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ABSTRACT 

Accurate indoor positioning has attracted a lot of attention for a 
variety of indoor location-based applications, with the rapid 
development of mobile devices and their onboard sensors. A 
hybrid indoor localization method is proposed based on single off-
the-shelf smartphone, which takes advantage of its various 
onboard sensors, including camera, gyroscope and accelerometer. 
The proposed approach integrates three components: visual-
inertial odometry (VIO), point-based area mapping, and plane-
based area mapping. A simplified RANSAC strategy is employed 
in plane matching for the sake of processing time. Since Apple’s 
augmented reality platform ARKit has many powerful high-level 
APIs on world tracking, plane detection and 3D modeling, a 
practical smartphone app for indoor localization is developed on 
an iPhone that can run ARKit. Experimental results demonstrate 
that our plane-based method can achieve an accuracy of about 0.3 
meter, which is based on a much more lightweight model, but 
achieves more accurate results than the point-based model by 
directly using ARKit’s area mapping. The size of the plane-based 
model is less than 2KB for a closed-loop corridor area of about 
45m*15m, comparing to about 10MB of the point-based model. 

Keywords: Indoor localization, lightweight model, multi-level 
mapping, region segmentation, plane matching. 

Index Terms: Computing Methodologies―Mixed / Augmented 
Reality; Computing Methodologies―Computer Vision―Vision 
and Scene Understanding 

1 INTRODUCTION 

In the past two decades, accurate indoor localization and tracking 
has attracted a great deal of attention for its widespread 
applications in large indoor environments, such as airports, 
supermarkets and hospitals. Once accurate location information is 
available in real time, various practical location-based services 
could be provided, such as indoor navigation services, location 
information push, advertising market services, etc. Unfortunately, 
compared with the commonly used GPS technology in outdoor 
environments, there is still an absence of a standard positioning 
system that can be widely applied in indoor environments [1]. 

Since GPS signal does not work in indoor environments, a 
variety of radio-based methods that use signal frequencies or 
strengths, such as Wi-Fi [2], WLAN, Bluetooth [3], UWB or 
RFID, are widely researched to realize indoor positioning. 
However, due to the variations of radio signals in complicated 
indoor environments, all these positioning methods tend to have 
large fluctuations, leading to poor accuracy. Moreover, extra 
infrastructure must be deployed ahead in indoor environments, 
and additional signal receiving devices are needed at users’ side. 

On the other hand, with rapid development of the mobile device 
industry, smartphones now are equipped with various kinds of 
powerful on-board sensors, including accelerometers, gyroscopes, 
compasses, proximity sensors, depth sensors, cameras, etc.[4]. 
Pedestrian dead reckoning (PDR) [5] is a well-known technique to 
track a user’s current position based on previous positions, step 
length and motion direction [6]. Furthermore, in cooperation with 
visual sensors, the Visual-Inertial Odometry (VIO) technique [7] 
can achieve much better performance on motion tracking, due to 
the complementary characteristics of these two sensing modalities. 
However, the major disadvantage of this kind of methods is the 
accumulative drift error. For long-distance and long-term tracking, 
additional global mapping and/or other physical constraints are 
necessary to eliminate the cumulative error. 

So far, highly accurate and practical smartphone-based indoor 
localization remains an open problem. In this paper, a hybrid 
indoor localization method is proposed solely based on a single 
smartphone, which takes full advantage of various on-board 
sensors. Based on the powerful high-level APIs of ARKit 
platform [8] provided by Apple Inc., the proposed method 
integrates visual-inertial odometry (VIO), area mapping based on 
point cloud, and 3D space modeling based on plane detection. The 
main contributions of this paper include: (1) A real-time 
implementation solely on a smartphone, by fully utilizing the 
functionalities well developed in the AR platform ARKit. (2) 
Multi-level area mapping and localization by leveraging different 
types of features (point-based and plane-based) in an indoor 
environment. (3) Highly lightweight models leading to more 
efficient performance in storage space and processing time yet 
achieving high accurate localization. 

2 RELATED WORK 

Modern smartphones are equipped with a variety of sensors, 
which can be combined to obtain precise positioning results. 
Meanwhile, powerful computing performance of smartphones 
also makes real-time mobile localization possible. According to 
the types of utilized on-board sensors and the measuring 
principles, smartphone-based indoor positioning methods can be 
classified into two groups: Inertial based methods, further 
cooperated with visual information, and radio-based methods, 
typically using fingerprinting technology. 

