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Abstract—Building an annotated damage image database is 

the first step to support AI-assisted hurricane impact analysis. 

Up to now, annotated datasets for model training are 

insufficient at a local level despite abundant raw data that have 

been collected for decades. This paper provides a systematic 

approach for establishing an annotated hurricane-damaged 

building image database to support AI-assisted damage 

assessment and analysis. Optimal rectilinear images were 

generated from panoramic images collected from Hurricane 

Harvey, Texas 2017. Then, deep learning models, including 

Amazon Web Service (AWS) Rekognition and Mask R-CNN 

(Region Based Convolutional Neural Networks), were re-

trained on the data to develop a pipeline for building detection 

and structural component extraction. A web-based dashboard 

was developed for building data management and processed 

image visualization along with detected structural components 

and their damage ratings. The proposed AI-assisted labeling 

tool and trained models can intelligently and rapidly assist 

potential users such as hazard researchers, practitioners, and 

government agencies on natural disaster damage management. 

Keywords—annotated image database, hurricane damage 
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I. INTRODUCTION 

The total economic loss from the extreme weather events 
in the United States between 1965 and 2019 was estimated to 
be $2 trillion, including loss of income and properties 
destructions [1]. About 64% of the total economic loss is due 
to hurricanes, resulting in an annual loss of nearly $10 billion   
[2]. Hurricane Harvey was a disastrous Category 4 hurricane 
that caused catastrophic flooding and more than 100 deaths 
in Texas and Louisiana in August 2017 and NOAA 
estimated that Hurricane Harvey had cost a total economic 
loss of $125 billion [3]. Even though the yearly rate of 
natural disaster events shows a nominal growth, the 
population growth in a hurricane vulnerable zone is rising 
persistently [4, 5].  

Research on hurricane damage prediction, mitigation, and 
recovery is critical for hurricane damage cycle management. 
Consequently, many researchers agree that vital information 
needs to be obtained to improve the buildings' safety and 
reliability based on the data of damaged and undamaged 
buildings and their components [6-8]. Conventionally, post-
natural disaster damage assessment is conducted in a form of 
a manual survey by reconnaissance teams. However, given 
that most natural disaster causes damage to thousands of 
buildings across a broad region, high cost and long-term data 
miss were inevitable, especially when the survey should be 

ideally done within 72 hours of the event to avoid any 
damage alteration the recovery efforts.  

To acquire post-natural disaster damage data on a broader 
disaster zone with enhancing data quality and quantity, many 
studies implemented various remote sensing technologies: 
photogrammetry [9], Unmanned Aerial Vehicle (UAV) [10-
14], satellite images [15-17], and Light Detection and 
Ranging (LiDAR) [18-23]. Despite the viable acquisition of 
large spatial data, much of data analysis, cleaning, and 
structuring is still done manually, which is generally time-
consuming and expensive. Analyzing these data sets has 
become increasingly challenging because steps to automate 
and accelerate data analysis are not at the same pace as 
collecting data [24]. Additionally, the raw images themselves 
cannot provide much helpful information to secondary 
researchers and practitioners even with a significant volume 
of disaster data that has been collected and achieved for 
decades. 

The majority of building damage assessment relies on 
damage classification based on damage features from 
monotemporal data or change detection from multitemporal 
data [25]. However, component-level building damage 
studies are intermittent [26-28] or limited on simple 
component detection that cannot be used to describe the 
entire building damage attribute [29]. Recently, high-
resolution panoramic images from ground-based mobile 
reconnaissance teams or map service providers have been 
increasingly used for damage analysis due to their apparent 
advantages in storing a sequence of 360° images, which 
enables a multi-angle view along the street [30, 31]. 
Subsequently, recent studies show various panoramic image 
processing technics for efficient pre- and post-event building 
comparison not limited to but including A procedure to 
extract localized building images from the panoramic images 
[32], 3D estimation by triangulation [33], and employment of 
deep learning algorithms for automated structural component 
detection [34-37]. 

 

Fig. 1. System workflow. 



Even though AI can potentially be used to analyze these 
data sets automatically, labeled data sets for model training 
are insufficient at a local level. Therefore, we aim to design 
an AI assisted labeling tool that can intelligently assist users 
like hazard researchers, practitioners, and government 
agencies to create labeled images and point clouds of 
damaged buildings according to established damage 
assessment protocols and databases. A system workflow is 
shown in Fig. 1. The proposed system overcomes these 
challenges by providing an AI-assisted framework for post-
hurricane image data management, with the following key 
features: (1) An annotated damage image (ADI) database and 
a web-based dashboard that allow users to visualize damaged 
building information, damage map, structural component 
damage rating, and its labeling (Component (a) in Fig. 1). (2) 
An automatic building and structural component detection 
pipeline including for building detection, building extraction, 
and structural component extraction (Component (b) in Fig. 
1). (3) A simple building location estimation method using 
building addresses to process raw images to optimal 
rectilinear images of the specific buildings from panoramic 
images (included in Component (a) in Fig. 1). 

