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1. INTRODUCTION 

In this part we will focus on the fundamentals of three-dimensional (3D, 
or 3-D) computer vision. The motivation of 3D computer vision is to enable 
computers to see the 3D world as humans do. To summarize the subject in a 
few words, we can define 3D Computer Vision as the study of turning 2D 
images back into 3D structures. Its applications include robotics, 
autonomous vehicles, virtual reality, surveillance and entertainment (such as 
image-based rendering and 3D video). This part will include the following 
topics: 

 
Camera Geometric Models: the models and parameters that characterize 

the transformations from 2D images to 3D models. 
Camera Calibration: the procedure of estimating the camera parameters 

and models given the 2D and 3D correspondences. 
Stereo Vision: principles and techniques for computing 3D coordinates 

from images of two or more cameras. 
Visual Motion: principles and techniques for estimating structures and 

motion characteristics from images recorded by a moving camera. 
 
There are several disciplines closely related to 3D computer vision. 

Image processing deals with transformations from 2D images to 2D images 
and is often treated as a preprocessing step in computer vision, particularly 
in 3D computer vision. We refer to it as 2D computer vision in Part III. 
Computer Graphics is the study of utilizing 3D models for generating 2D 
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images from different views at different times and under different 
illuminations, and is, therefore, sometimes viewed as the forward processing 
of 3D transformation (whereas 3D computer vision solves the inverse 
problem of 3D transformation). Since they are forward and backward 
processes, using essentially the same sets of geometric transformations, 
learning 3D computer vision will be very helpful for students and 
professionals studying 3D graphics. Finally, Photogrammetry is the 
discipline of obtaining accurate measurements from images. In terms of 3D 
measurements, it actually shares a lot of common techniques with computer 
vision, even though it usually deals with satellite images. In short, we want 
our students to realize that learning 3D computer vision is a one-stone-many-
birds deal! 

 
The goal of this chapter is to build an understanding for the geometric 

relations between a 3D scene and its 2D images for both computer vision 
and computer graphics. The relations include two aspects: the 3D 
transformation that represents the viewpoints and viewing directions of the 
camera (real or virtual), and the perspective projection that maps 3D points 
to 2D points in images. Note that we can use the same set of equations for 
both vision and graphics. However, vision poses greater challenges than 
graphics: In graphics, 2D projections can easily be obtained from 3D 
models, given the 3D models and the (virtual) camera parameters, whereas 
in computer vision the projections are generated by a real camera. The 
reconstruction of 3D models from 2D images(the inverse problem) is much 
harder since (1) we need to find the intrinsic and extrinsic camera parameters 
by using calibration procedures that will be discussed in the next chapter; 
and (2) we need to recover 3D information from 2D images in which the 
third dimension is lost. 

 

Figure 1.Camera model and camera parameters 
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From a geometric point of view, a camera is a device that captures 3D 
scenes from the real world and converts them into 2D images (Figure 1). Just 
as we move and orient our eyes in real life to get an optimal view, we have 
to change the camera’s location and orientation in order to capture a good 
view of a scene. In order to recover the 3D structure of the scenes from their 
2D images, we need to establish the relationship between the 2D shapes in 
the images and the 3D structures in the scenes, through the parameters of the 
camera. These parameters include two parts: the intrinsic parameters that 
map the 3D points onto 2D images, which is the camera specification; and 
the extrinsic parameters that represent the position and orientation (i.e., pose) 
of the camera. 

 
In this chapter, we will discuss the geometric models of a typical camera 

that is widely used in computer vision – the pinhole camera. We will start by 
familiarizing ourselves with the geometry of a pinhole camera model, and 
then introduce the mathematical models of both perspective projection and 
weak-perspective projection. After this we will have a look at the camera 
parameters, including the so called intrinsic parameters, which define the 
mapping from 3D to 2D, and the extrinsic parameters, which define the 
viewpoint and viewing direction of the camera. Next, we will introduce the 
matrix representations of the transformation. We will formulate the linear 
version of the projection transformation equation, which will save a lot of 
space in writing the equations, and save a lot of time in deriving the relations 
for the later discussions of camera models in camera calibration, stereo 
vision and visual motion. We will provide four typical models using the 
linear algebra representations: the perspective camera model, the weak-
perspective camera model, the affine camera model, and the camera model 
for planes. Finally, we summarize the key messages of this chapter and point 
out how we could use the models for 3D computer vision. 

2. GEOMETRIC PROJECTION OF A CAMERA 

We will start with the geometry of a pinhole camera model, and then 
introduce the mathematical models for both perspective projection and 
weak-perspective projection. 