2.1 Inertial based methods 

Using a combination of on-board inertial sensors, i.e. inertial 
measurement units (IMUs), consisting of an accelerometer and a 
gyroscope, sometimes also a magnetometer, the current position 
of a user can be determined based on its previous position, step 
length and motion direction. This widely used technique is called 
pedestrian dead reckoning (PDR) [5]. The motion of the user is 
measured step by step, and current position is tracked relative to 
the starting point without the need of any extra physical 
infrastructure deployed in the environment. Unfortunately, the E-mail: nudtdong11@163.com 



accuracy of position estimation would be low if the motion is too 
rapid or violent. Visual information can then be introduced to 
tackle the problem of violent movement by the utilization of an 
on-board camera, via Visual-Inertial Odometry (VIO) algorithms. 
VIO algorithms can be classified into two categories: filter-based 
[9] and optimization–based [10]. However, the major 
disadvantage of PDR or VIO methods is their cumulative error, 
which limits their applications in a very short distance. Sensor 
drift is the main drawback, which makes it impossible to extend to 
long-distance localization and long-term tracking, even using the 
EKF method [11]. Additional global maps and physical 
constraints are needed to reduce the accumulative drift error, 
especially for orientation drift error. Otherwise, the sensor drift 
will be accumulated and become more and more severe along the 
walking distance, if only the relative information is leveraged. 

2.2 Radio-based methods 

Generally, all these methods in this category are built upon a 
wireless network deployed in an indoor environment in advance. 
Multiple access points or signal transmitters are distributed in the 
space. The characteristics of the received radio signals, including 
time of flight (TOF), frequency or received signal strength (RSS), 
are used to estimate the position of the user carrying a mobile 
device. Apart from using traditional trilateration measurement in 
very simple scenarios, normally the measuring principle of these 
methods needs a prior process of training in the target space, 
which is called the fingerprinting technique [12]. The RSS-based 
fingerprinting method firstly collects a database of features in 
many locations of the scene, and then online measurements at 
current location will be matched with the closest fingerprint of a 
priori location. The main challenge to the location fingerprinting 
technique is that the received signal strength could be affected by 
diffraction, reflection, and scattering in a propagation indoor 
environment. Besides, it also suffers from multi-path problems. 
Hence, the accuracy of radio-based methods is still limited at 
around meter-level. Therefore, some researchers propose to fuse 
radio-based and PDR techniques to achieve better localization 
accuracy [13]. The improvement of accuracy is achieved upon the 
increasing of computation complexity. Moreover, extra 
infrastructure and prior training process are also needed. 

In the last few years, some large technology companies have 
been committing to develop augmented reality (AR) platforms, 
most prominently Tango [14] and ARCore from Google [15], and 
ARKit from Apple [8]. These platforms provide high-level APIs 
on world tracking, space modeling, scene understanding and so on. 
Based on a basic survey of these platforms, we choose an Apple 
iPhone that supports ARKit as our smartphone device to realize 
indoor localization. ARKit is a mobile AR platform for 
developing augmented reality apps on iOS. It provides a high-
level API interface containing a powerful set of features. Firstly, 
tracking based on visual inertial odometry (VIO) is the core 
functionality of ARKit. It is the ability to track the mobile device 
in real time, which provides the ability to get the device's relative 
position in physical environments. Moreover, ARKit also 
provides an ability of real-time plane detection for scene 
understanding, which determines surfaces or planes in the 
physical environment. In ARKit 2 released on June 2018, the 
ARWorldMap class provides the ability to save world maps 
representing physical 3D space, and then these maps can be 
reloaded the next time when a user visits the same physical 
environment to obtain a “geo-referenced” localization experience. 
ARWorldMap offers a powerful foundation to realize indoor 
relocalization easily, which will be detailed in the next section as 
one of our baselines, although its ability is still limited. 

