the transposed convolutional layer followed by label



Layer Output size Filter

Input from
DenseBlock

128x28x28
256x14x14
896x7x7

Transposed
convolution

1x224x224
(map prediction)

(8,16,32)x(8,16,32)
stride=(8,16,32)

Convolution 8x112x112 2x2 stride=2

Convolution 16x56x56 2x2 stride=2

Convolution 32x28x28 2x2 stride=2

Convolution 1x1x1 28x28

Table 1: A specification of the map module layers. This
module is used at 3 points throughout our network as shown
in Figure 2, so the initial input size varies. However, the
transposed convolution always produces a predicted map
label which is uniform size (1x224x224).

map prediction to regression module can accept any
sized input. This means this module of the network
is very generalizable and can be applied to any CNN
structure at any point in the network. For example, an
additional DenseBlock could be added to either end of
the DenseNet, and another of these map modules could
be attached. Second, each label map is individually
trained to improve the prediction at that layer, which
provides a form of intermediate supervision, easing
the process of training earlier layers in the network.
At the same time, the final count is based on the mean
values of the regression modules. This means that if
any individual regression module produces more accu-
rate results, its results can individually be weighted as
being more important to the final prediction.

We note that the multiple Gaussian approach by
[Idrees et al., 2018] has some drawbacks. The spread
of the Gaussians, as well as the number of different
density maps, is arbitrarily chosen. Additionally, with-
out upsampling, a separate network branch is required
to maintain spatial resolution. This results in redun-
dant network parameters and a final count predictor
which is largely unconnected to the map prediction
optimization goal. Our upsampling approach allows
the main network to retain a single primary branch
and connects all the optimization goals tightly to this
branch.

The input to the network is 224×224 image
patches. At evaluation time, a 224×224 sliding win-
dow with a step size of 128 was used for each part
of the test images, with overlapping predictions aver-
aged.The label maps use the same size patches, and
predictions from the network are of the same resolu-
tion. Each count regression module contains the same
four layers, as specified in Table 1.

For each experiment, the network was trained for

105 training steps. The network was designed and
training process carried out using PyTorch (v0.4.0).
The network was trained on a Nvidia GTX 1080 Ti.
Complete details of the network code and hyperpa-
rameters can be found at https://github.com/
golmschenk/sr-gan.

4 Inverse k-Nearest Neighbor Map
Labeling

We propose using full image size ikNN maps as
an alternative labeling scheme from the commonly
used density map explained in the Related Work
in (Section 2). Formally, the commonly used den-
sity map [Idrees et al., 2018, Sam et al., 2017,
Sindagi and Patel, 2017, Zhang et al., 2015,
Zhang et al., 2016] is provided by,

D(x, f(·)) =
H∑

h=1

1√
2πf(σh)

exp

(
− (x− xh)2 + (y − yh)2

2f(σh)2

)
,

(3)

where H is the total number of head positions for
the example image, σh is a size determined for each
head position (xh, yh) using the kNN distance to other
heads positions (a fixed size is also often used), and
f is a manually determined function for scaling σh
to provide a Gaussian kernel size. We use this adap-
tive Gaussian label as the baseline in our experiments.
For simplicity, in our work we define f as a simple
scalar function given by f(σh) = βσh, with β being a
hand-picked scalar. Though they both apply to head
positions, the use of kNN for σh in the density map is
not to be confused with the full kNN map used in our
method, which is defined by,

K(x, k) =

1

k

∑
min
k

(√
(x− xh)2 + (y − yh)2,∀h ∈ H

)
,

(4)

whereH is the list of all head positions. In other words,
the kNN distance from each pixel, (x, y), to each head
position, (xh, yh), is calculated.

To produce the inverse kNN (ikNN) map, we use,

M =
1

K(x, k) + 1
, (5)

where M is the resulting ikNN map, with the addition
and inverse being applied element-wise.

To understand the advantage of an ikNN map over
a density map, we can consider taking the generation

https://github.com/golmschenk/sr-gan
https://github.com/golmschenk/sr-gan


0 1 2 3 4

0

0.5

1

Distance from head position

M
ap

va
lu

e

ikNN

Composite
Narrow Gaussian

Wide Gaussian

Figure 3: A comparison of the values of map labeling
schemes with respect to the distance from an individual
head position (normalized for comparison). Two Gaussians
are shown in green. The narrow Gaussian provides a precise
location of the head labeling. However, it provides little
training information as the distance from the head increases.
The wide Gaussian provides training information at a dis-
tance, but gives an imprecise location of the head position,
resulting in low training information near the correct an-
swer. The blue line shows a composite of several Gaussians
with spread parameters between those of the two extremes
([Idrees et al., 2018] uses 3 Gaussian spreads in their work).
This provides both precise and distant training losses. Our
approach of the ikNN map shown in red (with k = 1) ap-
proaches a map function with a shape similar to the integral
on the spread parameter of all Gaussians for a spread pa-
rameter range from 0 to some constant. Additionally, our
method provides both the precise and distant gradient train-
ing information in a single map label. Also notable, is that
even the large Gaussian shown here approaches near zero
much sooner than the ikNN map value.

