
1 

Chapter # 

Camera Calibration 
Finding the Intrinsic and Extrinsic Parameters 

Zhigang Zhu 
Department of Computer Science, The City College of New York, New York, NY 10031           

1. INTRODUCTION 

Outline of this chapter 
 
■ Calibration: Finding the intrinsic and extrinsic parameters 

● Problems and assumptions 
● Direct parameter estimation approach 
● Projection matrix approach 

■ Direct Parameter Estimation Approach 
● Basic equations (from the last chapter) 
● Homogeneous system  
● Estimating the image center using vanishing points 
● SVD (Singular Value Decomposition)  
● Focal length, aspect ratio, and extrinsic parameters 
● Discussion: why not do all the parameters together? 

■ Projection Matrix Approach 
● Estimating the projection matrix M 
● Computing the camera parameters from M 
● Discussion 

■ Comparison and Summary 

1.1 Problems and Assumptions 

In the previous chapter discussing camera models, our goal was to build 
the geometric relations between a 3D scene and its 2D images for both 
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computer vision and computer graphics. The relations consist of two parts: 
3D transformation that represents the viewpoints and viewing directions of 
the camera (real or virtual), and the perspective projection that maps 3D 
points onto 2D images. Recall that we can use the same sets of equations for 
both vision and graphics. However, we have also pointed out that vision is 
much more challenging than graphics: In graphics, 2D projections can easily 
be generated from 3D models, given the 3D models and the (virtual) camera 
parameters. In computer vision a real camera carries out the projections and 
the goal is to reconstruct the 3D models from these 2D images. These 
inverse problems are more difficult to solve, because (1) intrinsic and 
extrinsic camera parameters need to be extracted using the calibration 
procedure that we will discuss below; and (2) 3D information needs to be 
recovered from 2D images in which the third dimension is lost.  

 
Figure 1. Calibration target pattern 

In this chapter, we will discuss methods for solving the first problem. 
Informally, we can state the problem as the following:  

 
Given one or more images of a calibration pattern, estimate the intrinsic 

parameters, the extrinsic parameters, or both. 
 
We shall consider several aspects of the problem in order to achieve the 

desired accuracy of calibration. 
(1) How shall we design and measure the calibration pattern? This 

determines the accuracy in 3D measurements.  Figure 1 shows a 
typical calibration pattern, which has accurately measured 
chessboard patterns on the sides of a cube. The centers or corners 
of the black squares are called control points, which have accurate 
3D coordinate measurements. The rule of thumb is to have a good 
distribution of the control points that are not coplanar and span 
across the camera’s field of view, in order to assure stability of the 
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solution. Additionally, when constructing the calibration pattern, 
the tolerance of accuracy should be one or two orders of 
magnitude lower than the desired accuracy of calibration. For 
example, in order to achieve a desired accuracy of 0.1mm, we 
should use a 0.01 mm tolerance in construction. 

(2) How can we extract the image correspondences? This determines 
the accuracy in 2D measurements. Techniques such as corner 
detection and line fitting can be used. Typically, sub-pixel 
accuracy (i.e., localization error below one pixel) for control point 
localization is needed in order to achieve the desired accuracy in 
calibration. This can often be done semi-automatically by 
handpicking the initial control points of the image and then 
refining them with sub-pixel localization techniques. 

(3) How can we estimate the camera parameters by using the 3D-2D 
pair? This will be the focus of this chapter, assuming that both the 
3D and 2D control points meet the requirements mentioned 
above. 

 
Calibration is a tedious procedure, with its computational algorithms 

often sensitive to noise. So for some applications alternative approaches 
would be to obtain 3D information (structure, relations, etc.) from un-
calibrated cameras.  

  
 

1.2 Camera Model 

In the previous chapter, we have discussed the perspective camera model: 
from world to camera (coordinate systems), and from camera (3D) to image 
frame (2D) (Figure 2). 

 

Figure 2. Intrinsic and extrinsic camera parameters 
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For the completeness of our discussion, we summarize it here. Overall, 
there are four points represented in four related coordinate systems: 

(1) Point pim(xim, yim) in the digital frame coordinate system, measured in 
pixels; 

(2) Point p(x,y) in the physical image coordinate system, measured in 
mm; 

(3) Point P(X,Y,Z) in the camera coordinate system, measured in mm; 
(4) Point Pw(Xw,Yw,Zw)in the world coordinate system, measured in mm. 
 

Note that the points P and Pw are actually two representations of the same 3D 
point, in the camera and the world coordinate systems, respectively. The 
camera parameters can be divided into two groups: 

(1) Intrinsic parameters, which link the digital frame coordinates of an 
image point to its corresponding camera coordinates. They include 
the focal length of the camera, f, the image center, (ox, oy), the aspect 
ratio α=sy/sx, and sometimes the radial distortion parameter(s). 