2.1 Pinhole camera model 

First, let us take a look at the pinhole camera model without taking the 
position of the camera into account. The focal length f of the pinhole lens is 
the distance between the center of the lens and the image plane measured 
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along the optical axis (see Figure 2). The center of the lens (center of 
projection) is the point in the lens system through which all rays must pass. 

From the diagram, we can easily see that the image projected onto the 
image plane is inverted.  The ray from the cartoon figure's head, for 
example, is projected to a point near the bottom of the image plane, while 
the ray from a point on the figure's foot is projected to a point near the top of 
the image plane. 

 

Figure 2.A diagram of the pinhole camera model. The focal length f marks the distance 
between the image plane and the pinhole. 

 
Various coordinate reference frames can be associated with the pinhole 

camera system. In most of them, the Z axis coincides with the optical axis 
(also called the central projection ray).  By convention, the image plane is 
located at Z = -f and the lens is located at Z = 0.  Z is also the distance to an 
object as measured along the optical axis; also by convention, Z is positive 
coming out of the camera.  The X and Y axis lie on the image plane - we will 
establish the exact relationships later.  

 
Before we proceed, we would like to define the important concepts and 

notations for perspective projection: 
(1) Optical axis: the direction of imaging, i.e. the Z axis. 
(2) Image plane: a plane perpendicular to the optical axis upon which the 

3D image is projected into 2D. 
(3) Center of projection: the pinhole. It is also called focal point, 

viewpoint, or nodal point in imaging, computer vision, and 
photogrammetry. 

(4) Focal length (f): distance from the focal point to the image plane. 
(5) Field of View (FOV): viewing angles in horizontal and vertical 

directions give us the horizontal and vertical fields of view, 
respectively. 

 
Figure 3 depicts some of the properties of perspective projection. From 

Figure 3(a) and (b), it can easily be seen that increasing the focal length f 
will enlarge the figure of the object, but decrease the FOV of the image, 
given the fixed size of the image plane area. 
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(a)  

(b)  

(c)  

Figure 3. Pinhole camera model: coordinate system 

 
Mathematically, it is possible to place the image plane in front of the 

camera lens so that the projected image is upright (Figure 3c).  In the upright 
case, the center of projection is still located at the origin 0 along the optical 
axis.  However, the image plane is placed at z=f. The equivalence of both 
geometries can be established by recognizing that the two triangles in the 
upper diagram are similar to the two triangles in the lower diagram.  In fact, 
it is exactly this relationship which will allow us to derive the perspective 
projection equation. 

2.2 Perspective projection  

 
Figure 4. Perspective projection equation 
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Our goal is to compute the image coordinates (x, y) of the point P located 
at (X, Y, Z) in the world coordinate system under perspective projection.  
Equivalently, we want to know where the ray going from the point P to the 
center of the camera lens located at the center of projection (O) intersects 
with the image plane. We can do this rather simply by examining the 
projections of the point P on the XZ and YZ planes, and using similar 
triangles, we have:  

),(),(
Z
Yf

Z
Xfyx =  (1) 

Here we are assuming the camera coordinate system coincides with the 
world coordinate system. 
 

We can see that, given the coordinates of a point (X,Y,Z) and the focal 
length of the lens f, the image coordinates (x,y) of the projection of the point 
on the image plane can be uniquely computed.  Now let us ask the reverse 
question: Given the coordinates (x,y) of a point in the image, can we 
uniquely compute the world coordinates (X,Y,Z) of the point?  In particular, 
can we recover the depth of the point (Z)?  

 

Figure 5. The reverse question: depth recovery from an image 

 
To see that this is impossible, consider the infinitely extended ray 

through the center of projection and the point (x,y) on the image plane.  Any 
point P in the world coordinate system which lies along this ray will project 
to the same image coordinates. Thus, in the absence of any additional 
information about P, we cannot determine its world coordinates solely from 
the knowledge of the coordinates of its image projection. 

However, it is easy to show that if we know the image coordinates of the 
point P in two images taken from different locations, and if we know the 
relationship between the two sensor locations, then 3D information about the 
point can be recovered. This concept is known as stereo vision; in the human 

All points on this line
have image coordi-
nates (x,y).

p(x,y)

P(X,Y,Z) can be any-
where along this line
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visual system, our two eyes obtain slightly different images of the scene and 
which allows for depth perception. 

 
In addition to using stereo vision, we can actually infer 3D structure 

using many other visual cues. In fact, we can get much more than 3D 
structure from an image. Figure 6 shows a picture of Amsterdam. Ask 
yourself: What do you see in this picture? 