3 HYBRID MODELING AND LOCALIZATION APPROACH 

The system diagram of the proposed hybrid modeling and 
localization approach is illustrated in Figure 1. The whole system 
is implemented on a standard iPhone device based on the ARKit 
platform developed by Apple Inc. The main work for achieving 
indoor localization in this paper can be divided into two parts: 
hybrid mapping (modeling) and hybrid matching (localization). 
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Figure 1: The proposed hybrid modeling and localization approach 

In the hybrid mapping part, two different modules for modeling 
a 3D indoor scene are presented: point-based area mapping and 
plane-based area mapping. The point-based area mapping module 
is based on the traditional SLAM (Simultaneous Localization and 
Mapping) method [16]. The ARKit platform has provided a 
powerful feature ARWorldMap in its newer version ARKit 2. The 
ARWorldMap object stores all the raw feature points as you 
scanned, which represents mapping of physical 3D space. Notably, 
the environment will have to be rich with visual features (such as 
doorplates, posters, fixtures, etc.) to generate a usable point-based 
area map. Then, the local area map stored in ARWorldMap object 
could be retrieved and loaded to realize relocalization next time. 
The point-based approach is used as one of the two modules with 
two purposes: as a baseline model to evaluate our plane-based 
module in this paper, and the point-level module for our multi-
level fusion in the future. The plane-based area mapping module, 
on the other hand, is based on plane detection in 3D space. In the 
current implementation, we use vertical planes that are rich and 
unique in typical indoor environments for space localization, such 
as walls, windows, pillars, posters, etc. Moreover, ARKit also 
provides a basic API to determine spatial surfaces as geometric 
planes automatically in physical environments. The plane 
detection ability of ARKit can also extend and update the ranges 
of detected planes simultaneously. All these local area maps are 
integrated into a global model aligned with the same indoor floor 
plan. 

After the modeling of the indoor environment, the hybrid 
matching part is used for localization, through the matching 
between the current scene information captured by various sensors 
and the saved global models. Since there are two different area 
models, one is at point-based and the other is at plane-based, we 
propose a hybrid multi-level matching and localization method. 
Each of the two models and its corresponding matching results 
have advantages and disadvantages in different scenic conditions: 
the point-based model is preferable when rich and unique visual 
features present in the indoor scene, whereas the plane-based 



model is desirable when the scene is populated with various 
distinguished vertical planes. The two matching and localization 
results could be fused by using filtering methods to get a better 
final result, such as EKF [17] or particle filtering [18]. 

3.1 Region segmentation for hybrid mapping  

Point-based area mapping. Generally, it is difficult to store the 
whole scene information of a large area (such as a building) into 
only one point-based area map. The size of model will be too 
large, and it will bring a great challenge to computational 
efficiency while doing matching for localization. Specifically, for 
point-based area mapping, by conducting numerous real-scene 
experiments on the ARKit platform, we have found that the size 
of a point-based area map stored in an ARWorldMap object is 
limited to only a few Megabytes. Therefore, we need to divide the 
whole area into multiple local areas, and then scan each area to 
generate the corresponding local model. Finally, a georeferencing 
process is needed for integrating local area models into a global 
model, which means to align all the local models into a unified 
world coordinate system using a 3D rigid transformation. Details 
of the alignment process will be described below. Then, the global 
model of the whole physical space is generated. 

Figure 2(a) shows a floor plan of a campus building. As shown 
in Figure 2(b), the easiest way in region segmentation is to divide 
the whole area into several regular rectangle regions. However, 
we have found that the point cloud area maps created by 
ARWorldMap in ARKit API can only find matches in the 
localization stage at few spots where there are salient visual 
features in such an indoor scene. As shown in Figure 2(d), there 
are only about twenty spots along a close-loop corridor with a 
length of more than 100 meters. Thereby, an improved strategy of 
irregular region segmentation is proposed as shown in Figure 2(c). 
Each boundary between two neighboring local areas is located at 
somewhere with salient visual features, which ensures that the 
system can quickly find a right match and perform localization 
based on the new-loaded map when the user enters a new area. 
Furthermore, while scanning the real scene, each two consecutive 
regions have overlaps to achieve a smooth area switching. 

Plane-based area mapping. Planes are very common in real 
indoor environments, such as walls, pillars, posters, doors, and 
ground. The spatial structure of the 3D space can be well 
represented by a set of dominant planes. Fortunately, ARKit 
provides the ability of plane detection to determine both 
horizontal and vertical planes in physical environments. For 
indoor localization, vertical planes such as walls and sides of 
pillars are rather unique in positioning the user with the phone. 

For the plane-based area mapping, it is feasible to store all the 
detected planes in one model, because we just need to store the 
necessary parameters of each plane, which is highly lightweight. 
Here, to simplify the modeling and mapping process, we first 
project all the detected vertical planes onto the 2D floor plan, i.e. 
the xoz plane while the coordinate system's y-axis is parallel to the 
direction of gravity. However, if we use the plane detection and 
tracking results directly from ARKit, as shown in Figure 3(a), 
accumulative drift error will cause very low accuracy of the area 
model. Therefore, the aforementioned strategy of region 
segmentation is also employed here for plane-based modeling. As 
shown in Figure 3(b), each different color of the lines indicates 
one-time scanning and modeling process of the real environment. 
Finally, all the plane-based local models consisting of several 
projected lines will be aligned to a unified world coordinate 
system using 2D similarity transformations to the floor plan, thus 
creating a “geo-referenced” plane-based global model. 