(2) Extrinsic parameters, which define the location and orientation of the 
camera coordinate system with respect to the world coordinate 
system. We use a 3x3 rotation matrix R = [rij]3x3 and a 3D 
translational vector T = (Tx,Ty,Tz)T to represent this set of parameters. 

 
Integrating the transformations we described in Chapter #, we can establish 
the transformation from the world coordinate system to the digital frame 
coordinate system, i.e., (Xw,Yw,Zw)T -> (xim, yim)T, as  
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where we define the effective focal lengths in the x and y directions as  
 

fx = f/sx, fy=f/sy  (2) 
Note that in equation (1) we neglect the radial distortion parameters, and 
define (x’,y’) in a coordinate system with the origin (ox,oy). 
 
The intrinsic parameters should be listed by the manufacturers in the camera 
specifications. Unfortunately these parameters may be incomplete or 
inaccurate. The extrinsic parameters that describe the pose (position and 
orientation) of the camera looking at the scene are usually unknown. The 
goal of calibration is to find the two sets of parameters, given a number of 
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corresponding points in 3D and 2D, { (Xw,Yw,Zw)i

T , (xim, yim)i
T, i=1, 2, … 

N}. 
 

2. DIRECT PARAMETER METHOD 

2.1 Formulating a Homogeneous System 

The two equations in (1) are actually not linear. In the so-called direct 
parameter method, the first step is to make them linear. To this end, let us 
have a careful look at the two sets of camera parameters, which are re-
written here for easy references: 

■ Extrinsic parameters 
● R=[rij]3x3: a 3x3 rotation matrix, which can be represented by 

three rotation angles  
● T= (Tx,Ty,Tz)T: a 3D translation vector 

■ Intrinsic parameters 
● fx, fy: effective focal length in pixel, or we can use α = fx/fy 

and fx to represent them.  
● (ox, oy): image center, which we assume known, therefore 

(x’,y’) is known. 
● k1: radial distortion coefficient, which we neglect within the 

scope of the basic algorithm we will discuss. 
We assume that the coordinates of the image center are known. The next 

question is, whether we can assume that the image center is the origin of the 
digital frame coordinate system. The answer is no, so we cannot eliminate 
(ox,oy) from the linearized equation. Therefore, we really have to know the 
image center. We will come back to them later if they are not known, but 
right now let us assume we know the center of the image. With this we 
notice that the two equations have the same denominator. By dividing x’ by 
y’ and then redistributing the terms we obtain  

 

'/)('/)( 131211232221 xTZrYrXrfyTZrYrXrf xwwwxywwwy +++=+++
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In Equation (3), we have (Xw,Yw,Zw) and its corresponding image point 
(x’,y’), both of which are known or can be measured; the unknown 
parameters are Tx, Ty, fx, fy,, r1j and r2j. j=1,2,3.   

Now we are one step away from constructing a system of linear 
equations. To accomplish this, we will use the aspect ratio: α = fx/fy y in 
equation (3), and use N pairs of control points: {(Xi, Yi, Zi) <-> (xi, yi), 
i=1,…,N }. Note that for ease of representation, we have already dropped the 
prime in both xi and yi and the subscript “w” in (Xi,Yi, Zi) 
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For each pair of points we have a linear equation of 8 unknowns v = 

(v1,…, v8)T 
 

087654321 =−−−−+++ vyvZyvYyvXyvxvZxvYxvXx iiiiiiiiiiiiii  (4) 

 
where 

),,,,,,,(),,,,,,,( 13121123222187654321 xy TrrrTrrrvvvvvvvv αααα=  (5) 

 
With this, we have a homogeneous system of N linear equations  

0Av =  (6) 
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given N corresponding pairs  {(Xi, Yi, Zi) <-> (xi, yi) }, i=1,2,…N. It is 
called the homogeneous system since the right-hand side of the equation is 
an all zero vector. In such a system, with 8 unknowns v = (v1, …, v8)T,  we 
have only 7 independent parameters (see below for it’s properties). Here are 
a few observations for this homogeneous system of linear equations. 
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■ The system has a nontrivial solution (up to a scale)  

● If N >= 7 and N points are not coplanar, then rank (A) = 7 
● The solution can be determined from the SVD of A 

■ Obviously, the system also has a trivial solution v= 0. However, it is 
not the correct solution of the problem since R cannot be all zeros 

■ If v0 is a solution of the homogeneous system, so is c v0  (where c is 
any real value including 0) 

We will now give an overview of SVD and its applications, since it is the 
key to this as well as other problems in camera calibration and stereo vision. 