First of all, we may see “objects”, such as a river, river bank, cars parked 
on the bank, buildings, trees in front of the buildings, a bridge, the sky, etc. 
Unfortunately, a machine vision system has a hard time getting to this level 
of understanding. Employing the immense computing power of the human 
brain, we can figure out relative distances, and we do see the 3D structure 
using just one image. This turns out to be a nontrivial task for a machine 
vision system. 

 
Figure 6. Amsterdam: What  do you see in this picture? Photo by Robert Kosara, 

robert@kosara.net 

 
Let’s intuitively study some fundamentals of a perspective image. We 

will see what geometric properties are preserved in the 2D perspective 
image. This may provide some cues for us to infer 3D structure from images 
using machine vision algorithms. 

 
(1) Straightness of lines is preserved (e.g., the straight line along the river 

bank). You can prove this using the perspective projection equation - Eq. 
(1): a 3D line in space which is not perpendicular to the image place projects 
to a 2D line in the image. 

 
(2). Size is inversely proportional to the depth (distance) Z. This 

conclusion can be easily obtained from Eq. (1). Examples are the cars parked 
along the river. 
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(3). In general, angles and parallelism are not preserved unless they are of 
the front planes, i.e. 3D planes parallel to the image plane. For example, the 
right angles of the rectangular building change to acute angles (less than 90 
degrees) in the nearer end and to obtuse angles (greater than 90 degrees) in 
the farther end. 

 
(4). The projections of parallel lines converge to a point, known as the 

vanishing point of the set of parallel lines. A vanishing point is also shown in 
the figure.  

 
(5). The shapes of objects usually change. However, planes that are 

parallel to the image plane keep their shape. This can be easily proven using 
Eq. (1). We may not be able to exactly find such a plane in the picture of 
Figure 6, but the façade of the building in the far end is approximately 
parallel to the image plane, so the shape is almost preserved. 

 
Using these perspective cues, we can infer certain 3D structures from a 

single image. If you think about developing a computer algorithm to do the 
job instead of using your eyes and brain, here are a couple of important 
reminders for you to consider:  

(1) Our eyes do not see individual pixels, but rather spatial shapes. The 
information of shapes could come from color patterns, texture 
patterns and boundaries. 

(2) We typically include knowledge of object characteristics in our 
visual analysis (e.g., rectangular buildings, similar sizes of cars, 
rivers and banks in a plane, etc.).  

 
This type of processing can be called a knowledge-based vision 

approach, or top-down approach, or the perceptual organization approach 
[Lowe’89]. Employing the projections of parallel lines of the façade of a 
building, we can e. g. estimate the orientation of the building and therefore 
its 3D structure. The order of the objects and their occlusion relations also 
offer clues of 3D information. For instance, the relative distances between 
the three cars along the bank of the river and the image plane can be easily 
inferred from the occlusions of the cars. Relative sizes of objects provide 
similar clues for relative distances: the cars which look smaller on the image 
are perceived as being farther away from the viewer. This conclusion is 
made by using the assumption that the cars have similar physical sizes, or by 
identifying the types of these vehicles and their physical sizes. We should, 
however, consider that when we say we can “easily infer”, we are referring 
to human visual system. Often when we talk about sizes, occlusions, 
rectangular shapes, etc., we are actually utilizing a high level understanding 
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of the scene or high level knowledge of the displayed objects. It is extremely 
hard for a computer to use high-level knowledge and there has been only 
limited success in this direction [Lowe, Cambridge, Kanade] since the high-
level knowledge is difficult to be described in computer algorithms. 
Therefore, top-down paradigms seem to be mainly the privilege of human 
visual perception, even though computer vision researchers keep coming 
back to this interesting approach once a while.  

 
Instead, state-of-the-art computer vision techniques mainly employ 

bottom-up approaches for 3D reconstruction, which start from image pixels, 
and group them into features and objects, in both 2D and 3D. The major 
work in the past 50 years was based on the “structure from X” approaches, 
where X mainly represents stereo vision or visual motion. The idea is to 
recover 3D information of small local pieces (points, lines, patches), and 
then group and/or segment them into meaningful objects so that the 
computer may recognize the objects in images. Fully automated and 
complete 3D reconstruction is still in the process of being developed, but a 
large number of milestones have been reached by a number of interesting 
applications, such as image and video representations, coding and 
compression, interactive 3D video, object and event detection, image 
mosaics for entertainment, interface, virtual reality, surveillance and 
monitoring. 