II.  ADI DATABASE AND DASHBOARD 

A. Pre and Post Event Data 

 Two major datasets were used in our Annotated Damage 
Image (ADI) database. The first data comes from panoramic 
images of post-Hurricane Harvey, 2017, at Port Aransas and 
Rockport, Texas, three days after the event. Smart and 
Sustainable Cities Lab from Rutgers University, 
accompanied by graduate students from the University of 
Texas at Austin and Princeton University, utilized a scanning 
vehicle equipped with a mobile LiDAR scanner and GPS-
enabled 360-degree panoramic camera to acquire residential 
building damage data [38]. Over 60,000 panoramic images 
were taken during the exploration period. The panoramic 
images are compiled and each of them is geo-coded to link 
with pre-hurricane Google Map in the Rutgers-Harvey Portal 
[39]. 

The second data set comes from the manual damage 
assessment protocol results of Hurricane Harvey damages on 
533 residential buildings located in Rockport, Texas [40]. 
The manual damage assessment data includes the damage 
rating of each structural component. However, the original 
images used for [40] and the scanning vehicle’s panoramic 
images are not exactly corresponding to each other. Thus, it 
is necessary to filter out the manual damage assessment data 
that include buildings overlapping with the panoramic 
images. 

Images from the Google Street View (GSV)  are 
extracted for obtaining pre-event data; Fig. 2 shows an 
example of pre- and post-event images. The Google Maps 
Geocoding API  was used to extract the latitude and 
longitude of the 553 buildings and pre-event images from 
GSV. Since the panoramic images do not contain specific 
GPS coordinates for each building, it is necessary to translate 
each building's address into geographic coordinates. An 
interactive geospatial map, generated using Folium Map 
package [41], a Python library for visualizing geospatial 
data, and the scanning vehicle's trajectory, was imported to 
separate buildings that are not overlapped in the first batch of 
image data (Fig. 3). This allowed the filtering of 152 
buildings that were not covered in the scanning and were left 

with 401 buildings. The building coordinates in [40] and the 
scanning vehicle’s camera coordinates were taken to 
calculate the distance between them to identify the nearest 
panoramic image to the target building. 

B. Localizing Buildings in Rectilinear Building Images 

 Optimal rectilinear images were generated from the 
panoramic images for a target building extraction (single 
image with one or at most three buildings). Manually 
comparing the target buildings in panoramic images to GSV 
images is time-consuming and prone to human error since 
the panoramic images cover 360° and include numerous 
buildings and debris. By generating optimal rectilinear 
images, we can ensure that the target building is closest to 
the center of the processed image. Since the image data 
contain longitude, latitude, and direction angle, we used the 
address of each building to obtain the geographic 
information of each building, then used the Google Maps 
API to obtain the coordinates of each building. In order to 
match the building with the nearest panoramic image, the 
Haversine formula [42] has been used to calculate the 
distance between the building and the panoramic image 
shooting position. 

The rectilinear image generation algorithm requires three 
parameter inputs: a panoramic image, its heading angle and 
its projection angle (bearing angle). The heading angle refers 
to the heading of the camera where the image is taken to the 
north. The projection angle (bearing angle) is measured 
between the center of the rectilinear image respecting to the 
true north and is computed using the geolocations between 
the heading of the camera and the direction of the target 
building [43]. After calculating the new heading angle and 
projection angle, the rectilinear image can be extracted from 
the image. We utilized the 401 images as the test data to be 
used in the deep learning model. 

Among randomly selected sample images, the image 
taken with the closest distance is set to be the front view of 
the building, and we denote this image as PN-Center to 
indicate that it captured the shortest distance between the 
camera and the target building. Since all image data have 
unique serial numbers, each previous and next from PN-
Center is set to be PN-Left and PN-Right (Fig. 4). Then, 
based on the approach proposed by [7], the following steps 
are used to generate rectilinear image: (1) Obtain the heading 
angle of the panoramic image; (2) Obtain the camera location 
(latitude and longitude) of the images; (3) Compute the 
direction of projection using a bearing angle formula by two 
geographic coordination between the camera and the target 
building. From Fig 4, we generated three rectilinear images 
RT-left, RT-center, RT-right (Fig. 5). 