2.2 SVD: Definition and Applications 

2.2.1 Definition: Singular Value Decomposition (SVD) 

Any mxn matrix A can be written as the product of three matrices 
 

TUDVA =  (7) 
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where the following hold: 
(1). D is a mxn diagonal matrix [dij] with dij =0 if i≠j; dii = σi  (i=1,2,…,n). 
Singular values σi (i=1,…, n)  are fully determined by A, and they are sorted 
σ1 ≥ σ2 ≥ �≥ σn ≥ 0  
(2). Neither U nor V is unique, but the columns of each matrix are mutually 
orthogonal vectors. Note that we use VT instead of V, simply because we 
want to show that the columns of both U and V are eigenvectors (below). 

2.2.2 SVD: properties 

The following properties will be very useful in a number of applications. 
 

1. Singularity and Condition Number 
We say an nxn matrix A is nonsingular iff all singular values are nonzero. 

For a nonsingular matrix, its condition number, i.e., degree of singularity of 
A is defined as  
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nC σσ /1=  (8) 

We thus have the following important observation: A is ill-conditioned if 
1/C is comparable to the arithmetic precision of your machine; in other 
words, we say A is almost singular. The condition number can be used to 
examine how robust the linear system is: the smaller the condition number is, 
the more robust is the linear system. 
 
2. Rank of a square matrix A 
 

Rank (A) = number of nonzero singular values of A 
 

3. Inverse of a square Matrix 
 
If A is nonsingular then the inverse of A is 
 

TUVDA 11 −− =   (9) 

where the diagonal terms of diagonal matrix D–1  is  simply 𝑑!"
!!= 1/dij . We 

can easily prove that A-1 A = I. 
 

If some of the singular values of A are zeros, i.e., A is singular but we still 
want to find its inverse, we can approximate it with the pseudo-inverse of A 

TUVDA 1
0
−+ =  (10) 

where D0
-1 is a diagonal matrix with its diagonal terms equal to 1/dij  for all 

nonzero singular values and zeros otherwise. 
 

4. Eigenvalues and Eigenvectors (questions) 
 

The eigenvalues of both ATA and AAT are σi
2 (σi > 0), while the columns 

of U are the eigenvectors of AAT  (mxm) 

ii
T

i
uuAA 2σ=

 (11) 

and the columns of V are the eigenvectors of ATA (nxn) 

ii
T

i
vAvA 2σ=

 (12) 
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2.2.3 SVD Application 1: Solving the Least Square Problem 

The Least Square Method is used to solve a system of m equations for n 
unknowns x (m ≥ n): 

bAx =  (13) 

where A is an mxn matrix of the coefficients, and b (≠0) is the m-D vector of 
the data. The least square method is equivalent to multiplying the transpose 
of A to both sides and turns the original system into the following system:  

bAAxA TT =  (14) 

where the coefficient matrix becomes a square matrix (i.e., the numbers of 
equations and the unknowns are the same). Therefore the solution for x can 
be found by multiplying the pseudo-inverse of the coefficient matrix, as: 

bAAAx TT += )(  (15) 

The reason to use the pseudo-inverse is that ATA might be singular. We 
know we can compute the pseudo-inverse of ATA by using its SVD, and in 
practice, (ATA)+ is more likely to coincide with (ATA)-1 given m > n. But it 
is always a good idea to look at the condition number of ATA to get a sense 
of how stable your linear system is. This result will be used later in this 
chapter. 

2.2.4 SVD Application 2: Solving the Homogeneous System 

A homogeneous system has m equations for n unknowns x(m ≥ n-1) in 
the form of  

0Ax =  (15) 

where rank (A) = n-1. In practice, this can be verified by looking at the SVD 
of A. A non-trivial solution (up to an arbitrary scale) by using SVD is simply 
proportional to the eigenvector corresponding to the only zero eigenvalue of 
ATA  (nxn matrix). The correctness can be proven using equation (12) when 
the singular value is zero. Note that all the other eigenvalues should be 
positive because rank (A)=n-1. In practice, we use the eigenvector (i.e. vn) 
corresponding to the minimum eigenvalue of ATA, i.e. σn

2. This result will 
be used in solving the 7 unknown equations for calibration (Eq. (6)). 

2.2.5 SVD Application 3: Enforcing Orthogonality 

We often have problems finding the numerical estimate of a matrix A 
whose entries are not independent. Errors introduced by noise alter the 
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estimate to Â. Then we can enforce constraints by using SVD. Let us take 
orthogonal matrix A as an example. Our goal is to find the closest matrix to 
the estimate Â, which exactly satisfies the constraints for orthogonality. 
Upon obtaining the estimate Â, we perform the SVD of Â as 

TUDVA =ˆ  (16) 

We observe that D should be an identity matrix I (all the singular values are 
1) if A is orthogonal. However, in reality, it might not be the case. What we 
can do is to replace D with I so that the final solution for A will be an 
orthogonal matrix: 

TUIVA =  (17) 

 
 
This result will be used in the rotation matrix estimation. 