2.3 Weak-perspective projection 

Even though angles and shapes are generally not preserved when 3D 
objects are projected on a 2D image, there have been efforts to generate 
simplified models which can be used under certain circumstances. A so-
called weak perspective projection model can be derived, which actually is 
like an orthogonal projection with parallel rays followed by a scaling 
operation. This is plausible when the relative depth range of an object is 
much smaller than the distance from the camera to the object. In other 
words, if the average depth Z  is much larger than the relative distance 
between any two points in the scene measured along the optical axis, the 
perspective projection equation can be simplified as  

Z
Yfy

Z
Xfx == ,  (2) 

where the depth Z of each point is replaced by an average depth Z . Since 
all points of an object have the same depth, its image is simply a scaled 
version of the real object. As we have mentioned, equivalently, the weak 
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perspective projection can be viewed as an orthogonal projection with 
parallel rays from the object to the image plane, followed by an isotropic 
scaling. Weak perspective projection preserves both angles and shapes. We 
will come back to this model when we discuss camera parameters in section 
XY. 

 
Figure 7. Weak perspective projection 

3. CAMERA PARAMETERS 

In this section, we will have a look at the camera parameters, including 
the intrinsic parameters, which define the mapping from 3D to 2D, and the 
extrinsic parameters, which define the viewpoint and viewing direction of 
the camera. 

 
Figure 8. Intrinsic and extrinsic camera parameters 

We will use the transformations of a 3D point in the scene to a 2D point 
in the image to describe the camera model. This transformation can be 
divided into three consecutive steps: the translation of 3D representations 
from a world coordinate system to a camera coordinate system, from its 3D 
representation in the camera coordinate system to its projection in a 2D 
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image of the camera, and finally from the 2D image inside the camera to a 
digital image coordinate system that we call “digital frame coordinate 
system”. Overall, there are four points represented in four related coordinate 
systems (Figure 8): 

(1) Point pim(xim, yim) in the digital frame coordinate system, measured in 
pixels; 

(2) Point p(x,y) in the physical image coordinate system, measured in 
mm; 

(3) Point P(X,Y,Z) in the camera coordinate system,  measured in mm; 
(4) Point Pw(Xw,Yw,Zw)in the world coordinate system, measured in mm. 
 

Note that the points P and Pw are actually two representations of the same 3D 
point, in two different coordinate systems. The camera parameters can be 
divided into two groups: 

(1) Intrinsic parameters, which link the digital frame coordinates of a 
physical image point to its corresponding camera coordinates. 

(2) Extrinsic parameters, which define the location and orientation of the 
camera coordinate system with respect to the world coordinate 
system. 

 
Some of the intrinsic parameters can be found in the specification of the 

camera and the digital image capture system (or frame grabber when the 
camera output is analog video signals), although they might be incomplete or 
inaccurate. Extrinsic parameters describe the pose (position and orientation) 
of the camera relative to the scene.  These parameters need to be estimated 
with respect to a world coordinate system, especially when the camera is in 
motion. If we are only concerned with the 3D measurements obtained from 
individual camera poses, then the two coordinate systems (the camera and 
the world coordinate systems) can be the same. In this case the 3D 
measurements are only camera-centered, or viewer-centered. However, if 
you want to associate 3D measurements from two or more camera poses, 
you need to define a common “world coordinate system”, which may be 
defined in relation to an object in the scene, or simply a reference camera 
pose. In this way, the 3D reconstruction is sometimes referred to as “object-
centered”. 

For accurate 3D reconstruction or 3D measurements, we first need to find 
all these parameters by a procedure called camera calibration (Chapter 4). In 
this chapter, we will focus on understanding the camera model and its 
parameters in detail. 
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3.1 Intrinsic parameters: mapping from 3D to 2D 

 

Figure 9. Intrinsic camera parameters 

 
First, using the perspective projection equation – Eq. (1), a 3D point P 

(X,Y,Z) is projected into a 2D physical image point p(x,y), represented in 
the physical image coordinate system. For easy reading, the equation is listed 
here again: 

