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Abstract 

 
We propose an accessible indoor navigation 

application. The solution integrates information of floor 
plans, Bluetooth beacons, Wi-Fi/cellular data 
connectivity, 2D/3D visual models, and user preferences. 
Hybrid models of interiors are created in a modeling 
stage with Wi-Fi/ cellular data connectivity, beacon 
signal strength, and a 3D spatial model. This data is 
collected, as the modeler walks through the building, and 
is mapped to the floor plan. Client-server architecture 
allows scaling to large areas by lazy-loading models 
according to beacon signals and/or adjacent region 
proximity. During the navigation stage, a user with the 
designed mobile app is localized within the floor plan, 
using visual, connectivity, and user preference data, 
along an optimal route to their destination. User 
interfaces for both modeling and navigation use visual, 
audio, and haptic feedback for targeted users. While the 
current pandemic event precludes our user study, we 
describe its design and preliminary results. 
 
1. Introduction 

According to data from the World Health 
Organization (WHO), there are at least 2.2 billion people, 
more than a quarter of the world population, suffering 
from various degrees of visual impairment or blindness 
[1]. Among those people, an earlier report shows that 
there were 285 million people with low vision worldwide 
and 39 million people were suffering from blindness [2]. 
For these people, hereafter referred as Blind or Visually 
Impaired (BVI) people, as vision deteriorates, they often 
rely on a cane or a guide dog to find their way. Although 
these aids are helpful, they still face major challenges in 
wayfinding, especially in unfamiliar indoor environments. 
The demand for a reliable indoor navigation application 
using only mobile devices has increased in recent years.  

As we will see in the Related Work section, many 
existing mobile applications rely on Wi-Fi for localization, 
which often has inconsistent results due to instability of 
Wi-Fi signals. Some applications also use beacons and 
unique marks around the facility, requiring expensive pre-

installation and maintenance. In addition to the cost, these 
applications often introduce large cumulative error for 
navigation over longer distances. Importantly, most of the 
indoor navigation applications target sighted users 
exclusively. That is, BVI users lack access to the 
necessary application functionalities for traveling safely 
inside the building.  

In this paper, we propose iASSIST, an iOS assistive 
application built around ARKit [3] that provides turn-by-
turn navigation assistance using accurate real-time 
localization over large spaces without the installation of 
expensive infrastructure. The key contributions include 
the following: (1) an iOS-based application that provides 
turn-by-turn indoor navigation for BVI users with voice 
interaction; (2) a client-server architecture that allows 
scaling to large areas by lazy-loading models using 
beacon signals and/or adjacent region proximity; (3) A 
highly accurate and low-cost indoor positioning solution 
with a novel method for the model transition problem; (4) 
Automatic landmark determination for hybrid modeling 
which incorporates the Wi-Fi/cellular download speed, 
storing all information on a remote service; and (5) a 
configurable route planning algorithm weighted by user 
preference and hazard potential, with consideration of the 
Wi-Fi/cellular download speed along the path. The 
approach can be easily extended to Android devices, for 
example, by using Google’s ARCore. 

After the introduction, the remainder of this paper is 
organized as follows. First, we provide a discussion of the 
current methods used for indoor navigation in Section 2. 
Next, in Section 3, we introduce a brief overview of the 
iASSIST architecture and its three components (modeling, 
web server, and navigation). We will detail the system 
design and implementation for the modeling and 
navigation components in Sections 4 and 5, respectively. 
In Section 6, we present a performance evaluation and 
proposed functionality experiments. Finally, Section 7 
concludes the paper and discusses future work. 
 

2. Related Work  
Researchers have investigated various methods to 

assist the blind and visually impaired in complex and 
unfamiliar indoor environments. Compared to outdoor 
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environments, where there tends to be more open space 
and the global positioning system (GPS) is available, 
indoor positioning may often present a greater challenge 
[4]: GPS localization has inaccuracy in the outdoor 
environment and become more unstable when applied to 
the indoor environment. Beside GPS, other localization 
strategies often require additional infrastructure [5]. One 
of the most widespread navigation assistance tools is 
Bluetooth low-energy beacons. Although active methods 
using Bluetooth [5, 6] can improve accuracy, pre-installed 
infrastructure is required, which is expensive. Wireless 
networks such as cellular [7] and Wi-Fi [8] have also been 
used for indoor localization. However, the Wi-Fi signal 
does not cover every place consistently, so additional 
routers had to be installed to ensure localization accuracy. 