2.3 Solving the Homogeneous System 

With this preparation, we are now ready to solve our homogeneous 
system of N linear equations in (6), given N corresponding pairs  {(Xi, Yi,, Zi) 
↔ (xi, yi) }, i=1,2,…N, for the 8 unknowns v = (v1,…,v8)T,  7 of them are 
independent parameters.  We know that the system has a nontrivial solution 
(up to a scale) if N >= 7 and the N points are not coplanar, thus Rank (A) = 7. 
It can be determined from the SVD of A, as 

TUDVA =  (18) 

where the rows of VT are eigenvectors {ei}of ATA. Therefore, the solution is 
proportional to the 8th row e8 corresponding to the only zero singular value 
σ8=0, as  

8ev c=  (19) 

where c is a constant that can be of any value (negative, zero or positive) for 
just satisfying the homogeneous system, but we have to find out what it 
should be for estimating the real camera parameters. There is also another 
practical consideration, the errors in localizing image and world points may 
make the rank of A to be maximum (i.e., 8). In this case we simply select the 
eigenvector corresponding to the smallest eigenvalue. 
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2.4 Extracting Camera Parameters from the Solution 

2.4.1 Scale Factor and Aspect Ratio 

Due to the fact that the any multiple of v makes equation (6) true, we 
cannot determine the scale by just using equation (6). Therefore we turn to 
the physical meanings of the intrinsic and extrinsic parameters to solve this 
problem and eventually extract these camera parameters. Without loss of 
generality, let us write v  as e8, (i.e., by set c=1), we could instead define a 
scale factor γ and write the following equation, after equation (5): 

),,,,,,,( 131211232221 xy TrrrTrrr ααααγ=v  (20) 

We obtain a lot of useful constraints by employing the fact that that the 
rotation matrix R is an orthogonal matrix. Let us write matrix R as three row 
vectors:  
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which has two aspects: (1) the length (magnitude) of each vector Ri is 1; and 
(2) the dot product of two different vectors is zero. We will now use the first 
observation. From the second row of the rotation matrix, i.e., i=j=2, we have 

1222
232221
=++ rrr  

Then by comparing the first three components of the vectors in the left and 
right sides of equation (20) we obtain the scale up to a sign: 

2
3

2
2

2
1|| vvv ++=γ  (22) 

We will still have to determine the sign. Similarly, from first row of R 
(i=j=1), we have  
 

1222
131211
=++ rrr  

 
Then by comparing the 5th and 7th components of the vectors on the left and 
right sides of equation (20) we obtain 
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2
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5|| vvv ++=γα  (23)  

and the aspect ratio α can be directly calculated by dividing equation (23) by 
equation (22).  
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2.4.2 Rotation R and Translation T 

Equation (20) now yields the  first two rows of R and the first two 
components of T, given that the values of both α and |γ| have been obtained. 

),,,,,,,( || 131211232221 xy TrrrTrrrs ααααγ=v  (25) 

 
where s is a common sign (+ or -) to be determined. Hence, the first two 
rows of R and the first two components of T can be found up to a common 
sign s (+ or -), as  

yx
TT sTsTss ,,, 21 RR  (25a) 

The third row of the rotation matrix can easily be computed as the vector 
product of the first and second row: 

TTTTT ss 21213 RRRRR ×=×=  (25b) 

Upon this point, there are still three remaining questions: 
■ How to find the sign s? 
■ Is R orthogonal? 
■ How to find Tz and fx, fy? 

We will work on this in the following subsections. 

2.4.3 Finding the sign s 

Referring to Figure 1, we re-write related entities of the perspective 
camera model as 
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Here are a few facts that we can use for a pair of points (Xw, Yw, Zw) and 
(x,y). Let us focus on the first equation in (26) to figure out how to find the 
sign s: 

■ The effective focal length is always positive, i.e., fx > 0 
■ the point (Xw, Yw, Zw) is in front of the camera, i.e., its Z coordinate 

in the camera coordinate system is always positive, i.e., Z > 0 
■ both x and (Xw, Yw, Zw) are known values  

The solution is to check the sign of X, either positive or negative, which 
should be opposite to x. One way to do this is to assume the sign s is, for 
example, positive, then compute the value X as xwww TZrYrXr +++ 131211 . 
If it has the same sign as x, the assumption is correct, otherwise the sign is 
opposite. Upon the determination of the sign and the rotation matrix R, the 
first components of the translational vector T are fully determined. 