Z
Yfy

Z
Xfx == ,  

where f is the focal length of the camera. Note that the origin of the physical 
image coordinate system is the point where the optical axis (Z axis) passes 
through the physical image plane which is parallel to the XOY plane of the 
camera coordinate system. We also have x in parallel to X (x//X), and y//Y. 
The image on the physical image plane is measured in metric units, e.g., 
millimeters (mm), whereas, for a digital frame (to differentiate it from the 
image on the physical image plane, we call it a digital frame, named after 
video frames), we will follow the conventional representation: The origin 
(0,0) is conventionally placed at the top-left corner of the image, and the xim 
axis runs from left to right, and the yim axis runs from top to bottom. A frame 
consists of pixels (picture elements); each pixel has a location characterized 
by its column and row numbers, (xim, yim), and each of the pixels 
corresponds to a rectangular area of the same size in the physical image 
plane, characterized by the dimensions of the pixel in x and y directions, as 
(sx, sy), measured in millimeters. To transform a point from the physical 
image coordinate system to the digital frame coordinate system, we need to 
define the image center, which is the point corresponding to the origin of the 
physical image coordinate system. Given these definitions, the relation 
between the physical image point and the digital frame point can be written 
as  
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yyim
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In summary, the intrinsic parameters of a perspective camera mainly 
include the following: 

- (ox ,oy) : the image center (in pixels); 
- (sx ,sy) : the effective size of the pixel (in mm); 
- f:  the focal length of the camera (in mm). 

The mapping from the 3D point P (X,Y,Z) to the frame point (xim,yim) are 
represented by Eq. (1) and Eq. (3). 
 

In some real applications, such as accurate 3D measurements, and 
particularly when using distorted lenses (for example, wide angle lenses), 
distortions may need to be removed before subsequent processing. Usually, 
the lens distortion can be modeled as a simple radial distortion (Figure 10): 
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 (4) 

where (xd ,yd) is the distorted point in the real image plane, (x,y) is the 
corrected image point, r2 = xd

2+yd
2, and k1 ,k2 are the distortion coefficients. 

Typically, a model with k2 =0 is still accurate for a CCD camera of size 
500x500, with about 5 pixels distortion at the outer boundary. Adding the 
lens distortions to the transformations will significantly complicate the 
equations. Usually distortion can be removed before we use images for 3D 
measurements. For the purpose of focusing on the principle of 3D geometry 
and calibration, let’s ignore the radial distortion for the moment. 

 
Figure 10. Lens distortions 

3.2 Extrinsic parameters: viewpoint and viewing 
direction 

The extrinsic parameters of the camera define the “pose” (position and 
direction) of the camera, which include: 
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(1) A 3D translation vector T, describing the relative positions of the 
origins of the world and camera coordinate systems to each other. 

(2) A 3x3 rotation matrix R, an orthogonal matrix that brings the 
corresponding axes of the two systems into alignment. 

 
The transformation of the 3D point from its representation in the world 

coordinate system to that in the camera coordinate system can be written as: 

TPRP w +=   (5) 

Understanding this equation, including its rotation matrix and translation 
vector, is key to understanding the 3D transformations. We will discuss this 
further in the next few paragraphs. Since we are using linear algebra for the 
ease of representation and manipulation, we will first review the basic 
concepts and operations in linear algebra, namely vectors and matrices, and 
then explain the physical meaning of the 3D rotation matrix and the 
translational vector. 

3.2.1 Vectors and operations 

A point is represented as a 2D/ 3D (column) vector. For example: 

- Image point: 2D vector Tyx
y
x

),(=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=p  

- Scene point: 3D vector TZYX ),,(=P  

- Translation: 3D vector T
zyx TTT ),,(=T  

Note that in order to save space in writing these vectors, we sometimes use 
the transpose of the corresponding row vector for a column vector. We only 
show an example of the image point above. The transpose of the row vector, 
(x,y)T, equals to the original column vector.  

The basic vector operations include addition, dot product and cross product. 

Addition and subtraction. An example is the translation of a 3D point. If 
there is no rotation between the world and the camera coordinate systems, 
the transformation of a 3D point from the world to the camera is a pure 
translation of the vector Pw by the amount of T: 
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T
zwywxw TZTYTX ),,( +++=+= TPP w  (6) 

This is possible since the point Pw as a vector is the same in both coordinate 
systems since the three pairs of coordinate axes are all aligned. Alternatively, 
we could say that the camera coordinate system is generated by moving 
(translating) the world coordinate system backward by the amount of T. The 
three components of the new vector P are simply the additions of the 
corresponding components of the vectors Pw and T.  On the other hand, the 
transformation from the camera coordinates to the world coordinates can be 
written as the subtraction of vectors: 

TPPw −=  (6a) 

From Eq. (6), it can be seen that the translational vector T is the 
representation of the origin of the world coordinate system in the camera 
coordinate system. This is also true when there is a rotation between the two 
systems. To illustrate this, we can simply plug in the values of the origin Pw 
= (0,0,0)T in Eq. (5), and we will obtain T = P, which means  that the 
translation vector T is the vector representation of the world origin in the 
camera coordinate system. 