   
(a)                               (b)                                 (c)                

 
(d)                                                     

Figure 2: Illustration of region segmentation for 3D point cloud 
modeling. (a) A 2D floor plan of one floor of a campus building. 
(b) Regular region segmentation. (3) Adaptive region 
segmentation based on salient feature spots. (4) Salient 
feature spots along the corridor. 

  
(a)                                                 (b) 

Figure 3: Illustration of region segmentation for plane-based 
modeling (a) Results with only one-time area mapping process. 
(2) Results with region segmentation and global alignment. 

Details on geo-referenced models. For the georeferencing 
process of both the above two modeling methods, several 
“landmark” points (ground-truth points on the floor) are set in 
each local area in advance. The accurate physical positions of 
each landmark point are measured accurately and recorded in 
advance in the pre-defined and unified world coordinate system. 
While scanning the real scene and modeling the local area, the 
estimated location at each landmark point is recorded in the 
corresponding local coordinate systems. Then, a transform matrix 
between each local coordinate system and the unified world 
coordinate system can be calculated based on the local and global 
coordinates of these landmark points. Since the indoor 
localization problem in this paper is simplified by projecting the 
3D space onto 2D xoz plane (the floor plan), only two landmark 
points for each local area are needed to calculate a 2x3 similarity 
transform matrix. 

Compared with the point-based area model, the plane-based 
model is much more lightweight. For each plane, which is 
projected on the ground (the floor plan), we only need to store the 
coordinates of the two end points of its projected line segment on 
the 2D xoz floor plane. 



3.2 Hybrid matching and localization 

For the two different levels of space models, the corresponding 
matching and localization methods are also different, which are 
detailed as follows. 

3.2.1 3D point cloud mapping and relocalization 

An overview of the proposed mapping and localization method 
based on 3D point cloud modeling is presented in Figure 4. Firstly, 
the initial position of the device need to be acquired by some 
initialization techniques, such as GPS location at the entrance of 
an indoor environment. Here, the initial position is not necessary 
to be very accurate. We just need a rough location to determine at 
which local area (region) the current location is. Then, the 
corresponding local area map will be loaded, i.e. a partial 3D 
point cloud enhanced with visual feature points in this area. Once 
the new map is loaded, a new AR session will be reconfigured and 
started. Then, each current frame while scanning the physical 
space will be checked simultaneously whether it can be mapped 
with somewhere stored in the point-level area model or not. This 
mapping process is automatically realized by ARKit. Once 
mapped successfully, the current position in the local coordinate 
system of the local area model is acquired. Meanwhile, the world 
tracking functionality of ARKit is launched. The device’s relative 
position is continuously tracked based on the captured images, as 
well as motion data from on-board inertial sensors. The real-time 
tracking and localization is realized upon the technique of Visual 
Inertial Odometry (VIO) [7]. 
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Figure 4: Diagram of point-based matching and localization 

method 

Since the estimated local position at each frame has been 
aligned to a pre-defined world physical space based on the 
corresponding transform matrix of the current local map, a geo-
reference position of the current frame can be determined and 
therefore is drift-free. Furthermore, the real-time positioning 
process will be checked at each frame whether the device has 
entering a new local area or not. If so, the corresponding new 
local map will be loaded. Once the new local map is firstly 
mapped, a new loop of mapping and localization continues. 

3.2.2 Plane detection and simultaneous matching for 
localization 

A simplified RANSAC strategy is employed in the plane-based 
indoor localization algorithm. The algorithm has the following 
steps: 
1) Randomly select two line segments il  and jl  (representing 

two vertical planes) in the current set of detected planes 
Cur_subset, then check whether the two lines satisfy the 
following two conditions simultaneously: ①The orientation 
difference of the two lines is large enough (e.g., 45  ); ②

The distance between the two line segments is within a 
certain range. If not, select again. 