 

2.4.4 Rotation R: Orthogonality 

Note that when we used equation (6) we calculated the first 2 rows of R 
without using their mutual orthogonal constraint. This means that the eight 
unknowns in the equation system are not independent. So, unless everything 
is fully accurate, there is no guarantee they will be orthogonal. Using a 
rotation matrix estimate that does not meet the physical constraints would be 
problematic. So the question is, does the following hold:  

?ˆˆ IRR =T  (26) 

If not, how do we enforce the orthogonality? One of the solutions is to 
compute the SVD of estimate R  

TUDVR =ˆ  (27) 

Then to replace the diagonal matrix D with the 3x3 identity matrix, so the 
final result of the rotation matrix is 

TUIVR =  (28) 

2.4.5 Find Tz, Fx and Fy 

We still need to find Tz and fx (or fy). The solution is to use one of the 
equations in (1),   
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to construct a system of N linear equations with two unknowns 
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given N pairs of points (i=1, …N). The solution can be easily found by using 

the  least square method:
 

Tz
fx
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&= (ATA)−1ATb  (29) 

 
Once again, we can use the SVD method to find the inverse or pseudo-

inverse, so that we obtain Tx and fx. Then we can also find fy  = fx / α. 
 

2.5 Estimating the Image Center 

At the beginning of the direct parameter method, we have assumed that 
the center of the image (ox,oy) is known, so that we obtain a linear equation 
with 8 unknowns. Now we need to come back to the starting point to see if 
we can estimate the image center before we perform the calibration 
procedure we discussed above. We will introduce a technique using the 
typical calibration pattern of  two faces of a cube seen from a camera’s view. 
This will also lead us to the definition of vanishing points, a very important 
concept in perspective geometry for both computer vision and computer 
graphics. 

2.5.1 Vanishing points 

Due to perspective, all parallel lines in 3D space appear to meet at a point 
on the image - the vanishing point, which is the common intersection of all 
the image lines. Figure 3 shows the vanishing point VP1 in the image of a 
set of parallel lines on the calibration cube in space. There is a very 
important property of this vanishing point:  

 
The vector from the center of projection to the vanishing point is parallel 

to the set of parallel lines. 
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Figure 3. Vanishing point 

This property will be used to find the image center without knowing 
much about the camera’s intrinsic and extrinsic parameters. 

2.5.2 Orthocenter Theorem 

Given three mutually orthogonal sets of parallel lines in an image, a 
triangle T is formed on the physical image plane, defined by the three 
vanishing points of these three sets of parallel lines. Then the image center is 
the orthocenter of triangle T -- the common intersection of the three altitudes 
of the triangle. 

 
Figure 4. Orthocenter Theorem 
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Figure 4 shows the orthocenter theorem. First, three vanishing points 
VP1, VP2 and VP3 are found for the images of three sets of parallel lines, 
respectively. Then a triangle is formed with the three vanishing points as the 
vertices, and its three altitudes can be defined. An altitude is the 
perpendicular line segment from a vertex to its opposite base. Finally, the 
orthocenter is calculated as the intersection of these three altitudes, which is 
exactly the center of the image: (ox,oy). 

In the following, we will give a proof to the orthocenter theorem. By 
doing this, we hope to obtain a better understanding of the perspective 
geometry, and meanwhile figure out what we need to know in an image in 
order to use the orthocenter theorem to find the image center. 

 
 

Figure 5. Orthocenter proof: a geometric approach (TO DO) 

 
[Proof] Let us define the center of projection of the camera in 3D space 

as O (see above figure on the right).  L1, L2, and L3 are three mutually 
orthogonal sets of parallel lines, and V1, V2, and V3 are the three vanishing 
points, forming a triangle V1V2V3.  From question 1 at the end of this 
chapter you should have proved that the vector OVi from the center of 
projection O (viewpoint or pinhole) to a vanishing point Vi is parallel to the 
mutually orthogonal set of parallel lines Li in 3D space (i=1,2,3).  This 
means that OVi is perpendicular to OVj as long as i≠j, therefore OV1 is 
perpendicular to V2V3, and OV2 is perpendicular to V1V3, and OV3 is 
perpendicular to V1V2.  Vihi is the altitude from Vi (i=1,2,3), therefore V1h1 
is perpendicular to V2V3, and V2h2 is perpendicular to V1V3, and V3h3 is 
perpendicular to V1V2.  Let us define the center of the image as o, therefore 
line Oo is perpendicular to the image plane.  Also note that point o is the 
projection of point O in the image plane, which lies on all the three altitudes 
Vihi, so o is the intersection point of V1h1, V2h2, and V3h3. # 