Many indoor localization techniques described above 
also often need to consider multiple factors in the indoor 
environment to determine location, such as the effect of 
the indoor obstacle location or size and the device signal 
strength and stability. This leads to difficulty in 
developing a unimodal approach for accurately detecting 
the person’s location over time. On top of this, using a 
standalone model under mobile edge computing 
environment could be a burden for phones’ processing 
power and memory. To solve these problems, many 
studies have integrated multimodal solutions for 
localization, incorporating cloud servers for storage of 
data and/or computation, making mobile indoor 
localization more feasible and accurate [9,10,11]. Most 
commonly, localization is being performed using multiple 
modalities, such as Wi-Fi, beacons, audio, images, points 
of interest, and the like [9,12]. In addition, such a 
framework, i.e., combining various models for each 
environmental condition, has been proposed for 
localization according to the signal strength of Wi-Fi 
access points [11]. As each model handles only one 
condition, it provides higher accuracy and requires lower 
computation power in unstable environments. Several 
solutions also have been offered, working toward the 
combinatorial optimization problems of the framework. 

Vision-based positioning methods [13] have also 
been proposed because they offer highly accurate 
localization without expensive infrastructure installation. 
Visual-Inertial Odometry (VIO) [14] is one of the well-
known visual positioning methods to track a user’s 
current position using previous positions, step length and 
motion direction in cooperation with visual sensors. Since 
smart devices nowadays are equipped with various kinds 
of powerful on-board sensors, including accelerometers, 
gyroscopes, compasses, proximity sensors, depth sensors, 
cameras, etc., this method can be implemented for these 
platforms with no further peripheral requirements. The 
major disadvantage of these methods, however, is the 
cumulative drift error. For long-distance and long-term 
tracking, additional global mapping and/or other physical 
constraints are necessary to eliminate the cumulative error.  

ARKit [3], Apple's augmented reality (AR) platform 
for iOS devices, uses the VIO technique described above 
to track the world around the iPad or iPhone. Across 2D 
video frames captured by an iOS device’s camera, it 
follows the movement of detected visual feature points 
and uses the aforementioned onboard motion detection to 
estimate their position in 3D space. However, one of the 
major disadvantages of ARKit is the size limitation of its 
working model. For a large region, it is difficult to store 
all the information into only one model. If the model is 
too large, it can significantly impact localization 
performance. In addition, the cumulative drift error will 
be increased with long-term tracking in a large region. 
Dividing a large region into multiple small regions and 
modeling these regions separately is a good way to solve 
both problems, which was proposed in [15], but it causes 
a delay in localization while switching models from the 
previous region to the next.  In [16], ARKit is used to 
demonstrate an example of how real-time data acquisition 
can be employed in educational settings, while reporting 
some of the limitations of ARKit. 

Another major disadvantage is, before tracking the 
real space, ARKit asks the user to hold a smartphone and 
point it to a set of specified featured signs in the real 
space and those signs, such as wall-mounted room 
number plate, must be pre-recorded in the corresponding 
model in order to synchronize the real world and the 
model. This process can be a difficult task for the blind 
and visually impaired. In ASSIST  [17], we used a 3D 
sensor Google Tango on an Android phone to build 
accurate 3D models of an indoor environment, bypassing 
the need to detect visual signs for localization aside from 
landmark recognition and semantic understanding of the 
scene. However, the discontinuation of the support of 
Tango by Google urges us to think how to guide blind 
users to scan a landmark for localization using only a 2D 
camera, like an iPhone camera, which many of our BVI 
user already own. The next extension will be an app on an 
Android phone using ARCore, the successor of Tango. 