 

Fig. 2. Pre- and post-event images: extracted from Google Street View 
and the panorama image database, respectively. 

 

Fig. 3. Scanning vehicle trajectory in blue/red lines and building locations 
in [40] represented in blue icons. 



 

Fig. 4. (a) PN-Left; (b) PN-Center; (c) PN-Right. 

 

Fig. 5. (a) RT-Left; (b) RT-Center; (c) RT-Right; (d) Manually captured. 

C. Image Labeling 

Labeled image data set is essential to train the automatic 
building detection algorithm model. We used 553 pre-event 
building images from GSV (Google Street View) via 
Google API, and manually labeled each structural 
component. Two types of image labeling tools were used in 
this study: (1) Labelme, a graphical image annotation tool 
written in [44]; (2) Amazon Rekognition Custom Label 
[50], which allows users to add, change, or remove labels 
from a dataset. 

D. The Web-Based Dashboard 

We created a web-based dashboard for storing the 
processed data and its visualization 
(https://haonan15.herokuapp.com). The dashboard allows 
users to label the images, access a user-interactive map, and 
visualize labeled structural components and their damage 
rating. The first interface, a building map webpage (Fig. 6a), 
allows users to look for a specific group of buildings by 
applying filters (e.g., price range, stories type, siding type, 
area range, elevated and non-elevated building, and roof 
type). The building image and information are shown as 
users click the specific building marks on the interactive 
map. The second interface, the image uploader (Fig. 6b), 
which allows users to upload images to MongoDB with 
necessary building information (e.g., building address, 
latitude, longitude, and comments). Lastly, the third 
interface, the image annotator (Fig. 6c), allows users to label 
the building components (e.g., doors, windows, roofs, walls), 
where the coordinate of each label shape can be saved to 
MongoDB. 

III. BUILDING AND COMPONENT DETECTION PIPELINE 

The building and component detection pipeline includes 
four steps: building detection, building extraction, and 
structure component detection (Fig. 7). We will discuss each 
of the steps in the following subsections. 

 

 

Fig. 6. (a) Building map page; (b) Uploader page; (c) Annotator page. 

 

Fig. 7. Building and component detection algorithm pipeline 

 

Fig. 8. The bounding box of detected buildings. 

A. Building Detection 

After labeling structural components of the 553 pre-event 
buildings, Amazon Rekognition’s pre-trained dataset was 
used to generate a bounding box of detected buildings. We 
split the images to 444 training images and 109 test images 
to start the training with this model. Based on the model 
performance on the test image (Fig. 8), a simple piece of 
Python code was written to filter out bounding boxes with a 
confidence level of 0.8 or higher to ensure accuracy. When 
two or more buildings were detected, the building located 
closer to the center of the image was set to be the target 
image. 

B. Building Extraction 

     The GrabCut algorithm [45] was implemented to perform 
interactive foreground extraction. The algorithm works as the 
following. Initially, the bounding box containing the objects 
in the image is defined. All the pixels in the area outside the 
bounding box are regarded as background pixels, while 
everything inside the bounding box was identified as mostly 
including the foreground region, the building in this case. For 
each pixel outside the bounding box, initialize the pixel label 
to 0, which is the background pixel; for each pixel in the 
bounding box, initialize the pixel label to 1, that is, the pixel 
that may be the target. According to the pixels marked as 0 
or 1, Gaussian mixture model (GMM) of foreground and 
background are established respectively. GMM is used to 
classify background and foreground, in which undefined 
pixels are marked as possible foreground or background. The 
k-means algorithm cluster the pixels belonging to the 
foreground and background into k classes respectively and 
establish k Gaussian components in GMM. The weight of 
each Gaussian component can be determined by the ratio of 
the number of pixels belonging to the Gaussian component 
to the total number of pixels. Each pixel in the image is 
considered to be connected with the surrounding pixels 
through the virtual edge, and each edge has a probability of 
belonging to the foreground or background, which is based 
on its color similarity with the surrounding pixels. Each pixel 
(the node in the algorithm) will be connected to the previous 
foreground or background node. After the nodes are 
connected (possibly with the background or foreground), if 
the edges between the nodes belong to different terminals 
(that is, one node belongs to the foreground and one node 



belongs to the background), the edges between them will be 
cut off, which will separate the parts of the image. In the end, 
the algorithm removes the background and extracts the house 
in the image by segmenting the foreground region iteratively 
(Fig. 9). 