2) Randomly search a pair of line segments mL  and nL  in a 
subset subModel of planes in the global model. Here, the 
subset is filtered within a certain range near the current 
estimated position. The two line segments mL  and nL  
should satisfy both of the following two conditions: ①The 
angle deviation between the match il  and mL  is the same as 
the angle deviation between the match jl  and nL  (within a 
small error tolerant range, e.g. 5 degrees); ②The distance 
between il & mL  and the distance between jl & nL  are both 
within a certain error range. Then, we assume the two pairs 

il & jl  and mL & nL  as a candidate match. 
3) Calculate the transform matrix T between Cur_subset and 

subModel, based on the orientation difference of the two 
pairs of matching lines ( il & jl  and mL & nL ) and the offset 
between the intersection points of the two line pairs. Here, 
we treat T as a 2D similarity transformation for simplicity. 

4) Apply the transform matrix T to all the line segments in the 
current detected set Cur_subset, and then the corresponding 
transformed line set Cur_subset_T is obtained. 

5) For each transformed line segment in the set Cur_subset_T, 
find the best matching line segment in subModel. Record the 
highest matching score of each line segment in the set 
Cur_subset_T, while the matching score between two line 
segments is defined as: 

*ij ij ijms AngleDev Dist  

Here, ijAngleDev  is the orientation difference between the 

two line segments, and ijDist  is the distance between the two 

line segments. 
6) If the above matching score is less than a threshold, the two 

line segments can be treated as a potential matching, and then 
the line segment Cur_subset_Ti in the set Cur_subset_T is 
temporarily labeled as an “inlier”. Count the total number of 
inliers for the current candidate matching T, and sum the 
matching score of each potential matching. 

7) Repeat the above steps 1)-6), then select one of the candidate 
matching which has the largest number of inliers as the best 
matching between Cur_subset and subModel. If there are two 
candidate matches with the equal number of inliers, choose 
the one that has better matching score as the best matching. 

8) The current position in the global coordinates system can be 
calculated by multiplying the original position with the best-
matching transform matrix T. 

4 EXPERIMENTS AND PERFORMANCE EVALUATION 

The proposed hybrid modeling and localization approach is 
evaluated in a typical indoor environment with a closed-loop 
corridor as shown in Figure 5(a). The size of the whole area is 
about 45m*15m. We uniformly set 32 ground-truth landmark 
points on the floor of the area; the green line in the figure shows 
the looping route starting from the bottom-left corner. The 
distance between two neighboring landmark points is 3.35m, and 
the positions of all these landmark points were accurately 
measured in advance to be treated as the ground truth of indoor 
localization. 

Firstly, a simple experiment is implemented to illustrate the 
effect of accumulative drift error of SLAM. The localization 
results are directly obtained by the world tracking module based 
on visual inertial odometry (VIO) provided by ARKit, without 



any modeling process. As shown in Figure 5(b), the radius of the 
green circle at each landmark point equals to the localization error 
at this point. We can see that, the localization error increases 
steadily with the increasing walking distances from the starting 
point. After a loop route along the corridor with a length of about 
100 meters, the cumulative error will be more than 2 meters. Even 
worse, the error will continue to grow much larger loop after loop. 
The angular error is more pronounced as see in Figure 5(c), the 
orientation difference of the rectangular corridor is as large as 25 
degrees between the first loop and the third loop of the travels of 
the corridor. Figure 5(d) shows the location error of the first loop 
of the corridor travel, from landmark #1 to landmark #32. 

   
(a)                               (b)                                (c) 

              

   
(d) 

Figure 5: Illustration of experimental setup and accumulative drift 
error. (a) Plane map and landmark locations; (b) Location 
errors on the floor plan; (c) Orientation errors in multiple loops 
of trajectories; (d) Plot of the location error of the first loop. 

Therefore, creating area maps (models) of the indoor 
environment in advance is necessary to eliminate the cumulative 
error. Three experiments using different modeling schemes are 
implemented for indoor localization, as detailed below. The 
Localization error distribution of different methods is illustrated 
by the radii of green circles, as shown in Figure 6. 

   
(a)                               (b)                                (c) 

Figure 6: Localization error distribution of different modeling and 
matching methods. (a) Point-based method using regular 
region segmentation; (b) Point-based method using adaptive 
region segmentation; (c) Plane-based method 

The first experiment is based on point-level modeling and 
matching with regular region segmentation (Baseline 1). We can 
see from Figure 6(a) that, most of the landmark points are located 
well with a reasonable error less than one meter. Cumulative 
errors can be significantly reduced at any point where the current 
view of the smartphone can be mapped successfully to the point-
level model stored in an ARWorldMap object. However, at some 
of the landmark locations, such as #11, #27 and #28, localization 
error is as large as over 3 meters. The reason is that each of these 
landmark points is nearing the boundary between two neighboring 
local areas, but there are no salient visual features around the 
boundary. While crossing the boundary to enter a new local area, 
the new local area map will be loaded, and then the positioning 
output will remains at the boundary for several seconds. The 
reason is that the transform relationship between the current local 
coordinate system and the global coordinate system has not been 
established before the new local map is mapped successfully for 
the first time. 