Dot product. The dot production of two vectors a = (a1, a2, a3) and b = (b1, 
b2, b3) is a scalar value c: 

θcos332211 baba =++=•= bababac  (7) 

where θ is the angle between the two vectors, and |a| and |b| are the 
magnitudes of the two vectors. If a is a unit vector, i.e., |a| = 1, then c is the 
magnitude of the projection of the vector b on to the vector a. This 
automatically implies that the dot product of two orthogonal vectors is equal 
to zero. 

Cross product. The cross product of two vectors a and b generates a new 
vector c that is orthogonal to both a and b: 

Tbabababababa ),,( 122131132332 −−−=×= bac  (8) 

To illustrate this, let us assume a = (1,0,0)T, b = (0,1,0)T, then c = (0,0,1)T. 
They are actually the three unit vectors along the three axes of a 3D 
coordinate system. We will come back to these operations in the following 
sections, and chapters for their practical uses. 
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3.2.2 Rotation matrix and its physical meaning 

We will discuss matrices and their operations mainly through the analysis 
of the rotation matrix and the 3D transformation in Eq. (5). The rotation 
matrix R is a 3x3 matrix that can be written as: 
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where T
iR  is the ith row  (i=1,2,3) of the rotation matrix and can also be 

regarded as a  row vector. In other words, Ri is a column vector, the ith 
column of the transpose of the rotation matrix RT. The following paragraphs 
summarize the most important properties of the rotation matrix. 

The rotation matrix is an orthogonal matrix: 

IRRRR == TT
 (10) 

where RT is the transpose of R, i.e., RT =( R 1, R 2, R3), and I is an identity 
matrix, a 3x3 square matrix with 1’s on the main diagonal and 0’s elsewhere. 
If you are not familiar with the orthogonality of a rotation matrix, you may 
work out the following example to see how it satisfies Eq. (10). 

R = rij( )3×3 =
1 0 0
0 cosr sin r
0 −sin r cosr

#

$

%
%
%

&

'

(
(
(

 

Equation (10) has the following implications. 

(1) The rotation matrix as an orthogonal matrix - a square matrix with real 
entries whose columns (and rows) are orthogonal unit vectors, i.e. 

⎩
⎨
⎧

≠

=
==•

ji
ji

jj
T
ii ,0

,1
RRRR  (11) 
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Note that we can write the dot product of two column vectors as the 
multiplication of two matrices (the first one is a row vector, and the second 
one is a column vector), and the result is a scalar value (either 1 or 0). 

(2) Any row of the rotation matrix can be calculated from the other two 
rows. For example,  

23 1 RRR ×=  (12) 

This is true since all three column vectors are unit vectors, and they are 
mutually orthogonal to each other. Note that here we use the cross product 
defined in Eq. (8). 

 (3) The three column vectors iR  (i=1, 2, 3) of the rotation matrix are 
actually three unit vectors in the directions of the three camera axes (X, Y 
and Z), represented in the world coordinate system(see Figure 11, the dashed 
axes). Therefore, Eq. (5) literally means that a point (Pw) in the world 
coordinate system is first projected on three new axes (of the camera 
coordinate system) and then translated by the amount of T to a new origin O. 
The individual steps of this transformation can be retraced in the following 
expansion of Eq. (5): 
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For example, the dot product of the two vectors, ww PRPR T
11 =•

represents the length of projection (or scalar projection) of the vector Pw 
onto the unit vector R1. Note that it is only valid to perform the dot product, 
if both vectors are represented in the same coordinate system. The result is a 
scalar value. In the case of pure rotation, that is, when all translatory 
components are zeros (i.e., T = 0), this dot product is equal to the X 
coordinate of the point PW represented in the camera coordinate system. In 
other words, in the case of a pure rotational transformation, the 
multiplication of the rotation matrix to a point in the world coordinate 
system obtains its representation in the camera coordinate system by 
performing three scalar projections. To see why this is true, let’s assume the 
rotation matrix was an identity matrix I, i.e., there was no rotation between 
the two coordinate systems. In this case, R1= (1, 0, 0)T, therefore X = 

wX=• wPR1 . With both rotation and translation, the transformation 
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process consists of three projections and three shifts: the X, Y, and Z 
components are projected onto the three camera axes and then shifted in the 
directions of the three axes, respectively, as shown in Eq. (6). 

 
(4) Because the rotation matrix is orthogonal, its inverse is its transpose, i.e. 