 
3. System Architecture Overview  
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Our iASSIST is an iOS application that provides 
indoor navigation for both sighted users and BVI users 
with voice interaction. The iASSIST has three major 
components: hybrid modeling, a web server, and real-time 
navigation (Figure 1). During the hybrid modeling stage, a 
modeler will walk around the building and mark the 
destination points using the app’s modeling interface 
along with the information about the destination, such as 
the location type, accessibility for visually impaired 
people, etc. While the modeler is moving around the 
building, the app automatically collects the location 
information, the Wi-Fi signal strength and the geolocation 
features. All the collected information will be sent to the 
hybrid modeling module to model the regions of the floor 
and return proposed locations to install beacons near the 
important landmarks. The modeling process is completed 
on each floor with multiple local region models generated 
each time. These enhance modeling efficiency and 
localization accuracy for navigation. Each region only 
needs one beacon installed. After the modeler finishes 
scanning a floor, all the region models and their 
connections with the global map will be saved to our web 
service. The modeler can repeat the process for each floor 
until finished with the building. 

The web service is the core component of the app 
connecting the two major components, modeling and 
navigation. It enables indoor navigation in numerous 
locations and for multiple users. It directly saves all 
models’ information received from the modeling 
component to the database. The database consists of all 
the region models and a global map that contains all the 
building’s information and connections among various 
building’s regions. For navigation, the global map will be 
used to determine the path, while the region models are 
used to locate the user’s current position in the building. 
To efficiently manage the building information, there is 
an online management system that allows the modeler to 
easily modify the location and region model information, 
which does not require any programming skills. 

In the real-time navigation stage, the iASSIST app on 
the user’s iPhone provides the indoor navigation for 
sighted users and BVI users, and two different user 
interfaces are designed to increase the app accessibility 
and user-friendliness. When the user opens the app in any 
of the modeled buildings, the user’s current region will be 
determined using beacon signals. Using speech or text 
input, the user indicates their desired destination along 
with their path selection preferences. The app will then 
plan a suitable route for the user through the global map.  

The model download scheduler will then determine 
the downloading tasks for the regional models with 
consideration for the route and the Wi-Fi strength of each 
region. Downloading models ad hoc keeps the app 
lightweight, as it only stores in memory the region models 
required for navigation, and also allows for scaling to an 
arbitrary number of mapped interiors.  

To streamline the navigation user experience, our app 
provides voice navigation for step-by-step moving 
directions and guided visual pointers, incorporating 
vibration to remind the user to make the turn. The 
iASSIST app also auto-corrects the path when users begin 
walking in the wrong direction. With high-accuracy 
position detection, adjustable paths, and easy-to-follow 
guidance, iASSIST allows people with BVI travel 
independently and safely indoors.  
 
4. Hybrid Modeling 

The ARKit platform provides a powerful feature 
called ARWorldMap that stores all the raw feature points 
that represent the mapping of the physical world. The 
local area map stored in the ARWorldMap can be 
retrieved and used for determining the user’s local 
position. While ARKit alone cannot achieve indoor 
positioning, in a large scale, since it is not designed for 
this purpose, this location determination feature is used as 
the basis for our hybrid modeling, integrating the 
automatic data collection algorithm, route planning 
algorithm, and region segmentation process. 

 

   

4.1. Region segmentation and alignment 
Generally, it is difficult to store the entirety of the 

data for a large area into only one model. As the size of 
the model becomes too large, ARKit seems to remove the 
older data to avoid slowing the localization process. Due 
to this limitation of ARKit, we have to divide a large area 
into multiple small regions. For example, we divided the 
corridor outside our lab into six regions (Figure 2(a)), and 
one beacon was installed for each region. We align the 
coordinate system of each ARWorldMap model with the 
floor plan of the area in a 2D global coordinate system. In 
addition, an overlapping space (the gray area in Figure 
2(a)) has been added between region boundaries to avoid 
repeated switching models by accident when users walk 
across around region boundary. 

61



To align the ARKit model in the model coordinate 
system (XYZ, where Y is the gravity direction not shown 
in Figure 3) and the 2D floor plan (xoz, where x goes 
vertical and z goes horizontal) in the real-world 
coordinate system, respectively, the app uses an affine 
transformation in the 2D floor plan, to account for the 
accumulating nature of the local ARKit model. Figure 3 
shows how to align the model coordinate system to the 
real-world coordinate system using affine transformation 
with 14 pairs coordinates (red dots: ground truth points in 
xoz; blue dots: their corresponding coordinates in XYZ). 
As shown in the left of Figure 3, the model coordinate 
system skews at the real-world coordinate system before 
the alignment. After alignment using affine 
transformation, the blue dots in model coordinate system 
almost coincide with the red dots in the real-world 
coordinate system. For this example, the alignment has a 
mean square error of only 0.136 m in region of 196 m2. 

