

Building an Annotated Damage Image Database to
Support AI-Assisted Hurricane Impact Analysis

Hao Nan Ou
Data Science and Engingeering Program

The CUNY City College

New York, United States
hou000@citymail.cuny.edu

Jie Gong
Department of Civil and Environment Engineering

Rutgers University

 New Jersey, United States
jg931@soe.rutgers.edu

Sun Ho Ro
Department of Civil and Environment Engineering

Rutgers University

New Jersey, United States
sunhoro@gmail.com

Zhigang Zhu
Department of Computer Science

The CUNY City College and Graduate Center

New York, United States
zzhu@ccny.cuny.edu

Abstract—Building an annotated damage image database is

the first step to support AI-assisted hurricane impact analysis.

Up to now, annotated datasets for model training are

insufficient at a local level despite abundant raw data that have

been collected for decades. This paper provides a systematic

approach for establishing an annotated hurricane-damaged

building image database to support AI-assisted damage

assessment and analysis. Optimal rectilinear images were

generated from panoramic images collected from Hurricane

Harvey, Texas 2017. Then, deep learning models, including

Amazon Web Service (AWS) Rekognition and Mask R-CNN

(Region Based Convolutional Neural Networks), were re-

trained on the data to develop a pipeline for building detection

and structural component extraction. A web-based dashboard

was developed for building data management and processed

image visualization along with detected structural components

and their damage ratings. The proposed AI-assisted labeling

tool and trained models can intelligently and rapidly assist

potential users such as hazard researchers, practitioners, and

government agencies on natural disaster damage management.

Keywords—annotated image database, hurricane damage

assessment, deep learning models, web-based dashboard

I. INTRODUCTION

The total economic loss from the extreme weather events
in the United States between 1965 and 2019 was estimated to
be $2 trillion, including loss of income and properties
destructions [1]. About 64% of the total economic loss is due
to hurricanes, resulting in an annual loss of nearly $10 billion
[2]. Hurricane Harvey was a disastrous Category 4 hurricane
that caused catastrophic flooding and more than 100 deaths
in Texas and Louisiana in August 2017 and NOAA
estimated that Hurricane Harvey had cost a total economic
loss of $125 billion [3]. Even though the yearly rate of
natural disaster events shows a nominal growth, the
population growth in a hurricane vulnerable zone is rising
persistently [4, 5].

Research on hurricane damage prediction, mitigation, and
recovery is critical for hurricane damage cycle management.
Consequently, many researchers agree that vital information
needs to be obtained to improve the buildings' safety and
reliability based on the data of damaged and undamaged
buildings and their components [6-8]. Conventionally, post-
natural disaster damage assessment is conducted in a form of
a manual survey by reconnaissance teams. However, given
that most natural disaster causes damage to thousands of
buildings across a broad region, high cost and long-term data
miss were inevitable, especially when the survey should be

ideally done within 72 hours of the event to avoid any
damage alteration the recovery efforts.

To acquire post-natural disaster damage data on a broader
disaster zone with enhancing data quality and quantity, many
studies implemented various remote sensing technologies:
photogrammetry [9], Unmanned Aerial Vehicle (UAV) [10-
14], satellite images [15-17], and Light Detection and
Ranging (LiDAR) [18-23]. Despite the viable acquisition of
large spatial data, much of data analysis, cleaning, and
structuring is still done manually, which is generally time-
consuming and expensive. Analyzing these data sets has
become increasingly challenging because steps to automate
and accelerate data analysis are not at the same pace as
collecting data [24]. Additionally, the raw images themselves
cannot provide much helpful information to secondary
researchers and practitioners even with a significant volume
of disaster data that has been collected and achieved for
decades.

The majority of building damage assessment relies on
damage classification based on damage features from
monotemporal data or change detection from multitemporal
data [25]. However, component-level building damage
studies are intermittent [26-28] or limited on simple
component detection that cannot be used to describe the
entire building damage attribute [29]. Recently, high-
resolution panoramic images from ground-based mobile
reconnaissance teams or map service providers have been
increasingly used for damage analysis due to their apparent
advantages in storing a sequence of 360° images, which
enables a multi-angle view along the street [30, 31].
Subsequently, recent studies show various panoramic image
processing technics for efficient pre- and post-event building
comparison not limited to but including A procedure to
extract localized building images from the panoramic images
[32], 3D estimation by triangulation [33], and employment of
deep learning algorithms for automated structural component
detection [34-37].