of density maps to extremes with regard to the spread
parameter of the Gaussian kernel provided by f . A
similar explanation is illustrated in Figure 3. At one
extreme, is a Gaussian kernel with zero spread. Here
the delta function remains unchanged, which in practi-
cal terms translates to a density map where the density
for each pedestrian is fully residing on a single pixel.
When the difference between the true and predicted
density maps is used to calculate a training loss, the
network predicting density 1 pixel away from the cor-
rect labeling is considered just as incorrect as 10 pixels
away from the correct labeling. This is not desired,
as it both creates a discontinuous training gradient,
and the training process is intolerant to minor spatial
labeling deviations. The other extreme is a very large
Gaussian spread. This results in inexact spatial infor-
mation of the location of the density. At the extreme,
this provides no benefit over a global regression, which
is the primary purpose for using a density map in the
first place. The extreme cases are shown for explana-

tory purposes, yet any intermediate Gaussian spread
has some degree of both these issue. Using multiple
scales of Gaussian spread, [Idrees et al., 2018] tries
to obtain the advantage of both sides. However, the
size of the scales and the number of scales are then
arbitrary and hard to determine.

In contrast, a single ikNN map provides a substan-
tial gradient everywhere while still providing steep
gradients in the exact locations of individual pedestri-
ans. Notably, near zero distance, the ikNN mapping
clearly has a greater slope, and in comparison, for any
Gaussian there exists a distance at which all greater
distances have a smaller slope than the equivalent po-
sition on the ikNN mapping. This means, the slope
of the Gaussian is only greater than the slope of the
ikNN mapping for an middle range arbitrarily deter-
mined by the Gaussian spread. The ikNN curve and its
derivative’s magnitude (the inverse distance squared)
monotonically increase toward zero. We want to note
here that directly using a kNN map doesn’t have the
advantage of using an inverse kNN map, since a kNN
or distance transform provides constant training gra-
dients everywhere. This was further verified in our
preliminary experiments. An example of our ikNN
map compared with a corresponding density map label-
ing can be seen in Figure 1. [Idrees et al., 2018] uses
3 density maps with different Gaussian spread parame-
ters, with the Gaussian spread being determined by the
kNN distance to other head positions multiplied by one
of the 3 spread parameters. For a single head position,
all Gaussian distributions integrated on β from 0 to an
arbitrary constant results in a form of the incomplete
gamma function. This function has a cusp around the
center of the Gaussians. Similarly, the inverse of the
kNN map also forms a cusp at the head position and re-
sults in similar gradients at corresponding distances as
the integrated Gaussian function. In our experiments,
we found that an inverse kNN map outperformed den-
sity maps with ideally selected spread parameters.

In one experiment, we use [Idrees et al., 2018]’s
network architecture, which utilized Dense-
Blocks [Huang et al., 2017] as the basis, but we
replace the density maps with ikNN maps and show
there is an improvement in the prediction’s mean abso-
lute error. This demonstrates the direct improvement
of our ikNN method on an existing state-of-the-art
network. Note, the regression module from ikNN
map to count is then also required to convert from the
ikNN map to a count. The difference in error between
the original approach in [Idrees et al., 2018] and the
network in [Idrees et al., 2018] with our ikNN maps,
though improved, is relatively small. We suspect this
is because the density maps (or ikNN maps) used
during training are downsampled to a size of 28x28



(where the original images and corresponding labels
are 224x224). This severe downsampling results in
more binning of pixel information, and this seems
to reduce the importance of which system is used
to generate that label. At the extreme case, when
downsampled to a single value, both approaches
would only give the global count in the patch (where
the ikNN map gives the inverse of the average distance
from a pixel to a head labeling which can be translated
to an approximate count). This downsampling is a
consequence of the network structure only permitting
labels of the same spatial size as the output of the
DenseBlocks. Our network (which will be described
below) remedies this through transposed convolutions,
allowing for the use of the full-size labels.