 

 
 

4.2. Hybrid mapping with multimodal data 
A planned route may involve several regions. 

Different regions correspond to their respective ARKit 
models and all these models have been stored in the web 
service. While navigating, the app needs to download a 
corresponding model of the region where the user is in 
from the web service via Wi-Fi or cellular data 
connections. It would be preferable if the app can 
download models of the regions with a poor network 
connection in advance when the user is in regions with 
excellent network connection so that the user does not 
have to wait for downloading when entering such regions. 
Hence, we create a download speed heat map (Figure 2(b)) 
in the modeling stage.  

In the newest version of iOS, it’s hard to obtain the 
download speed directly. Therefore the download speed is 
measured by computing received data from Internet 
within 5 seconds and repeating the process until modeling 
ends. The number over each region is the download speed 
(the unit is megabyte per second in Figure 2(b)) for the 
corresponding region. iOS will automatically switch Wi-
Fi/cellular connections based on the strength of the 
signals. There are three network access sources available 
in the corridor show in Figure 2(b): cellular data (green), 
Wi-Fi 1(blue), Wi-Fi 2(orange). Each area records the 
download speed using network access source with the 

strongest signal strength. This heat map will be used for 
determining download task scheduling (Section 5.3). 

Modelers also need to input information (including 
name, type, and accessibility data) for a destination when 
they are in front of the destination. The information is 
used for route planning that will be discussed in Section 
5.2. Some salient “landmark” locations are also important 
for navigation and need to be recorded even though they 
maybe not refer to any accessible destinations. For 
example, stairs may often be recorded as a landmark. 
While elevators have same functionality as stairs and are 
more accessible, the location of stairs relative to elevators 
needs to be recorded to offer an accessible detour for BVI 
users. Selecting destinations and salient landmarks is the 
only interactive part during the hybrid modeling. For a 
large 8-floor building with each floor having about 1,200 
m2 modeled areas, the total data amount is about 800MB, 
including ARKit models, 2D floor plans, connectivity 
maps, information of beacons, destinations and landmarks. 
 
4.3. Graph construction 

An automatic “essential” landmarks extraction 
algorithm is applied to make the modeling process 
simpler for the modelers. While the modeler continues to 
walk around the area, the app will automatically collect 
the information about intermediate landmarks (e.g., 
position, download speed, etc.) until the recording of the 
next destination. The essential landmarks extraction 
algorithm will find several essential landmarks (e.g., 
turning point) between the two destinations. If the 
distance between two essential landmarks is long, the 
algorithm will select several unessential landmarks 
between these two landmarks and record them as 
landmarks. For example, if the distance is 10 m, it will 
select 3 unessential landmarks.  

The above process will be repeated from one 
destination to another until modeling is finished for a 
whole area. In some cases, as the modeler might travel a 
path more than once to label any missing destinations, 
there will exist duplicate landmarks. Thus, after the 
modeler finishes labeling all the destinations of the area, 
all the selected landmarks are checked to remove 
redundancies. Finally, all destinations and selected 
intermediate landmarks are defined as nodes of a 
multimodal graph with visual, connectivity and beacon 
information for the route planning algorithm in Section 5. 

A local graph is constructed for each region model, 
with the nodes of the graph representing destinations and 
essential landmarks, which are connected by edges as 
traversable paths. Then the local graphs are connected 
into a global graph representing a floor or even a building. 
The graphs are aligned with the floor plan and ARKit 3D 
models, in a world coordinate system. Figure 4 depicts the 
process of graph construction for a small area. In (1), five 
blue dots refer to five destinations including bedroom, 
living room, bathroom, entry and kitchen. In (2), gray 
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dots refer to the intermediate landmarks that were 
collected automatically per second. In (3), orange dots 
were selected as essential landmarks. In (4), after 
removing unselected intermediate landmarks, the nodes 
representing destinations and essential landmarks are 
connected by edges as traversable paths to form a local 
graph for the area.  