Fig. 1. System workflow.

Even though AI can potentially be used to analyze these
data sets automatically, labeled data sets for model training
are insufficient at a local level. Therefore, we aim to design
an AI assisted labeling tool that can intelligently assist users
like hazard researchers, practitioners, and government
agencies to create labeled images and point clouds of
damaged buildings according to established damage
assessment protocols and databases. A system workflow is
shown in Fig. 1. The proposed system overcomes these
challenges by providing an AI-assisted framework for post-
hurricane image data management, with the following key
features: (1) An annotated damage image (ADI) database and
a web-based dashboard that allow users to visualize damaged
building information, damage map, structural component
damage rating, and its labeling (Component (a) in Fig. 1). (2)
An automatic building and structural component detection
pipeline including for building detection, building extraction,
and structural component extraction (Component (b) in Fig.
1). (3) A simple building location estimation method using
building addresses to process raw images to optimal
rectilinear images of the specific buildings from panoramic
images (included in Component (a) in Fig. 1).

II. ADI DATABASE AND DASHBOARD

A. Pre and Post Event Data

 Two major datasets were used in our Annotated Damage
Image (ADI) database. The first data comes from panoramic
images of post-Hurricane Harvey, 2017, at Port Aransas and
Rockport, Texas, three days after the event. Smart and
Sustainable Cities Lab from Rutgers University,
accompanied by graduate students from the University of
Texas at Austin and Princeton University, utilized a scanning
vehicle equipped with a mobile LiDAR scanner and GPS-
enabled 360-degree panoramic camera to acquire residential
building damage data [38]. Over 60,000 panoramic images
were taken during the exploration period. The panoramic
images are compiled and each of them is geo-coded to link
with pre-hurricane Google Map in the Rutgers-Harvey Portal
[39].

The second data set comes from the manual damage
assessment protocol results of Hurricane Harvey damages on
533 residential buildings located in Rockport, Texas [40].
The manual damage assessment data includes the damage
rating of each structural component. However, the original
images used for [40] and the scanning vehicle’s panoramic
images are not exactly corresponding to each other. Thus, it
is necessary to filter out the manual damage assessment data
that include buildings overlapping with the panoramic
images.

Images from the Google Street View (GSV) are
extracted for obtaining pre-event data; Fig. 2 shows an
example of pre- and post-event images. The Google Maps
Geocoding API was used to extract the latitude and
longitude of the 553 buildings and pre-event images from
GSV. Since the panoramic images do not contain specific
GPS coordinates for each building, it is necessary to translate
each building's address into geographic coordinates. An
interactive geospatial map, generated using Folium Map
package [41], a Python library for visualizing geospatial
data, and the scanning vehicle's trajectory, was imported to
separate buildings that are not overlapped in the first batch of
image data (Fig. 3). This allowed the filtering of 152
buildings that were not covered in the scanning and were left

with 401 buildings. The building coordinates in [40] and the
scanning vehicle’s camera coordinates were taken to
calculate the distance between them to identify the nearest
panoramic image to the target building.

B. Localizing Buildings in Rectilinear Building Images

 Optimal rectilinear images were generated from the
panoramic images for a target building extraction (single
image with one or at most three buildings). Manually
comparing the target buildings in panoramic images to GSV
images is time-consuming and prone to human error since
the panoramic images cover 360° and include numerous
buildings and debris. By generating optimal rectilinear
images, we can ensure that the target building is closest to
the center of the processed image. Since the image data
contain longitude, latitude, and direction angle, we used the
address of each building to obtain the geographic
information of each building, then used the Google Maps
API to obtain the coordinates of each building. In order to
match the building with the nearest panoramic image, the
Haversine formula [42] has been used to calculate the
distance between the building and the panoramic image
shooting position.

The rectilinear image generation algorithm requires three
parameter inputs: a panoramic image, its heading angle and
its projection angle (bearing angle). The heading angle refers
to the heading of the camera where the image is taken to the
north. The projection angle (bearing angle) is measured
between the center of the rectilinear image respecting to the
true north and is computed using the geolocations between
the heading of the camera and the direction of the target
building [43]. After calculating the new heading angle and
projection angle, the rectilinear image can be extracted from
the image. We utilized the 401 images as the test data to be
used in the deep learning model.