TRR =−1
 (14) 

This makes the inverse transformation of Eq. (5) much easier. Given the 
point P in the camera coordinate system, its coordinates in the world 
coordinate system can be calculated as 

)()(1 TRPRTPRPw
TT −+=−= −

 (15) 

Note that the rotation matrix from the camera to the world coordinate 
systems is simply the transpose of the original rotation matrix, and the 
translation vector is (-RTT). Similar to the physical meanings of Eq. (5), the 
three rows of RT, i.e., the three columns (vectors) of R are the 
representations of the three coordinate axes of the world coordinate system 
in the camera coordinate system. This indicates that we can estimate R from 
three lines mutually orthogonal (i.e. perpendicular) to each other in space, if 
we use a world coordinate system that aligns with two of the three 
orthogonal lines. Just as the translational vector T represents the origin of the 
world coordinate system in the camera coordinate system, the translation 
vector -RTT is the representation of the origin of the camera coordinate 
system in the world coordinate system. 

 
(5) The 3D rotation has only 3 degrees of freedom (DOF). You may wonder 
why a rotation matrix with 9 elements has only 3 DOF. This will be easy to 
explain given the observations above. First of all, the third row of the 
rotation matrix can be derived from the first two rows using Eq. (12), 
because we demand orthogonality between the axes. This reduces the 
number of independent parameters to 6 =  3+3. Since both the first and 
second row vectors are unit vectors, any one component can be calculated 
from the other two in each vector, using Eq. (11). Hence the number of 
independent parameters is further reduced to 4. Finally, since the first two 
row vectors are orthogonal, we may add an additional constraint to reduce 
the number of independent parameters by 1 (i.e. any of the four parameters 
can be represented by the rest of the three, again, using Eq. (11)). In the end 
we only have three (3) independent parameters in the 3x3 rotation matrix, 
which leads to the conclusion that the 3D rotation has only 3 DOF! 
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3.2.3 Generating R from three rotation angles 

In the following section, we will see that the rotation matrix has only 3 DOF 
from a different perspective. We will try to represent the rotation matrix 
using three rotation angles. We first try to construct a rotation matrix from 
three independent rotation angles, and then we will show how to calculate 
the three angles from the rotation matrix. While the latter is rather simple, 
constructing a rotation matrix from three independent rotation angles is not 
trivial at all.  

Let’s first move the origin of the camera coordinate system to that of the 
world coordinate system (Fig. 11). Then the ultimate goal is to bring three 
axes of the world coordinate system to the corresponding axes of the camera 
coordinate system. The result will give us the transformation of the 
coordinates of a point from the world coordinate system to the camera 
coordinate system.  

 
Figure 11. Constructing rotation matrix from three consecutive rotation angles 

It is vital to design the rotation matrix in such a way that every column of R 
represents the rotation around only one of the axes of the (changing) world 
coordinate system. Let’s assume we will rotate in the order of γ,β,α around 
Zw, Yw and Xw, consecutively. As a first step, we try to bring one of the 
axes, e.g. Xw, to its corresponding axis (in this example, X) in the camera 
coordinate system. This can, however, not necessarily be achieved by a 
single rotation around the Zw axis since X is usually not in the plane 
XwOYw. We, therefore, need to take two steps to achieve this goal . First, 
we rotate the world coordinate system around Zw axis until Yw is 
perpendicular to X. Due to the orthogonal coordinate systems of XwYwZw 
and XYZ, X (OX) needs to be in the plane XwOZw (and consequently Yw 
in the plane YOZ since X can only be perpendicular to a line in the plane 
YOZ that passes through O) . As a second step, we bring Xw to X by 
rotating the world coordinate system around the new Yw axis since X is in 
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the plane XwOZw. After this rotation, both Yw and Zw will be in the plane 
XOZ so that a rotation around the new Xw (i.e. X) will bring Yw to Y and 
Zw to Z simultaneously. 

Now we are ready to write the equations for the three consecutive rotations 
around the three axes to achieve our goal. 

(1) Rotation γ around the Zw Axis 
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(2) Rotation β around the Yw Axis 
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(3) Rotation α around the Xw(X) Axis 
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The result of the three consecutive rotations around the three coordinate axes 
can be written as: 

Zw

Xw

Yw
O

|

Zw

Xw

Yw

O
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Xw

Yw

O

|
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γβα RRRR =  (16) 

Here are a few additional notes: 

(1) In practice we will have to be careful about the directions of the 
rotations (that is the sign of the sine term) to make sure that we have 
the correct transformation. 

(2) The order of the three matrices in the multiplications matters; 
following the procedure just described above, we have one possible 
order: γ,β,α. For the same R, we could have 6 different sets of α,β,γ. 