 

 
5. Real-time Navigation 

Accurate localization and optimal path planning are 
essential for indoor navigation, especially for BVIs. 
Multiple transformation and alignment procedures are 
introduced to deal with the three different coordination 
systems involved in the determination of the user’s 
localization, as well as transitions between regions. We 
propose a modified Dijkstra's shortest path algorithm to 
provide the most suitable route for each user. The 
download task scheduling algorithms are also provided in 
order to increase the scale of the available navigation 
locations and reduce the app’s memory usage.   
 
5.1. Localization and region transition 

When a user opens the iASSIST app for the first time, 
the app gets to know which region the user is in, by 
simply detected the beacon with the strongest signal 
strength. Then the app can download a corresponding 
model from the web service. With the downloaded ARKit 
region model, the camera inside the phone begins 
capturing images. Once a new image is captured, it is 
processed to find and match pre-defined landmarks in the 
ARKit model. Then the app uses this information to align 
the coordinate systems of the camera, the ARKit model 
and then the real-world floor plan so that it can convert 
the coordinates of the user’s location from the camera to 
the world (as modeled in Section 4.1). Then, the app will 
ask the user for the destination of navigation in a 
synthesized voice.  

The region segmentation modeling method brings a 
new challenge, however. When a user walks from one 
region to another, the app needs to switch from the model 
of the previous region to that of the new region. Since the 
new model has not been matched yet in the new region, 

the correspondence between the coordinate system in the 
new model and the coordinate system in the global real 
world cannot be established. However, in this case, the 
world tracking functionality of ARKit still works. The 
iASSIST app uses the relationship between the previous 
model and the real world temporarily before the first 
successful matching in the new region. The app needs to 
record the last position (tx, tz) and yaw angle (i.e., the 
heading θ) of the user in the previous model coordinate 
system while entering the new region, the current 
coordinates (x, z)t of the user in the new region can be 
represented in the coordinate system of the previous 
model as (x’, z’)t : 

 

which can be aligned with the world coordinate system. 
Therefore, the app can keep navigating using these 
temporary coordinates rather than get stuck before the 
first successful matching in the new region. 

Moreover, there may be about 1 to 2 seconds delay 
while loading the new model. During this period, the 
world tracking functionality will not work. That will lead 
to some offset when estimating the relationship between 
the temporary coordinate system of the new region and 
the coordinate system of the previous region. To solve 
this problem, we calculate the average of the moving 
distance of last 10 frames and extrapolate the user’s 
motion linearly to estimate the user’s current location. 
 
5.2. Route planning algorithm 

Dijkstra’s algorithm [18] can be used for finding the 
shortest path from a single source node to all other nodes 
in a weighted graph (can either be directed or undirected). 
Classical Dijkstra’s algorithm implementations use 
distances as weights. In our modified algorithm, we not 
only consider the distance between two linked nodes but 
also other attributes (e.g., model download time T, BVI 
accessibility difficulty A) of each node: 

 (2) 
(3) 

where Weights[i] stores the least cumulative weight from 
the initial node to node i (i = u or v). Assume that the 
weight of node u (i.e., Weights[u]) is known and node v is 
next to node u, we want to compute the weight of node v 
(i.e., Weights[v]). This value is equal to the weight of 
node u plus the distance between node u and node v 
multiple by the cost of node v. At the moment, the cost of 
node v is affected by the three attributes in the 
corresponding location, the Distance itself, the download 
time (T) around the node, and BVI accessibility cost (A) 
including accessibility difficulty (such as stairs for BVI), 
obstacles and crowdedness around the location. Different 
users have unique demands for route planning. According 
to the preferences a user selects, the algorithm will 
consider all or some of these attributes and vary the two 
additional factors (a, b in Eq. (3)) in the cost function to 
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compute the weight. In this way, it may offer a different 
route. For example, when a=b=0, route will simply be 
distance-based.  When they are non-zeros, their values 
control the contributions of the two extra costs for 
considering download speed and accessibility. 
 
5.3. Task scheduling algorithms 

In order to better serve users, we designed two 
algorithms, a simple one and a more sophisticated one. 

Planned route-based algorithm. After initializing 
the app and knowing the first region where the user is by 
detecting the closest beacon, the app asks the user to 
select a destination and then start to navigate, then the app 
will determine a route from the current position to the 
destination. This route planning may involve multiple 
regions and the app needs to download the corresponding 
models of these regions from our web service before 
navigation. In order to avoid waiting too long for 
downloading all relevant models once, the app will 
download these models separately. As long as completing 
the download of the first adjacent model, the app will start 
to navigate. At the same time, the rest of the download 
will be completed in the background while navigating.  