Among randomly selected sample images, the image
taken with the closest distance is set to be the front view of
the building, and we denote this image as PN-Center to
indicate that it captured the shortest distance between the
camera and the target building. Since all image data have
unique serial numbers, each previous and next from PN-
Center is set to be PN-Left and PN-Right (Fig. 4). Then,
based on the approach proposed by [7], the following steps
are used to generate rectilinear image: (1) Obtain the heading
angle of the panoramic image; (2) Obtain the camera location
(latitude and longitude) of the images; (3) Compute the
direction of projection using a bearing angle formula by two
geographic coordination between the camera and the target
building. From Fig 4, we generated three rectilinear images
RT-left, RT-center, RT-right (Fig. 5).

Fig. 2. Pre- and post-event images: extracted from Google Street View
and the panorama image database, respectively.

Fig. 3. Scanning vehicle trajectory in blue/red lines and building locations
in [40] represented in blue icons.

Fig. 4. (a) PN-Left; (b) PN-Center; (c) PN-Right.

Fig. 5. (a) RT-Left; (b) RT-Center; (c) RT-Right; (d) Manually captured.

C. Image Labeling

Labeled image data set is essential to train the automatic
building detection algorithm model. We used 553 pre-event
building images from GSV (Google Street View) via
Google API, and manually labeled each structural
component. Two types of image labeling tools were used in
this study: (1) Labelme, a graphical image annotation tool
written in [44]; (2) Amazon Rekognition Custom Label
[50], which allows users to add, change, or remove labels
from a dataset.

D. The Web-Based Dashboard

We created a web-based dashboard for storing the
processed data and its visualization
(https://haonan15.herokuapp.com). The dashboard allows
users to label the images, access a user-interactive map, and
visualize labeled structural components and their damage
rating. The first interface, a building map webpage (Fig. 6a),
allows users to look for a specific group of buildings by
applying filters (e.g., price range, stories type, siding type,
area range, elevated and non-elevated building, and roof
type). The building image and information are shown as
users click the specific building marks on the interactive
map. The second interface, the image uploader (Fig. 6b),
which allows users to upload images to MongoDB with
necessary building information (e.g., building address,
latitude, longitude, and comments). Lastly, the third
interface, the image annotator (Fig. 6c), allows users to label
the building components (e.g., doors, windows, roofs, walls),
where the coordinate of each label shape can be saved to
MongoDB.

III. BUILDING AND COMPONENT DETECTION PIPELINE

The building and component detection pipeline includes
four steps: building detection, building extraction, and
structure component detection (Fig. 7). We will discuss each
of the steps in the following subsections.

Fig. 6. (a) Building map page; (b) Uploader page; (c) Annotator page.

Fig. 7. Building and component detection algorithm pipeline

Fig. 8. The bounding box of detected buildings.

A. Building Detection

After labeling structural components of the 553 pre-event
buildings, Amazon Rekognition’s pre-trained dataset was
used to generate a bounding box of detected buildings. We
split the images to 444 training images and 109 test images
to start the training with this model. Based on the model
performance on the test image (Fig. 8), a simple piece of
Python code was written to filter out bounding boxes with a
confidence level of 0.8 or higher to ensure accuracy. When
two or more buildings were detected, the building located
closer to the center of the image was set to be the target
image.