The generation of the ikNN labels occurs as one-
time data preprocessing step before the training pro-
cess, and thus the label generation method does not
have an impact on the speed of training steps.

5 Experimental Results

5.1 Evaluation metrics

For each dataset that we evaluated our method on, we
provide the mean absolute error (MAE), normalized
absolute error (NAE), and root mean squared error
(RMSE). These are given by the following equations:

MAE =
1

N

N∑
i=1

∣∣∣Ĉi − Ci

∣∣∣ (6)

NAE =
1

N

N∑
i=1

∣∣∣Ĉi − Ci

∣∣∣
Ci

(7)

RMSE =

√√√√ 1

N

N∑
i=1

(Ĉi − Ci)2 (8)

In the first set of experiments, we demonstrate the
improvement of the ikNN labeling scheme compared
to the density labeling scheme. We trained our net-
work using various density maps produced with dif-
ferent Gaussian spread parameters, β (as described in
Section 4), and compared these results to the network
using ikNN maps with varying k. We also analyze
the advantage of upsampling the label for both density
and ikNN maps. In the second set of experiments, we
provide comparisons to the state-of-the-art on standard
crowd counting datasets. In these comparisons, the
best ikNN map and density map from the first set of
experiments is used. Most works provide their MAE
and RMSE results. [Idrees et al., 2018] provided the

additional metric of NAE. Though this result is not
available for many of the datasets, we provide our own
NAE on these datasets for future works to refer to. The
most directly relevant work, [Idrees et al., 2018], has
only provided their results for their latest dataset, UCF-
QNRF. As such, their results only appear in regard to
that dataset. Finally, we offer a general analysis of
the results using our ikNN maps and upsampling ap-
proaches. General statistics about the datasets used in
our experiments is shown in Table 2.

5.2 Impact of labeling approach and
upsampling

5.2.1 Density maps vs ikNN maps

We used the ShanghaiTech dataset [Zhang et al., 2016]
part A for this analysis. The results of these tests are
shown in Table 3. The density maps provide a curve,
where too large and too small of spreads perform worse
than an intermediate value. Even when choosing the
best value (where β = 0.3), which needs to manually
determined, the i1NN label significantly outperforms
the density label.

Included in the table are experiments, in the fash-
ion of [Idrees et al., 2018], with density maps using 3
different β values. Here β1 denotes the spread param-
eter used as the label map for the first map module,
while β2 and β3 are for the second and third mod-
ules. Contrary to [Idrees et al., 2018]’s findings, we
only gained a benefit from 3 density labels when the
first output had the smallest spread parameter. Even
then, the gain was minimal. Upon inspection of the
weights produced by the network from the map to the
count prediction, the network reduces the predictions
from the non-optimal β maps to near zero and relies
solely on the optimal map (resulting in a reduced accu-
racy compared to using the optimal map for each map
module).

With varying k, we find that an increased k results
in lower accuracy. This is likely due to the loss of
precision in the location of an individual. The most
direct explanation for this can be seen in the case of
k = 2. Every pixel on the line between two nearest
head positions will have the same map value, thus
losing the precision of an individual location.

5.2.2 Upsampling analysis

Most existing works use a density map with a reduced
size label for testing and training. Those that use the
full label resolution design specific network architec-
tures for the high-resolution labels. Our map module
avoids this constraint by upsampling the label using



Dataset Images Total count Mean count Max count Average resolution

UCF-QNRF 1535 1,251,642 815 12,865 2013×2902
ShanghaiTech Part A 482 241,677 501 3139 589×868
ShanghaiTech Part B 716 88,488 123.6 578 768×1024
UCF-CC-50 50 63,974 1279 4633 2101×2888

Table 2: General statistics for the tested datasets.

(a) i1NN predictions. (b) i3NN predictions.
Figure 4: A small sample of patch predictions for map labels. In each subfigure, from left to right is the original image patch,
the ground truth label, and the patches from the three map modules in order through the network.

a trained transposed convolution, which can be in-
tegrated into most existing architectures. Using the
ShanghaiTech part A dataset, we tested our network
using various label resolutions to determine the im-
pact on the predictive abilities of the network. These
results can be seen in Table 3. Experiments without
no label resolution given are 224×224. From these
results, it is clear that the higher resolution leads to
higher accuracy. Note, this results in a minor change
to the map module structure, as the final convolution
kernel needs to match the remaining spatial dimension.
A set of predicted ikNN map labels can be seen in
Figure 4, where a grid pattern due to the upsampling
can be identified in some cases.

