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Abstract

To alleviate the cost of collecting and annotating large-
scale point cloud datasets for 3D scene understanding
tasks, we propose an unsupervised learning approach to
learn features from unlabeled point cloud ”3D object”
dataset by using part contrasting and object clustering with
deep graph neural networks (GNNs). In the contrast learn-
ing step, all the samples in the 3D object dataset are cut into
two parts and put into a ”part” dataset. Then a contrast
learning GNN (ContrastNet) is trained to verify whether
two randomly sampled parts from the part dataset belong
to the same object. In the cluster learning step, the trained
ContrastNet is applied to all the samples in the original 3D
object dataset to extract features, which are used to group
the samples into clusters. Then another GNN for cluster-
ing learning (ClusterNet) is trained to predict the cluster
IDs of all the training samples. The contrasting learning
forces the ContrastNet to learn high-level semantic features
of objects but probably ignores low-level features, while the
ClusterNet improves the quality of learned features by be-
ing trained to discover objects that belong to the same se-
mantic categories by using cluster IDs. We have conducted
extensive experiments to evaluate the proposed framework
on point cloud classification tasks. The proposed unsuper-
vised learning approach obtained comparable performance
to the state-of-the-art unsupervised learning methods that
used much more complicated network structures. The code
and an extended version of this work is publicly available
via: https://github.com/lingzhang1/ContrastNet

1. Introduction

With ever increasing applications, 3D scene understand-
ing with deep graph convolution neural networks (GNNs)
has drawn extensive attention [12, 13, 15, 3]. GNNs typi-
cally have millions of parameters which could easily lead to
over-fitting. Large-scale annotated datasets are needed for
the training of such deep networks. However, the collec-

Figure 1. Each row consists of a 3D point cloud object and its four
different segments. Human can easily recognize the objects and
the locations of the segments in the objects even they are small
segments. Inspired by this observation, we propose to train GNNs
to learn features from unlabeled dataset by recognize whether two
segments are from the same object.

tion and annotation of point cloud datasets are very time-
consuming and expensive since pixel-level annotations are
needed. With the powerful ability to learn useful representa-
tions from unlabeled data, unsupervised learning methods,
sometimes also known as self-supervised learning methods,
have drawn significant attention.

The general pipeline of unsupervised learning with a
deep neural network is to design a ”pretext” task for the
network to solve while the label for this pretext tasks can be
automatically generated based on the attributes of the data.
After the network is trained with pretext tasks, the network
will be able to capture useful features. Recently, many un-
supervised learning methods have been proposed to learn
image features by training networks to solve pretext tasks
[10, 2, 7, 11, 8].

Some unsupervised learning methods have also been
proposed for point cloud unsupervised learning [9, 4, 5,
16, 1, 17]. Most of them are based on Auto-Encoder (AE)
[5, 16, 1, 17]. Various AEs are proposed and the features are
obtained by training AEs to reconstruct the 3D point cloud
data. Since the main purpose of an AE is to reconstruct the
data, the networks may memorize the low-level features of
the point cloud.

In this paper, we propose an unsupervised feature learn-
ing approach for point cloud by training GNNs to solve
two pretext tasks consecutively, which are part contrasting
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Figure 2. The proposed unsupervised feature learning includes three main steps: (a) ContrastNet for part contrast learning, by verifying
whether two point cloud cuts belong to the same object; (b) Clustering samples of 3D objects and assign cluster IDs, using the features
learned by ContrastNet; (c) ClusterNet for object clustering learning, by training the network with the 3D point cloud data while the labels
are the cluster IDs assigned by the clustering step.

and object clustering. Specifically, the network is trained
to accomplish two pretext tasks: to compare (contrast) two
point cloud cuts and to cluster point cloud objects. First,
all the 3D point objects are cut into two parts and a GNN
(called ContrastNet) is trained to verify whether two ran-
domly sampled parts from the dataset belong to the same
object. Second, the point cloud data is clustered into clus-
ters by using the features learned by the ContrastNet, and
another GNN (called ClusterNet) is trained to predict the
cluster ID of each point cloud data. The contrasting learn-
ing forces the ContrastNet to learn high-level semantic fea-
tures while ignoring low-level features, and the predicted
cluster IDs boost the quality of learned features by training
the ClusterNet to discover objects that belong to the same
semantic categories.