B. Building Extraction

 The GrabCut algorithm [45] was implemented to perform
interactive foreground extraction. The algorithm works as the
following. Initially, the bounding box containing the objects
in the image is defined. All the pixels in the area outside the
bounding box are regarded as background pixels, while
everything inside the bounding box was identified as mostly
including the foreground region, the building in this case. For
each pixel outside the bounding box, initialize the pixel label
to 0, which is the background pixel; for each pixel in the
bounding box, initialize the pixel label to 1, that is, the pixel
that may be the target. According to the pixels marked as 0
or 1, Gaussian mixture model (GMM) of foreground and
background are established respectively. GMM is used to
classify background and foreground, in which undefined
pixels are marked as possible foreground or background. The
k-means algorithm cluster the pixels belonging to the
foreground and background into k classes respectively and
establish k Gaussian components in GMM. The weight of
each Gaussian component can be determined by the ratio of
the number of pixels belonging to the Gaussian component
to the total number of pixels. Each pixel in the image is
considered to be connected with the surrounding pixels
through the virtual edge, and each edge has a probability of
belonging to the foreground or background, which is based
on its color similarity with the surrounding pixels. Each pixel
(the node in the algorithm) will be connected to the previous
foreground or background node. After the nodes are
connected (possibly with the background or foreground), if
the edges between the nodes belong to different terminals
(that is, one node belongs to the foreground and one node

belongs to the background), the edges between them will be
cut off, which will separate the parts of the image. In the end,
the algorithm removes the background and extracts the house
in the image by segmenting the foreground region iteratively
(Fig. 9).

C. Structural Component Extraction

 Major structural components—windows, doors, walls,
and roofs—were considered in this study. At first, we wanted
to use deep learning model to detect the various parts of the
house, such as the roof, walls, doors and so on, to record the
damage level of objects, so as to facilitate future research.
However, it is difficult to detect the roofs and walls
separately due to the irregular surfaces and textures. Thus,
windows, garage doors, and entrance doors were segmented
in the first round, and the rest are automatically defined as
the roofs and walls combined. Mask R-CNN [46], a deep
neural network model designed to solve instance
segmentation problems [47], was adopted for the structural
component extraction. In this model, a bounding box and a
segmentation template are generated for each object detected
in the image. Three types of objects were primarily detected
for this study: (1) doors, (2) windows, (3) garage doors.
Initially, a trained model weight from [48], which was
trained on a 20,000 image dataset, was used to infer the
positions of windows, doors, and garage doors. Fig. 10
shows a result of the Mask R-CNN deep learning model.

 When each object is detected, a separate directory is
created, and the object is saved as a separate image in a
folder, such as the windows folder, the entrance door folder,
and the garage door folder. Then, the objects’ contour
features are defined, and the X and Y coordinates of each
object's image contour are calculated (Fig. 11). By having
the coordinates of the structural components, we can obtain
the coordinates of the roof and the wall by excluding the
coordinates of the entrance door, the windows, and the
garage door.

Fig. 9. (a) Original image; (b) Building extraction result.

Fig. 10. Detected structural components from the Mask R-CNN model.

Fig. 11. The contour of the targeted building shown in the green boundary
on the left, and detected windows, garage doors, and entrance doors are
shown on the right.

IV. RESULTS AND DISCUSSIONS

We want to automate the process of getting the positions
of the windows, doors, and other components by just
inputting the image and getting the coordinates
automatically. If we can get the location of these components
by using deep learning models and then we proceed to
segment the image, it can speed up the researchers' analysis
of the degree of damage of each component, and figure out
which components can better resist the hurricane in the
future. As disaster image data is increasing continuously, this
will significantly improve cost efficiency and the overall
efficiency of the analysis if we can achieve automation in
image data processing. Two deep learning models,
Rekognition and Mask-RCNN, were implemented in this
paper to detect buildings and extract their structural
components. Rekognition was used to detect the building
location from the panoramic image. 533 pre-event images
from Google Street View were split into 444 train images
and 109 test images. During the evaluation, the model made
predictions using the test dataset. The returned metrics were
F1 score 0.893, precision 0.906, and recall 0.88. All three
parameters achieved over 0.85, which indicates a good result.
The trained model was used to run inference on the
panoramic image dataset. The resulting bounding box
coordinates were generated on each image for each building
in the JSON files. After extracting the bounding box
coordinates, two object-detection deep learning models,
Mask R-CNN [48] and Detectron2 [49], were compared for
structural component detection and image segmentation. 405
pre-event Google Street View images were split into 356
train images and 49 test images.

To use the Detectron2 model, we trained using “R50-
FPN, Cityscapes” as the initial parameter. This is the
baseline model trained with Detectron2 and is initialized
from COCO pre-training and trained on Cityscapes fine
annotations. The trained model resulted in a 0.32 mean
average precision (mAP), where mAP is used to evaluate the
performance of object-recognition deep learning models, and
AP is used to evaluate the accuracy of an object detector on
each image. This is obtained by calculating the average
precision of all known annotations in all images in the
dataset.