C. Structural Component Extraction 

 Major structural components—windows, doors, walls, 
and roofs—were considered in this study. At first, we wanted 
to use deep learning model to detect the various parts of the 
house, such as the roof, walls, doors and so on, to record the 
damage level of objects, so as to facilitate future research. 
However, it is difficult to detect the roofs and walls 
separately due to the irregular surfaces and textures. Thus, 
windows, garage doors, and entrance doors were segmented 
in the first round, and the rest are automatically defined as 
the roofs and walls combined. Mask R-CNN [46], a deep 
neural network model designed to solve instance 
segmentation problems [47], was adopted for the structural 
component extraction. In this model, a bounding box and a 
segmentation template are generated for each object detected 
in the image. Three types of objects were primarily detected 
for this study: (1) doors, (2) windows, (3) garage doors. 
Initially, a trained model weight from [48], which was 
trained on a 20,000 image dataset, was used to infer the 
positions of windows, doors, and garage doors. Fig. 10 
shows a result of the Mask R-CNN deep learning model. 

 When each object is detected, a separate directory is 
created, and the object is saved as a separate image in a 
folder, such as the windows folder, the entrance door folder, 
and the garage door folder. Then, the objects’ contour 
features are defined, and the X and Y coordinates of each 
object's image contour are calculated (Fig. 11). By having 
the coordinates of the structural components, we can obtain 
the coordinates of the roof and the wall by excluding the 
coordinates of the entrance door, the windows, and the 
garage door. 

 
Fig. 9. (a) Original image; (b) Building extraction result. 

 
Fig. 10. Detected structural components from the Mask R-CNN model. 

 

Fig. 11. The contour of the targeted building shown in the green boundary 
on the left, and detected windows, garage doors, and entrance doors are 
shown on the right. 

IV. RESULTS AND DISCUSSIONS 

We want to automate the process of getting the positions 
of the windows, doors, and other components by just 
inputting the image and getting the coordinates 
automatically. If we can get the location of these components 
by using deep learning models and then we proceed to 
segment the image, it can speed up the researchers' analysis 
of the degree of damage of each component, and figure out 
which components can better resist the hurricane in the 
future. As disaster image data is increasing continuously, this 
will significantly improve cost efficiency and the overall 
efficiency of the analysis if we can achieve automation in 
image data processing. Two deep learning models, 
Rekognition and Mask-RCNN, were implemented in this 
paper to detect buildings and extract their structural 
components. Rekognition was used to detect the building 
location from the panoramic image. 533 pre-event images 
from Google Street View were split into 444 train images 
and 109 test images. During the evaluation, the model made 
predictions using the test dataset. The returned metrics were 
F1 score 0.893, precision 0.906, and recall 0.88. All three 
parameters achieved over 0.85, which indicates a good result. 
The trained model was used to run inference on the 
panoramic image dataset. The resulting bounding box 
coordinates were generated on each image for each building 
in the JSON files. After extracting the bounding box 
coordinates, two object-detection deep learning models, 
Mask R-CNN [48] and Detectron2 [49], were compared for 
structural component detection and image segmentation. 405 
pre-event Google Street View images were split into 356 
train images and 49 test images. 

To use the Detectron2 model, we trained using “R50-
FPN, Cityscapes” as the initial parameter. This is the 
baseline model trained with Detectron2 and is initialized 
from COCO pre-training and trained on Cityscapes fine 
annotations. The trained model resulted in a 0.32 mean 
average precision (mAP), where mAP is used to evaluate the 
performance of object-recognition deep learning models, and 
AP is used to evaluate the accuracy of an object detector on 
each image. This is obtained by calculating the average 
precision of all known annotations in all images in the 
dataset. 

For the Mask-RCNN model, it was a step-by-step 
detection that includes anchor sorting and filtering, bounding 
box refinement, mask generation, layer activations, weight 
histograms, logging to the tensor board, and composing the 
different pieces into the output [46]. The pre-trained model 
[48], was used to segment the structural components. The 
same 49 test images were used to evaluate the model, and a 
0.52 mAP was returned. 

We therefore selected the Mask R-CNN model after 
comparing the two deep learning models mainly because of 
the higher mAP. The manually labeled GSV images are very 
limited and affected a low mAP of 0.32 for Detectron2. In 
comparison, Mask R-CNN used a pre-trained 20,000 image 
dataset, and a high mAP of 0.52 is a logical conclusion. Fig. 
12 shows the output of inferencing the same post-event 
image using Detectron2 and Mask R-CNN. However, the 
result does not necessarily indicate a “better algorithm” as all 
deep learning model results are heavily dependent on the 
quality and quantity of the training dataset. As shown in 
Table I, the mAP of Detectron2 for detecting door and 
window instances is much lower than Mask-RCNN. 