Download task scheduling algorithm. The 
download task scheduling algorithm integrates the 
download speed heat map with the planned route-based 
algorithm. After the user selected a specific destination, 
the app will use the planned route-based algorithm as the 
primary algorithm. Since the app can obtain the network 
connection of each region according to the download 
speed heat map, the app can do the download of models 
adaptively. For example, if the network speed is sufficient 
in the current region, the app will download all the 
models of other regions involved in the planned route for 
the user and those regions with poor network connection 
have priorities. However, if the network is slow to 
download the current region model to local storage and 
the model has not been pre-downloaded, the app will ask 
the user to stop and wait until the download is completed 
in order to avoid reducing the accuracy of localization. 

Before the user enters a new region, the app will 
check if the new region model is in local storage, if not, it 
will not switch the model until the download is completed. 
Nevertheless, the app can still continue to provide 
positioning information in the vicinity of the new region 
by using the information from the previous model and the 
current model’s world tracking functionality to predict 
user’s motion (as discussed in Section 4.1). When user is 
entering a new region, the app will use the tracking results 
provided by ARKit to check if new region matches with 
the current path from the planned route. If these two 
results don’t match, then the user might have seriously 
deviated from the planned route. In this case, the app will 
first obtain the new region through the beacon system, 
then download and align the corresponding model, before 
rerouting to the destination.  

 
5.4. User interfaces 

This section describes the traditional graphical UI 
(GUI) presented to users with normal or low vision and 
the audio-tactile interface (ATI) presented to BVI users.  

User interface for traditional or low-vision users. 
The application has three core views corresponding to the 
phases of a given user’s navigation workflow: landmark-
based localization; destination selection; and navigation 
process. Upon initiating a new session in the app, either 
when first opening or after the application is unloaded 
from working memory, the first phase of the user 
workflow is localization using landmark scanning. In this 
view, we use the familiar ARKit coaching overlay for 
landmark tracking with some modifications. 
 

        
 

The user is guided by the overlay to move their 
camera until a landmark is established using a graphical 
illustration and on-screen text prompts seen in Figure 5. 
These visual indicators update according to the 
orientation of the device and whether a landmark has been 
detected. Once the proper angle with respect to the x-axis 
has been established, the user is instructed to hold their 
current position and move the phone around slowly. If no 
landmark has been detected, the user is prompted to turn 
left with a new graphical illustration and text. The text 
will update telling the user to continue turning slowly, as 
it scans for landmarks. If no landmarks are found after a 
full rotation, the user is directed to move to a different 
location to scan again. 

Once localized, the user is prompted to choose a 
destination and the app transitions to the free move and 
destination selection view. Here there are two status 
indicators in the header, a dynamic map overlay in the 
body area, and a drop-down menu button and debug info 
bar in the footer (Figure 6). The header area contains 
location context and tracking status. The body area of the 
layout contains a toggleable map. On load, the map fills 
the body area of the layout (left). When tapped, it 
minimizes to a small bubble-style map in the corner, 
revealing dynamic animated arrows on a live view for 
guiding the user visually (right). The footer contains a 
drop-down menu destination selection. Selecting a 
destination transitions the app to the route planning view. 

 

64



 
 

The GUI layout for route planning is similar to the 
free move and destination selection view, however certain 
components are changed. The status widgets in the header 
are replaced by a dynamic navigation step ticker, which 
shows one or two moves ahead. In the footer area, the 
destination drop-down menu button is removed. In its 
place is a red exit button to allow the user to cancel their 
current navigation context. The route planning view can 
be exited manually in this way, or automatically by 
arriving at the chosen destination.  

Audio-tactile interface for the blind. Similar to the 
GUI presented to traditional users, while the touch-based 
interaction requirements of BVI users with the ATI is 
limited, a key challenge in designing our interface was to 
present equivalent information to the blind as to users 
with full or partial vision. The three core views we 
described before are less distinct to a blind user due, in 
part, to a design decision we made to avoid translating the 
components in favor of communicating data directly in 
the most intuitive way possible. 