For the Mask-RCNN model, it was a step-by-step
detection that includes anchor sorting and filtering, bounding
box refinement, mask generation, layer activations, weight
histograms, logging to the tensor board, and composing the
different pieces into the output [46]. The pre-trained model
[48], was used to segment the structural components. The
same 49 test images were used to evaluate the model, and a
0.52 mAP was returned.

We therefore selected the Mask R-CNN model after
comparing the two deep learning models mainly because of
the higher mAP. The manually labeled GSV images are very
limited and affected a low mAP of 0.32 for Detectron2. In
comparison, Mask R-CNN used a pre-trained 20,000 image
dataset, and a high mAP of 0.52 is a logical conclusion. Fig.
12 shows the output of inferencing the same post-event
image using Detectron2 and Mask R-CNN. However, the
result does not necessarily indicate a “better algorithm” as all
deep learning model results are heavily dependent on the
quality and quantity of the training dataset. As shown in
Table I, the mAP of Detectron2 for detecting door and
window instances is much lower than Mask-RCNN.

However, we find that Mask-RCNN cannot detect door
instances well in this validation image data set, which is why
the average accuracy of all instances in the image data is just
over 50%. Therefore, we need to collect more data to
improve the model's performance and consider relabeling the
images.

The Mask-RCNN model used was based on Feature
Pyramid Network (FPN) and ResNet101 backbone [46]. It
was chosen for its fast training and testing speed, as well as
the flexibility and accuracy of the framework. The model can
run within about 200 ms per frame on a single GPU. In
comparison, training with ResNet-50-FPN on the COCO
trainval135k took 32 hours on a single 8-GPU machine, with
0.72 s per 16 image mini-batch, and 44 hours with ResNet-
101-FPN [47]. Without tricks, Mask R-CNN surpassed the
winner of the 2016 COCO keypoint competition, and at the
same time ran at 5 fps [47]. If ResNet-101-FPN model was
used for inference, it would take 195ms per image on a
Nvidia Tesla M40 GPU machine [47]. We did inference on
49 images without the GPU and saved the locations of all the
components detected in the images, the total running time
was 3 m and 8 s, which was all most 3.84 s per image.

V. CONCLUSION, LIMITATIONS AND FUTURE WORK

 Automated post-natural disaster image labeling is vital
for hazard research as it can be time-consuming and tough to
do it manually. This paper provides a method to accelerate
automated image labeling and structural component
extraction. Three major datasets from post-Hurricane Harvey
—60,000 panoramic images, manual damage assessment
results, and pre-event Google Street View—were used for
training and test datasets. Two deep learning models,
Rekognition and Mask R-CNN, were implemented to detect
and extract the building and its structural components.
Finally, the results were visualized in the user interactive
web-based dashboard. The results show that each structural
component was successfully extracted from the image and
correlated with its damage rating from the manual damage
assessment result. Here are a few directions for future
research.

(1) This paper focused on the use of panoramic images
and Google Street View to find the best view of the
particular buildings. As buildings shown on the panoramic
images cannot be fully geo-referenced, it will be beneficial to
develop a method for live building detection, geo-
referencing, and collecting the north angle of the shooting
position.

Fig. 12. Output of inferencing post-event image using (a) Detectron2 and
(b) Mask R-CNN.

TABLE I. MEAN AVERAGE PRECISION OF EACH TEST INSTANCES

Category Detectron2 Mask R-CNN

Window 0.29 0.6

Door 0.14 0.38

Garage Door 0.53 0.65

Fig. 13. (a) and (b) show buildings with temporal roof tarp and (c) and (d)
show buildings with a destroyed roof.

(2) It is not feasible to entirely deliberate the complex
and irregular damage texture while manually labeling the
initial hurricane-damaged building dataset. For example, as
shown in Fig. 13, about 30% of the dataset has severely
damaged roofs. Some buildings installed temporal roof tarp,
resulting in distinct color contrast to the original roof tiles.
Some buildings have completely destroyed roofs, resulting in
inadequate pixel occupation. These factors critically interfere
with model training. Therefore, a significant number of
precisely segmented and labeled data sets for damaged
structural components are expected for high model
performance and their damage rating detection.