In summary, our main contributions in this paper are as
follows:

• A generalized and effective unsupervised feature
learning framework is proposed for point cloud data.
By training deep neural networks to solve two pre-
text tasks, part contrasting and object clustering, the
networks are able to learn semantic features for point
cloud data without using any annotations.

• In particular, aligning pseudo-labels for point clouds
using clustering is able to transfer knowledge from
pre-training models to fine-tuning models. This step
significantly boosts the classification performance, a
2.9% improvement on ModelNet40.

• The extensive experiments show that our proposed ap-
proach outperforms most of the state-of-the-art unsu-
pervised learning methods. With the features learned
from the unlabeled dataset, the proposed model obtains
86.8% and 93.8% on ModelNet40 and ModelNet10
dataset respectively.

2. Method
To learn features from unlabeled point cloud data, we

propose to learn features by training networks to accom-
plish both of the part contrasting and the object clustering
pretext tasks. The pipeline of our framework is illustrated
in Fig. 2, which includes three major steps: ContrastNet
for part contrast learning, clustering using the learned fea-
tures, and then ClusterNet for object cluster learning using
the cluster IDs.

2.1. ContrastNet: Part Contrast Learning

When a point cloud data is observed from different
views, only a part of the 3D object can be seen. The ob-
servable part can be very different based on the view, as
shown in Fig. 1. Inspired by this observation, we propose to
use part (segment) contrasting as a pretext task for a GNN
to solve. The task is defined as to train a ContrastNet to ver-
ify whether two point cloud segments belong to the same
object. The positive pair is drawn by selecting two differ-
ent segments from the same object, while the negative pair
is drawn by selecting two segments from two different ob-
jects. The illustration of the part contrast task is shown in
Fig. 3.

This task can be modeled as a binary classification prob-
lem. As the training goes on, the segments from the same
object should have a smaller distance while the segments
from different objects have a larger distance. In this way,
semantic features can be learned by this process. DGCNN
[15] is used as the backbone model and the details of the
network architecture are shown in Fig. 3.

2.2. ClusterNet: Knowledge Transfer with Clusters

The underline intuition of clustering is that 3D objects
from the same categories have high similarity than those
from different categories. After obtaining the clusters of
the data by using Kmeans++[6], based on the features ex-
tracted by ContrastNet, the cluster IDs of the data are used
as the ”pseudo” labels to train a ClusterNet. We hope that



Figure 3. The architecture of ContrastNet for part contrast learning. The positive pair is generated by randomly sampling two segments
from the same point cloud sample, while the negative pair is generated by randomly sampling two segments from two different samples.
A dynamic graph convolution neural network (GNN) is used as the backbone network. The features of two segments are concatenated and
fed to fully connected layers to make the prediction of positive or negative. The part contrast learning does not require any data annotations
by humans.

using cluster IDs as pseudo labels in ClusterNet can provide
more powerful self-supervision and therefore, the network
can learn more representative features for object classifica-
tion.

The training of ClusterNet, also based on DGCNN [15],
with the cluster ID assignments as the pseudo-labels, is de-
scribed as:

min
θ,W

1

N

N∑
n=1

` (gW (fθ(xn)) , yn) , (1)

where the purpose of training is to find the optimal param-
eters θ∗ such that the mapping fθ∗ produces good general-
purpose features for point cloud data. In our unsupervised
learning training, each data xn is paired with a pseudo label
yn that is generated by the clustering algorithm.