When a blind user enters a new place, the app will 
audibly ask the user to scan the surroundings slowly for 
localization guide the user to find a landmark pre-defined 
in the model. First, the procedure will ask the user to tilt 
the phone up or down a certain degree to ensure the phone 
remains upright, then will ask the user to keep this 
position and move the phone around slowly to detect 
landmarks. We obtain the tilt information through the 
native iOS APIs. If landmark detection was successful, 
the method will obtain the current position of the user by 
an algorithm based on this landmark. If unsuccessful after 
two periods (one period is seven seconds, and the value 
can be set), the app will ask the user to turn left and the 
process will restart. If the user turns a circle (i.e., after 
three left turns or six periods) and a landmark has not yet 
been detected, the method will ask the user to move to 
another place to start the above process again. 

Voice guidance is very useful for blind users when 
they are walking in an unfamiliar place. To make sure 
these users get navigation information, the app will repeat 
navigation instruction every 2 meters. Turn left or turn 
right is key information for navigation instruction. The 
app will notify users to prepare to turn and walk slowly at 

1 meter before the turn. The voice and vibration remind 
the user when it is time to turn and to stop the turn. When 
the user is close to the destination, the app will tell the 
user the specific distance to the destination until the user 
is in directly in front of it.  
 
6. Experiments 

To evaluate the accuracy of localization of the 
application, 32 ground truth points in the experimental 
place were selected as testing locations as shown in 
Figure 7(a). A sighted participant stood on each point and 
used the app to estimate a position respectively. In Figure 
7(b), the red dot refers to the position of ground truth 
points and 32 blue x refer to 32 the estimated positions of 
test points. The variance between each pair of the 
positions estimated by the method and the ground truth 
values in the experimental place are range from 0.02 m to 
0.35 m, and the RMS error is less than 0.15 m, which 
means the app can offer very accurate indoor localization 
for the whole corridor (about 600 m2). We want to note 
here that without the region transition treatment presented 
in Section 4.1, the average error would be 1.50 m, mainly 
due to large localization errors across regions boundaries.  
 

(a)   (b)

 

A system demo of our iASSIST app can be viewed at 
https://youtu.be/iH1LZ-HAjWs. Due to the COVID-19, 
we are unable to conduct all the experiments. We planned 
to conduct functionality experiments with 5 sighted 
participants and usability test with 20 participants with 
visual impairments. All the planned experiments will take 
place on campus and an IRB approval has been in place.   

The goals of our functionality tests were: 1) to 
evaluate the accuracy of transmission between different 
regions under different walking speeds, through 
comparison of the positions determined by our application 
and actual positions on the ground while the participate 
walking in various speed, and 2) to determine whether the 
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app can provide the optimal route for participants through 
comparison of all the possible routes between two 
destination points with the route designed by the app, to 
determine the efficiency of the route planning algorithm.  

The usability experiments we planned to conduct 
included interface trials and a user experience survey. To 
investigate the usability of our indoor localization system 
and to identify users’ needs, the trials would ask 
participants with visual impairments to freely select non-
duplicated destinations from various choices. Each 
session contains five experiments in parallel and has an 
experimenter accompanied each participant to ensure their 
safety as well as take records of the procedure.  

 
7. Conclusion and Discussion 

In this paper, we introduce iASSIST, a navigation 
application accessible to BVI people for navigating 
unfamiliar indoor environments using an iOS device. Our 
key contribution is a multi-model framework for 
localization in a large indoor environment with high 
accuracy and low cost. We also propose a solution to 
smooth the transition between models, and a simple 
process for modeling that pairs automatic and manual data 
collection processes with a straightforward online data 
management system. Also, with region segmentation, our 
application can work in numerous buildings without 
increasing the size of the app. Additionally, we provide 
simultaneous interfaces optimized for sighted and BVI 
users.  

Our current models for the single floor outside our 
lab do show fairly accurate localization, but due to our 
ongoing efforts to control the spread of COVID-19 in our 
city, we are unable to perform all the experiments we 
planned. Our next step, for example, was to model rest of 
the building and validate the accuracy of our multi-model 
framework on a larger scale. In the future, we would like 
to further expand the assistive features of our application, 
by experimenting with novel modeling techniques to 
provide accessible navigation at a larger scale, introduce 
object recognition and scene understanding via the ARKit 
model features, and enhance environment interpretation 
through audio-tactile feedback. 
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