(3) The trained model from this paper only detects major
structural components: doors, windows, walls, and roofs.
Further training with additional data will enable detailed
structural component detection (e.g., handrails, columns, and
pipes), patio door and entry doors differentiation, building
level classification, and roof type detection. Additionally,
while this paper correlates the structural component labeling
with the manual damage assessment result, the output data
can be used to develop a model for automatic analysis and
damage rating assessment of post-hurricane damaged
structures.

(4) Based on our dashboard and image database, potential
users such as real estate or construction companies can
develop applications to analyze suitable materials and
designs for building houses that minimize the damages
caused by future hurricanes from specific areas. By knowing
the damage degree of each housing component, users can
further analyze the reasons of why some specific parts of a
house are seriously damaged, and whether the geographical
location, such as being nearby the seaside, has an impact on
the degree of damages on the house. Users who want to
purchase a house can evaluate the selected house to see if the
current house value is overvalued or undervalued. As more
and more data can be uploaded through the database,

ACKNOWLEDGMENT

The work is supported by the National Science
Foundation through Awards #1827505 and #1737533, the
Air Force Office for Scientific Research (Award #FA9550-
21-1-0082), a CCNY CEN Course Innovation Grant from
Moxie Foundation, and the Intelligence Community Center
of Academic Excellence (IC CAE) at Rutgers (Awards
#HHM402-19-1-0003 and #HHM402-18-1-0007).

REFERENCES

[1] EM-DAT: The international disaster database, Centre for Research on
the Epidemiology of Disasters - CRED. [Online]. Available:
https://www.emdat.be/database

[2] R. A. Pielke Jr, J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders,
and R. Musulin, “Normalized hurricane damage in the United States:
1900–2005,” Nat. Hazards Rev., vol. 9, no. 1, pp. 29–42, 2008.

[3] D. J. Frame, M. F. Wehner, I. Noy, and S. M. Rosier, “The economic
costs of Hurricane Harvey attributable to climate change,” Clim.
Change, vol. 160, no. 2, pp. 271–281, 2020.

[4] P. J. Klotzbach, S. G. Bowen, R. Pielke, and M. Bell, “Continental
U.S. Hurricane Landfall Frequency and Associated Damage:

Observations and Future Risks,” Bulletin of the American
Meteorological Society, vol. 99, no. 7, pp. 1359-1376, 2018.
doi:10.1175/BAMS-D-17-0184.1.

[5] Corelogic.com, “2019 Storm Surge Report,” [Online]. Available:
https://www.corelogic.com/downloadable-docs/storm-surge-
report_052919-screen.pdf

[6] D. P. Eisenman, K. M. Cordasco, S. Asch, J. F. Golden, and D. Glik,
“Disaster planning and risk communication with vulnerable
communities: lessons from Hurricane Katrina,” Am. J. Public Health,
vol. 97 Suppl 1, no. Supplement_1, pp. S109-15, 2007.

[7] A. Lenjani et al., “Towards fully automated post-event data collection
and analysis: Pre-event and post-event information fusion,” Eng.
Struct., vol. 208, no. 109884, p. 109884, 2020.

[8] V. Silva et al., “Current challenges and future trends in analytical
fragility and vulnerability modeling,” Earthq. Spectra, vol. 35, no. 4,
pp. 1927–1952, 2019.

[9] A. Alipour et al., “Steer Huriacane Michael: Preliminary virtual
assessement team (P-VAT) report,” 2018. [Online]. Available:
https://doi.org/10.17603/DS2RH71

[10] S. M. Adams and C. J. Friedland, "A Survey of Unmanned Aerial
Vehicle (UAV) usage for imagery collection in disaster research and
management", Proc. Ninth Int. Workshop on Remote Sensing for
Disaster Response, 2011.

[11] S.S. Congress, A.J. Puppala, A. Banerjee, N.H. Jafari and U.D. Patil,
“Use of Unmanned Aerial Photogrammertry for Monitoring Low-
Volume Roads after Hurrican Harvey,” in 12th International
Conference on Low-Volume Roads, 2019.