 
We do not need to know anything about the camera parameters in order 

to find the three vanishing points. For example, in the above proof, we don’t 
use the focal length information. But since we need to use the orthogonal 
relations of the altitude, we need to assume that we know the aspect ratio of 
the image. In Figure 6, if the assumed aspect ratio was wrong, we would 
have obtained a scaled image in the y direction. The vanishing points would 
still be correct, but the image center will not be at (ox, oy), since hi is not the 
altitude any more. 

Secondly, we need to have three vanishing points generated from three 
sets of parallel lines that are mutually orthogonal to each other. It is not a 
problem to have three sets of mutually orthogonal parallel-line sets. 
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However this is no guarantee that a set of parallel lines will generate a 
vanishing point. The camera view angles matter. For example, if the camera 
is perpendicular to the plane which includes the set of parallel lines, then the 
images of these parallel lines would still be in parallel and would not have an 
intersection. Therefore, their vanishing point will be at infinity. In this case 
we cannot form a triangle to estimate the image center.  

Of course the orthocenter theorem only works on images without lens 
distortions or with lens distortions removed. 

 
Finally, we have two interesting questions: (1) Can we solve both the 

aspect ratio and the image center? (2) Can we find the focal length of a 
camera by using the three vanishing points? These questions will be left for a 
homework project. 

 

 

Figure 6. Orthocenter is not the image center if using an incorrect  aspect ratio 

2.6 Direct Parameter Calibration Summary 

We would like to summarize the direction parameter method into an 
algorithm and then offer some discussions. 

2.6.1 Direct Parameter Calibration Algorithm  

We list the steps of the direct parameter method.  
1. Estimate image center (and aspect ratio?) 
2. Measure N 3D coordinates (Xi, Yi,Zi), i = 1,2, …, N 
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3. Locate their corresponding image points (xi,yi)  - using edge / corner 
detection and/or Hough Transform 

4. Build matrix A of a homogeneous system  Av = 0  
5. Compute SVD of A , solution v 
6. Determine aspect ratio α and scale |γ| 
7. Recover the first two rows of R and the first two components of T 

up to the same sign 
8. Determine sign s of γ by checking the projection equation 
9. Compute the 3rd row of R by vector product, and enforce 

orthogonality constraint by SVD  
10. Solve Tz and fx using Least Square and SVD, then fy = fx / α 

 
Note that there are three important techniques in the direct calibration 

approach and three applications of SVD in the method. The three important 
techniques are: (1) the use of the divide and conquer technique -- particularly 
with a unique technique in finding the image center first in order to simplify 
the problem; (2) the creation of linear systems of fewer unknowns; and (3) 
the decomposition of intrinsic and extrinsic parameters using physical 
constraints of the camera (orthogonality of R, sign of depth, etc.). SVD is 
used three times in (1) solving the homogeneous system; (2) enforcing 
orthogonality constraints; and (3) solving the least square system. 

2.6.2 Remaining Issues and Possible Solutions 

In using the direct parameter method, we need to ask the following 
questions: 

(1). Can we select an arbitrary image center for solving other parameters? 
(2). How to find the image center (ox,oy)? Do we need to know the aspect 

ratio in order to use the orthocenter theorem? 
(3). Can we include the radial distortion in calibration? 
 
Note that the original assumptions of the direct parameter method are: (1) 

The camera is without lens distortions. (2) The aspect ratio is known when 
estimating image center. (3) The image center is known when estimating 
other parameters including the aspect ratio. We will not discuss the radial 
distortion here. Even without radial distortion, we have one problem: using 
the direct parameter method we cannot find the image center without 
knowing the aspect ratio, and the estimation of the aspect ratio needs the 
knowledge of the image center.  

 
One solution to this problem is to first assume that the aspect ratio is 

approximately 1:1 (or 4:3 by using the manufacturer’s information) to find 
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image center (ox, oy) using the orthocenter theorem. Then, we can use the 
estimated center to find other parameters including the aspect ratio. After 
that, we can refine the image center using the newly estimated aspect ratio. 
We could perform a few iterations until the changes of the estimations of 
both the aspect ratio and the image centers are not significant. 