However, we find that Mask-RCNN cannot detect door 
instances well in this validation image data set, which is why 
the average accuracy of all instances in the image data is just 
over 50%. Therefore, we need to collect more data to 
improve the model's performance and consider relabeling the 
images. 

The Mask-RCNN model used was based on Feature 
Pyramid Network (FPN) and ResNet101 backbone [46]. It 
was chosen for its fast training and testing speed, as well as 
the flexibility and accuracy of the framework. The model can 
run within about 200 ms per frame on a single GPU. In 
comparison, training with ResNet-50-FPN on the COCO 
trainval135k took 32 hours on a single 8-GPU machine, with 
0.72 s per 16 image mini-batch, and 44 hours with ResNet-
101-FPN [47]. Without tricks, Mask R-CNN surpassed the 
winner of the 2016 COCO keypoint competition, and at the 
same time ran at 5 fps [47]. If ResNet-101-FPN model was 
used for inference, it would take 195ms per image on a 
Nvidia Tesla M40 GPU machine [47]. We did inference on 
49 images without the GPU and saved the locations of all the 
components detected in the images, the total running time 
was 3 m and 8 s, which was all most 3.84 s per image. 

V. CONCLUSION, LIMITATIONS AND FUTURE WORK 

 Automated post-natural disaster image labeling is vital 
for hazard research as it can be time-consuming and tough to 
do it manually. This paper provides a method to accelerate 
automated image labeling and structural component 
extraction. Three major datasets from post-Hurricane Harvey 
—60,000 panoramic images, manual damage assessment 
results, and pre-event Google Street View—were used for 
training and test datasets. Two deep learning models, 
Rekognition and Mask R-CNN, were implemented to detect 
and extract the building and its structural components.  
Finally, the results were visualized in the user interactive 
web-based dashboard. The results show that each structural 
component was successfully extracted from the image and 
correlated with its damage rating from the manual damage 
assessment result. Here are a few directions for future 
research. 

(1) This paper focused on the use of panoramic images 
and Google Street View to find the best view of the 
particular buildings. As buildings shown on the panoramic 
images cannot be fully geo-referenced, it will be beneficial to 
develop a method for live building detection, geo-
referencing, and collecting the north angle of the shooting 
position. 

 
Fig. 12. Output of inferencing post-event image using (a) Detectron2 and 
(b) Mask R-CNN. 

TABLE I.   MEAN AVERAGE PRECISION OF EACH TEST INSTANCES 

Category Detectron2 Mask R-CNN 

Window 0.29 0.6 

Door 0.14 0.38 

Garage Door 0.53 0.65 

 

Fig. 13. (a) and (b) show buildings with temporal roof tarp and (c) and (d) 
show buildings with a destroyed roof. 

(2) It is not feasible to entirely deliberate the complex 
and irregular damage texture while manually labeling the 
initial hurricane-damaged building dataset. For example, as 
shown in Fig. 13, about 30% of the dataset has severely 
damaged roofs. Some buildings installed temporal roof tarp, 
resulting in distinct color contrast to the original roof tiles. 
Some buildings have completely destroyed roofs, resulting in 
inadequate pixel occupation. These factors critically interfere 
with model training. Therefore, a significant number of 
precisely segmented and labeled data sets for damaged 
structural components are expected for high model 
performance and their damage rating detection. 

(3) The trained model from this paper only detects major 
structural components: doors, windows, walls, and roofs. 
Further training with additional data will enable detailed 
structural component detection (e.g., handrails, columns, and 
pipes), patio door and entry doors differentiation, building 
level classification, and roof type detection. Additionally, 
while this paper correlates the structural component labeling 
with the manual damage assessment result, the output data 
can be used to develop a model for automatic analysis and 
damage rating assessment of post-hurricane damaged 
structures. 

(4) Based on our dashboard and image database, potential 
users such as real estate or construction companies can 
develop applications to analyze suitable materials and 
designs for building houses that minimize the damages 
caused by future hurricanes from specific areas. By knowing 
the damage degree of each housing component, users can 
further analyze the reasons of why some specific parts of a 
house are seriously damaged, and whether the geographical 
location, such as being nearby the seaside, has an impact on 
the degree of damages on the house. Users who want to 
purchase a house can evaluate the selected house to see if the 
current house value is overvalued or undervalued. As more 
and more data can be uploaded through the database,  
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