[12] L. Hashemi-Beni, J. Jones, G. Thompson, C. Johnson, and A.
Gebrehiwot, “Challenges and opportunities for UAV-based digital
elevation model generation for flood-risk management: A case of
Princeville, North Carolina,” Sensors (Basel), 18(11), p. 3843, 2018.

[13] M. Kakooei and Y. Baleghi, “Fusion of satellite, aircraft, and UAV
data for automatic disaster damage assessment,” Int. J. Remote Sens.,
vol. 38, no. 8–10, pp. 2511–2534, 2017.

[14] J. Yeom, Y. Han, A. Chang, and J. Jung, “Hurricane building damage
assessment using post-disaster UAV data,” in IGARSS 2019 - 2019
IEEE Int. Geoscience and Remote Sensing Symposium, 2019.

[15] J. Doshi, S. Basu, and G. Pang, “From satellite imagery to disaster
insights,” arXiv [cs.CY], 2018.

[16] T. W. Gillespie, J. Chu, E. Frankenberg, and D. Thomas,
“Assessment and prediction of natural hazards from satellite
imagery,” Prog. Phys. Geogr., vol. 31, no. 5, pp. 459–470, 2007.

[17] N. Said et al., “Natural disasters detection in social media and satellite
imagery: a survey,” Multimed. Tools Appl., vol. 78, no. 22, pp.
31267–31302, 2019.

[18] I. A. Garcia, M. J. Starek, and T. Chu, “Mobile and airborne lidar
scanning of beach elevation change due to hurricane Harvey,” in 2020
IEEE Int. Geoscience and Remote Sensing Symposium, 2020.

[19] J. Gong and A. Maher, “Use of mobile lidar data to assess hurricane
damage and visualize community vulnerability,” Transp. Res. Rec.,
vol. 2459, no. 1, pp. 119–126, 2014.

[20] M. J. Olsen and R. Kayen, “Post-earthquake and tsunami 3D laser
scanning forensic investigations,” in Forensic Engineering 2012, 2012.

[21] D. O. Prevatt et al., “Building damage observations and EF
classifications from the Tuscaloosa, AL, and Joplin, MO, tornadoes,”
in Structures Congress 2012, 2012.

[22] D. N. Whiteman and Nasa Reports Server, Raman lidar measurements
of water vapor and cirrus clouds during the passage of hurricane
Bonnie. Bibliogov, 2013.

[23] S. C. Yim, M. J. Olsen, K. F. Cheung, and M. Azadbakht, “Tsunami
modeling, fluid load simulation, and validation using geospatial field
data,” J. Struct. Eng. (N. Y.), vol. 140, no. 8, p. A4014012, 2014.

[24] A. Lenjani, C. M. Yeum, S. Dyke, I. Bilionis, “Automated building
image extraction from 360° panoramas for postdisaster evaluation,”
Comput.-aided civ. infrastruct. eng., 35(3), pp. 241–257, 2020.

[25] Z. Zhou, “Computer Vision-based Assessment of Coastal Building
Structures during Huricane Events,” Rutgers, New Jersey, USA, 2017.

[26] A. Hatzikyriakou, N. Lin, J. Gong, S. Xian, X. Hu, and A. Kennedy,
“Component-based vulnerability analysis for residential structures
subjected to storm surge impact from hurricane sandy,” Nat. Hazards
Rev., vol. 17, no. 1, p. 05015005, 2016.

[27] S. Xian, N. Lin, and A. Hatzikyriakou, “Storm surge damage to
residential areas: a quantitative analysis for Hurricane Sandy in

comparison with FEMA flood map,” Nat. Hazards (Dordr.), vol. 79,
no. 3, pp. 1867–1888, 2015.

[28] Z. Zhou and J. Gong, “Automated Analysis of Mobile LiDAR Data
for Component-Level Damage Assessment of Building Structures
during Large Coastal Storm Events: Automated analysis of mobile
LiDAR data,” Comput.-aided civ. infrastruct. eng., vol. 33, no. 5, pp.
373–392, 2018.

[29] S. Van Ackere, J. Beullens, W. Vanneuville, A. De Wulf, and P. De
Maeyer, “FLIAT, an object-relational GIS tool for flood impact
assessment in Flanders, Belgium,” WATER, vol. 11, no. 4, 2019.