 
Another solution is to solve all the parameters at once, which leads to the 

projection matrix method that we are going to discuss below. Here we give a 
quick comparison: 

 
The core of the direct parameter method: One point pair provides 1 linear 

equation of 8 unknowns (of which 7 are independent). 
Projection matrix method: One point pair will provide 2 linear equations 

of 12 = (4+4+4) unknowns (of which 11 are independent) 

3. PROJECTION MATRIX APPROACH 

3.1 Estimation of Projection Matrix 

We start with the projection matrix equation that we discussed in the 
chapter about camera models, with the relation of the world to frame 
transformation. For convenience, we drop subscripts “im” and “w” , so for N 
pairs of points: (xi,yi) ↔ (Xi,Yi,Zi), i=1,…,N, we have  
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where (xi,yi) = (ui/wi, vi/wi), and M = [mij] is the 3x4 projection matrix, 
which includes both the four intrinsic parameters (fx,fy,ox,oy) and the six 
extrinsic parameters (α,β,γ, Tx, Ty, Tz), altogether 10 independent 
parameters. However, in order to derive linear equations, we use the nine 
elements of the rotation matrix [rij]3x3 instead of the three rotation angles 
α,β,γ: 
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Hence it includes 16 =4+9+3 parameters. Inserting (31) into (30), we will 
have the expansion forms of two equations: 
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Then, for N pairs of world-frame points, we have the following 

homogeneous linear equation system of the unknown vector m:  
 

0Am =  (33) 
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In (33), we have 2N equations and 11 independent variables. Therefore, if N 
>=6 , we will have 12 equations, and using SVD we can find the solution for 
m up to an unknown scale.  

3.2 Computing camera parameters 

We will take a  similar approach here as we did in the direct parameter 
method. After we have an estimation of m up to an unknown scale, we can 
construct an estimated projection matrix for the estimation of the projection 
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which is a scaled version of the real M, as  

MM s=ˆ  (35) 
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where s is the scale between the two; q1, q2, and q3 are three row vectors. For 
easy comparison, we rewrite the M matrix here: 
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With this we summarize the steps of obtaining the intrinsic and the extrinsic 
parameters of the camera from the matrix M̂ :  
 
[ Projection Matrix Calibration Algorithm] 

1. Find the absolute value of the scale |s| by using the known values of 
q3 and the first three components of the last row of M, which is the 
unit row vector R3

T 
2. Determine Tz and the sign of s from the knowledge that m34 =Tz > 0 

and the value of q43 is known. 
3. Obtain R3

T following steps 1 and 2. 
4. Find (ox, oy) by the dot products of the two pairs of the row vectors, 

corresponding to q1. q3, and  q2.q3, using the orthogonal constraints 
of R, and the known value of the scale s. 

5. Determine fx and fy from the corresponding components in M to q1 
and q2 , using the known values of (ox, oy), and the knowledge of 
unit row vector R1

T and R2
T 

6. All the rest: R1
T, R2

T, Tx, Ty, can be found easily  
7. Enforce orthogonality to R using SVD. 

4. COMPARISONS AND DISCUSSIONS 

By comparing the direct parameter method and the projection matrix 
method, we can make the following observations: 

 
There are two common properties:  

(1) Both methods try to solve a linear system first, and then perform 
parameter decomposition second. 

(2) Results should be exactly the same if everything is accurate. 
 
There are two major differences:  

(1) Number of variables in the homogeneous systems: In the projection 
matrix method, all the parameters are solved at once, and we have 
2N Equations of 12 variables. The the direct parameter method uses 
a divide and conquer approach in three steps: image center using the 
orthocenter theorem, N equations of 8 variables and N equations of 
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2 variables. With fewer parameters in each step, the systems may be 
more robust than the projection matrix method. 

(2) Assumptions. The projection matrix method is simpler and more 
general; sometimes a projection matrix is sufficient so there is no 
need for parameter decomposition. The direct parameter method 
assumes a known image center in the first two steps, and a known 
aspect ratio in estimating image center. 

 

4.1 Guidelines for Calibration 

Here we summarize some guidelines for a good practice of camera 
calibration: 

■ Pick up a well-known technique (or a few) 
■ Design and construct calibration patterns (with known 3D) 
■ Make sure you know what parameters you want to find for your 

camera 
■ Run algorithms on ideal simulated data 

● You can either use the data of the real calibration pattern or  
computer generated data 

● Define a virtual camera with known intrinsic and extrinsic 
parameters 

● Generate 2D points from the 3D data using the virtual 
camera 

● Run algorithms on the 2D-3D data set 
■ Add noise to the simulated data to test the robustness  
■ Run algorithms on the real data (images of calibration target) 
■ If successful, you are all set!  
■ Otherwise: 