3. Experimental Results
3.1. Implementation Details

During the part contrast unsupervised learning, each ob-
ject is cut by 15 randomly generated planes into 30 seg-
ments. Each segment has at least 512 points. During the
unsupervised part contrast training phase, the learning rate
is 0.001, momentum is 0.9, the learning rate decay rate is
0.7, and the decay step is 200000. The same DGCNN struc-
ture and the learning parameters are used as in the Cluster-
Net.

3.2. Transfer Features Learned to Classification
Task

To quantitatively evaluate the quality of the learned fea-
tures by using the part contrasting pretext task and then by
the ClusterNet, we conduct experiments on three different
datasets: ShapeNet, ModelNet10, and ModelNet40. The
features are extracted by the ContrastNet that is only trained
with the part contrast task on unlabeled data. A linear clas-
sifier SVM is trained based on the features of the training

Figure 4. Visualization of object embedding of the ModelNet10
test data through part contrast training on the ShapeNet dataset.
The features are learned by part contrast learning (left) and then
boosted by object clustering (right).

data, and the testing classification accuracy of ContrastNet
and ClusterNet are reported in the columns ”ContrastNet”
and ”ClusterNet” in Table 1, respectively.

Training Testing ContrastNet (%) ClusterNet (%)
ShapeNet ModelNet40 84.1 86.8 (+2.7)
ShapeNet ModelNet10 91.0 93.8 (+2.8)
ModelNet40 ModelNet40 85.7 88.6 (+2.9)

Table 1. Comparison of 3D object classification results using Con-
trastNet and ClusterNet. The classification accuracy of ClusterNet
have average 2.8% improvement on all experiments.

As shown in Table 1, these results validate the effec-
tiveness of the proposed method and the learned features by
the ContrastNet indeed have semantic information. Train-
ing the ClusterNet to predict the cluster ID of each data can
significantly improve the point cloud classification accuracy
at least 2.7% on all three datasets. These improvements val-
idate the effectiveness of using clustering to boost the qual-
ity of the learned features, as shown in Fig. 4.

3.3. Compare with the State of the Art

We compare our approach with other unsupervised
learning models [9, 4, 5, 14, 16, 1, 17] on point cloud clas-



sification benchmarks ModelNet10 and ModelNet40. Fol-
lowing the common practice [17, 16], all the models are
trained on the ShapeNet data with the same procedure. The
methods in [9, 4] are hand-crafted features and methods in
[5, 14, 16, 1, 17] are deep learning based methods.

On the ModelNet10 dataset, our methods outperforms
SPH [9], LFD [4], TLNetwork [5], VConv-DAE [14], and
3DGAN [16], and only 0.6% lower than FoldingNet [17]
which is the latest work for unsupervised feature learning.
On the MoldelNet40 datasets, our method outperforms all
the methods except FoldingNet (1.6% lower). We would
like to note that our ClusterNet has a much simpler structure
and is easier in training.

Models ModelNet40 (%) ModelNet10 (%)
SPH [9] 68.2 79.8
LFD [4] 75.5 79.9
T-L Network [5] 74.4 -
VConv-DAE [14] 75.5 80.5
3D-GAN [16] 83.3 91.0
Latent-GAN [1] 85.7 95.3
FoldingNet [17] 88.4 94.4
ClusterNet (Ours) 86.8 93.8

Table 2. The comparison on classification accuracy between our
ClusterNet and other unsupervised methods on point cloud classi-
ficaton dataset ModelNet40 and ModelNet10.

4. Conclusion
We have proposed a straightforward and effective

method for learning features for point cloud data from un-
labeled data. The experiment results demonstrate that pro-
posed pretext tasks (part contrasting and object clustering)
are able to provide essential semantic information of the
point cloud data for the network to learn semantic features.
Our proposed methods have been evaluated on three public
point cloud benchmarks and obtained comparable perfor-
mance with other state-of-the-art self-supervised learning
methods.
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