[30] W. Zhai and Z.-R. Peng, “Damage assessment using Google Street
View: Evidence from Hurricane Michael in Mexico Beach, Florida,”
Appl. Geogr., vol. 123, no. 102252, p. 102252, 2020.

[31] W. Zhang, C. Witharana, W. Li, C. Zhang, X. Li, and J. Parent,
“Using deep learning to identify utility poles with crossarms and
estimate their locations from Google Street View images,” Sensors
(Basel), vol. 18, no. 8, p. 2484, 2018.

[32] A. Lenjani, C. M. Yeum, S. Dyke, and I. Bilionis, “Automated
building image extraction from 360° panoramas for postdisaster
evaluation,” Comput.-aided civ. infrastruct. eng., vol. 35, no. 3, pp.
241–257, 2020.

[33] Z. Zhu, K. D. Rajasekar, E. M. Riseman, and A. R. Hanson,
“Panoramic virtual stereo vision of cooperative mobile robots for
localizing 3D moving objects,” in Proceedings IEEE Workshop on
Omnidirectional Vision (Cat. No.PR00704), 2002.

[34] C. Cheng, A. H. Behzadan, and A. Noshadravan, “Deep learning for
post‐hurricane aerial damage assessment of buildings,” Comput.-
aided civ. infrastruct. eng., no. mice.12658, 2021.

[35] T. Czerniawski and F. Leite, “Automated segmentation of RGB-D
images into a comprehensive set of building components using deep
learning,” Adv. Eng. Inform., vol. 45, no. 101131, p. 101131, 2020.

[36] H. Liu, J. Zhang, J. Zhu, and S. C. H. Hoi, “DeepFacade: A deep
learning approach to facade parsing,” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, 2017.

[37] D. Rueda-Plata, D. González, A. B. Acevedo, J. C. Duque, and R.
Ramos-Pollán, “Use of deep learning models in street-level images to
classify one-story unreinforced masonry buildings based on roof
diaphragms,” Build. Environ., vol. 189, no. 107517, p. 107517, 2021.

[38] “Damage Control,” Rutgers.edu. [Online]. Available:
https://ucmweb.rutgers.edu/magazine/1419archive/insights/damage-
control.html. [Accessed: 29-April-2021].

[39] M. Guo and J. Gong, Rutger-Iris Hurricane Harvey Portal. [Online].
http://rutgersiris.com/harveymap/leaflet/debug/vector/HarveyPortal-
with-full-data.html

[40] S. Wengrowski, “Comprehensive damage assessment and analysis of
damage mechanisms from Hurricane Harvey.” Rutgers University -
School of Graduate Studies, 2019.

[41] folium, Python Data, Leaflet.js Maps, Github repository,
Github,[https://github.com/python-visualization/folium], 2013

[42] K. Gade, “A non-singular horizontal position representation,” J.
Navig., vol. 63, no. 3, pp. 395–417, 2010.

[43] D. Ellis, “Calculating the bearing between two geospatial
coordinates,” Towards Data Science, 19-May-2020. [Online].
Available: https://towardsdatascience.com/calculating-the-bearing-
between-two-geospatial-coordinates-66203f57e4b4.

[44] K. Wada, labelme: Image Polygonal Annotation with Python, Github
repositor, Github, [https://github.com/wkentaro/labelme], 2016.

[45] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: Interactive
foreground extraction using iterated graph cuts,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 309–314, 2004.

[46] W. Abdulla, ”Mask R-CNN for object detection and instance seg-
mentation on Keras and TensorFlow”, Github repository, Github,
[https://github.com/matterport/Mask RCNN], 2017.

[47] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
2017 IEEE Int. Conference on Computer Vision (ICCV), 2017.

[48] S. Tasneeyapant, “Mask_RCNN_ViewAnalysis,” Github repository,
[https://github.com/songwongtp/Mask_RCNN_ViewAnalysis], 2018.

[49] Y. Wu, A. Kirillov, F. Massa, W. Lo, Y. and R. Girshick,
“Detectron2,” Github repository,
[https://github.com/facebookresearch/detectron2], 2019.

[50] Amazon.com. [Online]. Available:
https://aws.amazon.com/rekognition/custom-labels-features/.
[Accessed: October 19, 2021.