5.3 Comparisons on standard datasets

The following demonstrates our network’s predictive
capabilities on various datasets, compared to various
state-of-the-art methods. Again, we note that our im-
provements are expected to complementary to the ex-
isting approaches, rather than alternatives.

For these experiments, we used the best k, 1, and
best β, 0.3, from the first set of experiments.

The first dataset we evaluated our approach on is
the UCF-QNRF dataset [Idrees et al., 2018]. The re-
sults of our MUD-ikNN network compared with other
state-of-the-art networks are shown in Table 4. Our
network significantly outperforms the existing meth-
ods. Along with a comparison of our complete method
compared with the state-of-the-art, we compare with

[Idrees et al., 2018]’s network, but replace their den-
sity map predictions and summing to count with our
ikNN map prediction and regression to count. Using
the ikNN maps, we see that their model sees improve-
ment in MAE with ikNN maps, showing the effect of
the ikNN mapping.

The second dataset we evaluated our approach on
is the ShanghaiTech dataset [Zhang et al., 2016]. The
dataset is split into two parts, Part A and Part B. For
both parts, we used the training and testing images as
prescribed by the dataset provider. The results of our
evaluation on part A are shown in Table 5. Our MUD-
ikNN network slightly outperforms the state-of-the-art
approaches on this part. The results of our evaluation
on part B are shown in Table 6. Here our network per-
forms on par or slightly worse than the best-performing
methods. Notably, our method appears perform better
on denser crowd images, and ShanghaiTech Part B is
by far the least dense dataset we tested.

The third dataset we evaluated our approach on is
the UCF-CC-50 dataset [Idrees et al., 2013]. We fol-
lowed the standard evaluation metric for this dataset
of a five-fold cross-evaluation. The results of our eval-
uation on this dataset can be seen in Table 7.

Overall, our network performed favorably com-
pared with existing approaches. An advantage to our
approach is that the our modifications can be applied
to the architectures we’re comparing against. The most
relevant comparison is between the ikNN version of
the MUD network, and the density map version. Here,
the ikNN approach always outperformed the density



Method MAE NAE RMSE

MUD-densityβ0.3
28x28 79.0 0.209 120.5

MUD-densityβ0.3
56x56 74.8 0.181 121.0

MUD-densityβ0.3
112x112 73.3 0.176 119.1

MUD-i1NN 28x28 75.8 0.180 120.3
MUD-i1NN 56x56 72.7 0.181 117.4
MUD-i1NN 112x112 70.8 0.166 117.0

MUD-densityβ0.05 84.5 0.233 139.9
MUD-densityβ0.1 76.8 0.189 120.3
MUD-densityβ0.2 75.3 0.175 124.2
MUD-densityβ0.3 72.7 0.174 120.4
MUD-densityβ0.4 75.7 0.176 130.5
MUD-densityβ0.5 76.3 0.182 130.0
MUD-density
β10.5,β20.3,β30

78.5 0.205 124.2

MUD-density
β10.5,β20.3,β30.05

77.8 0.207 124.9

MUD-density
β10.4,β20.2,β30.1

76.7 0.202 122.7

MUD-density
β10.1,β20.2,β30.4

75.1 0.191 119.0

MUD-density
β10.2,β20.3,β30.4

76.0 0.196 122.1

MUD-i1NN 68.0 0.162 117.7
MUD-i2NN 68.8 0.168 109.0
MUD-i3NN 69.8 0.169 110.7
MUD-i4NN 72.2 0.173 116.0
MUD-i5NN 74.0 0.182 119.1
MUD-i6NN 76.2 0.188 120.9

Table 3: Results using density maps vs ikNN maps with
varying k and β, as well as the various upsampling resolu-
tions on the ShanghaiTech Part A dataset. If a resolution is
not shown, it is the default 224×224. Multiple β correspond
to a different Gaussian density map for each of the 3 map
module comparisons.

version. We speculate that the state-of-the-art meth-
ods we have compared with, along with other general-
purpose CNNs, could be improved through the use of
ikNN labels and upsampling map modules.

6 Conclusions

We have presented a new form of labeling for
crowd counting data, the ikNN map. We have com-
pared this labeling scheme to commonly accepted la-
beling approach for crowd counting, the density map.
We show that using the ikNN map with an existing

state-of-the-art network improves the accuracy of the
network compared to density map labelings. We have
demonstrated the improvements gained by using in-
creased label resolutions, and provide an upsampling
map module which can be generally used by other
crowd counting architectures. These approaches can
be used a drop-in replacement in other crowd counting
architectures, as we have done for DenseNet, which
resulted in a network which performs favorably com-
pared with the state-of-the-art.
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