To overcome this problem, the second experiment based on 
point-level modeling with irregular region segmentation is 
implemented (Baseline 2). Each boundary between two 
neighboring local areas is located at somewhere very close to the 
spots with salient visual features. Consequently, the new loaded 
local model will be mapped quickly after crossing the boundary to 
enter a new local area, and then world tracking of ARKit and 
simultaneous global localization will be renewed soon. The 
localization results are much better as shown in Figure 6(b). 

 
(a) 

 
(b) 

Figure 7: Quantitative comparison of three different localization 
methods: point-based using regular region segmentation, 
point-based using adaptive region segmentation and plane-
based. (a) Error measured over the 32 landmarks. (b) The 
cumulative distribution function (CDF) of localization error. 

The third experiment is based on plane-level modeling and 
matching. Vertical planes in 3D space are detected by utilizing 
ARKit API, and then a global plane-level model as shown in 
Figure 3(b) is generated in advance. This experiment acquires 
much better localization results as shown in Figure 6(c). More 
importantly, the plane-level space model is very lightweight. For 



each detected vertical plane, we only need to store the coordinates 
of the two end points of its projected line segment on the 2D xoz 
plane. If we use a single-precision floating-point format to store 
one coordinate value, the storage size of one plane will be 4*4=16 
bytes. Then, the total size of the plane-level model of the 
45m*15m experimental space is only 1,952 Bytes. In contrast, the 
size of the above point-based model of the same area is 10.2 
Megabytes. 

The quantitative comparison of localization error of the above 
three experiments is shown in Figure 7(a), and their root mean 
square error (RMSE) of localization are 1.549 m, 0.405 m and 
0.278 m, respectively. The cumulative distribution function (CDF) 
of localization error is shown in Figure 7(b). 

Furthermore, the qualitative comparison between the above two 
different modeling and matching methods at different levels, i.e. 
point-level and plane-level, is discussed in Table 1. 

Table 1. Comparison between point-level and plane-level methods 

Methods Advantages Disadvantages 

Point-level 
modeling and 
localization 
using adaptive 
region 
segmentation 

 Easy to implement 
based on ARKit 
platform 

 Autonomous mapping 
and world tracking 

o Rely heavily on 
salient visual 
features 

o Could get stuck 
while entering a 
new local area 

o Much larger file 
size of model 

Plane-level 
modeling and 
localization 

 Higher accuracy 
 Lightweight model 
 Suitable for areas with 

very few salient visual 
features 

o Rely heavily on 
detection of vertical 
planes 

o May have 
ambiguity in plane 
matching 

5 CONCLUSION 

In this paper, a hybrid mobile indoor localization method is 
proposed based on multi-level scene modeling and matching 
solely using single off-the-shelf smartphone. By utilizing high-
level APIs provided by the popular augmented reality developing 
platform ARKit, both point-level and plane-level scene modeling 
and matching methods are conducted simultaneously on a single 
smartphone. Region segmentation and physical alignment are 
researched to realize global modeling of real environment. A 
simple and high-efficiency plane matching algorithm based on 
RANSAC strategy is designed. The experimental results verify 
that the proposed hybrid method has a high localization accuracy 
of about 0.3m, and the plane-level model is very lightweight with 
a total size of only 1.9 KB for a 45m*15m experimental space. 
The real-time localization can be implemented based on the world 
tracking functionality provided by ARKit. Experimental results 
show the main merits of our method: high accuracy in localization, 
lightweight models, and solely smartphone-based without any 
extra infrastructure. 

Both of the two different levels of modeling, i.e. point-level and 
plane-level, have its own advantages and disadvantages in 
different scenic conditions, as discussed in experimental section. 
Our ongoing research focuses on fusing point-level and plane-
level localization methods together to achieve complementarity of 
each other. In the application side, we will develop a navigation 
app using the hybrid localization approach for providing 
navigation guidance for people in need, such as individuals who 
are blind or visually impaired. 
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