● Check your distribution of control points  
● Check the accuracy in 3D and 2D localizations 
● Check the robustness of your algorithms again 
● Develop your own algorithms  

5. QUESTIONS AND PROJECTS 

5.1 Questions 

[Question 1].  Prove the Orthocenter Theorem by geometric arguments: Let 
T be the triangle on the image plane defined by the three vanishing points of 
three mutually orthogonal sets of parallel lines in space. Then the image 
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center is the orthocenter of the triangle T (i.e., the common intersection of 
the three altitudes.  
(1)    Basic proof: use the result of Question 2 of the camera model chapter, 
assuming the aspect ratio of the camera is 1.  
(2)    If you do not know the focal length of the camera, can you still find the 
image center (together with the focal length) using the Orthocenter 
Theorem? Show why or why not.  
(3)    If you do not know the aspect ratio and the focal length of the camera, 
can you still find the image center using the Orthocenter Theorem? Show 
why or why not.  

[Question 2]. Derive equations for the parameter estimation in the projection 
matrix algorithm listed in Section 3.2. 

5.2 Projects 

[Calibration Programming Exercises]: Implement the direct parameter 
calibration method in order to (1) learn how to use SVD to solve systems of 
linear equations; (2) understand the physical constraints of the camera 
parameters; and (3) understand important issues related to calibration such as 
calibration pattern design, point localization accuracy, and robustness of the 
algorithms. Since calibrating a real camera involves a lot of work in 
calibration pattern design, image processing, and error controls as well as 
solving the equations, we will mainly use simulated data to understand the 
algorithms.  As a by-product we will also learn how to generate 2D images 
from 3D models using a “virtual” pinhole camera.  

a. Calibration pattern “design”. Generate data of a “virtual” 3D cube 
similar to the one shown in Figure 1. For example, you can 
hypothesize a 1×1×1 m3 cube and pick up coordinates of 3D points on 
one corner of each black square in your world coordinate system. 
Make sure that your data is sufficient for the following calibration 
procedures. In order to show the correctness of your data, draw your 
cube (with the control points marked) using Matlab (or whatever tools 
you are selecting). I have provided a piece of starting code in Matlab 
for you to use. 

b. “Virtual” camera and images. Design a “virtual” camera with known 
intrinsic parameters including focal length f, image center (ox, oy) and 
pixel size (sx, sy).  As an example, you can assume that the focal 
length is f = 16 mm, the image frame size is 512*512 (pixels) with 
(ox,oy) = (256, 256), and the size of the image sensor  inside your 
camera is 8.8 mm *6.6 mm (so the pixel size is (sx,sy) = (8.8/512, 
6.6/512) ). Capture an image of your “virtual” calibration cube with 
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your virtual camera in a given pose (R and T).  For example, you can 
take the picture of the cube 4 meters away and with a tilt angle of 30 
degree. Use three rotation angles alpha, beta, gamma to generate the 
rotation matrix R.  You may need to try different poses in order to 
have a suitable image of your calibration target. 

c. Direction calibration method: Estimate the intrinsic (fx, fy, aspect ratio 
α, image center (ox,oy) ) and extrinsic (R, T and further alpha, beta, 
gamma) parameters. Use SVD to solve the homogeneous linear 
system and the least square problem, and to enforce the orthogonality 
constraint on the estimate of R.  

                                                               i.      Use the accurately simulated data (both 3D world 
coordinates and 2D image coordinates) to the algorithms, and 
compare the results with the “ground truth” data (which are 
given in step (a) and step (b)).  Remember you are practicing 
a camera calibration, so you should pretend you know 
nothing about the camera parameters (i.e. you cannot use the 
ground truth data in your calibration process). However, in 
the direct calibration method, you could use the knowledge of 
the image center (in the homogeneous system to find extrinsic 
parameters) and the aspect ratio (in the Orthocenter theorem 
method to find the image center).  

                                                             ii.      Study whether the unknown aspect ratio matters in 
estimating the image center, and how the initial estimation of 
image center affects the estimation  of the remaining 
parameters.  Give a solution to solve the problems if any. 

                                                            iii.      Accuracy Issues. Add in some random noises to the 
simulated data and run the calibration algorithms again. See 
how the “design tolerance” of the calibration target and the 
localization errors of 2D image points affect the calibration 
accuracy. For example, you can add 0.1 mm random error to 
3D points and 0.5 pixel random error to 2D points. Also 
analyze how sensitive the Orthocenter method is to the 
extrinsic parameters in imaging the three sets of the 
orthogonal parallel lines. 



#. Camera Calibration 25 
 

 
Figure 7. A 2D image of the “3D cube” with control 16+16 points 
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