(3) R is a non-linear function of α,β,γ:  
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It’s easy to compute the respective potation angles from R using Eq. (17). 

4. CAMERA MODELS REVISITED 

As a summary of the previous discussions, we will wrap everything up in 
one simple linear version for the projection transformation. Then we will 
provide four typical models using the linear algebra representations: the 
perspective camera model, weak-perspective camera model, affine camera 
model, and camera model for planes.  

 

4.1 Linear version of the projection transformation  

The transformation from World to Camera (Linear equations) 
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Camera: P = (X,Y,Z)T 
World: Pw = (Xw,Yw,Zw)T 
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Transformation: R, T  
 

The Transformation from camera to physical image (non-linear equations) 

)  ,(),(
Z
Yf

Z
Xfyx =  

Camera: P = (X,Y,Z)T 
Image: p = (x,y)T 

 
The Transformation from physical image to digital frame (linear if 
neglecting radial distortion) 

yyim

xxim

soyy
soxx
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−−=
 

digital frame (xim, yim)T 
 
Integrating the transformations given above, we obtain the transformation 
from the world coordinate system to the digital frame coordinate system, i.e., 
(Xw,Yw,Zw)T -> (xim, yim)T 
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where we define the effective focal lengths in the x and y directions as  
 

fx = f/sx, fy=f/sy (19) 

The two equations in (18) are non-linear. In order to turn them into a linear 
equation system, we will employ some notations in the so-called projective 
space. We will add a fourth coordinate to the world point Pw, as 

Pw = (Xw,Yw,Zw, 1)T 

Meanwhile, we define (x1,x2,x3)T such that 
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By introducing the projective representation (x1,x2,x3)T of the physical 
image point, we finally have a linear representation of the perspective 
projection transformation as 
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where Mext is a 3x4 matrix that only includes the extrinsic parameters 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

z
T

y
T

x
T

z

y

x

ext

T
T
T

T
T
T

rrr
rrr
rrr

3

2

1

333231

232221

131211

   
R
R
R
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and Mint is a 3x3 matrix that includes only the intrinsic parameters, i.e., 
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The final Projective Matrix is simply the matrix product of the intrinsic and 
extrinsic matrices:  

M= MintMext 

M represents the linear transformation from a projective space (Xw,Yw,Zw, 
1)T to a projective plane(x1, x2, x3)T. Note that M is defined up to a scale 
factor, and it only has 11 independent entries. 
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4.2 Some typical camera models  

(1). Perspective Camera Model 
In order to understand what the elements of the projection transformation 
matrix are, we will make some assumptions to simplify the representation. 
Let us assume that the image center is known, and its coordinates are, 
without loss of generality, Ox = Oy = 0. The pixels are square, i.e., Sx = Sy 
= 1. After these simplifications, the number of independent entries is reduced 
to 7 from 11. Hence we have 
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This equation shows how the 7 intrinsic and extrinsic parameters are packed 
into a single matrix. 
 

 

Figure 12. Weak perspective projection 

 
 
(2). Weak-Perspective Camera Model  
If we assume that the average distance between the viewpoint and the 
observed object,Z , is much larger than the depth range of the object in the 
camera coordinate system (Figure 12), we can approximate every depth Z to 
be the average depth. The average depth can then be calculated as the depth 
of the centroid vector wP  of the object represented in the world coordinate 
system, as, 

zw T+== PRZZ T
3  
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Therefore, the transformation matrix of the weak perspective projection can 
be represented as 
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which has only 9 non-zero entries (8 of which are independent) instead of 
12. Moreover, we have made an approximation that all points of the object 
have the same depth ‘Z’ because the relative range of the object is much 
small than the distance from the camera to the object. This implies that, after 
the transformation from the world coordinate system to the camera 
coordinate system, the image is just a scaled version of the real object. 
Equivalently, the projection can be viewed as an orthogonal projection with 
parallel rays from the object (represented in the camera coordinate system) 
to the physical image plane, followed by an isotropic scaling. Note that the 
object in the world coordinate system is still represented with 3D 
coordinates. The difference lies in the fact that all points will be constrained 
to a plane that is perpendicular to the optical axis of the camera. 
 
(3). Affine Camera Model 
The affine camera model is a mathematical generalization of the weak-
perspective transformation. Even though it does not correspond to any 
physical cameras, it has a simple equation and appealing geometry. While it 
does not preserve angles, it does preserve parallelism, and has only 8 
independent entries: 
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4.3 Camera models for a plane 

Planes are very common in the man-made world. By using a plane equation 
we add an additional constraint for all points on the plane:  
 

dZnYnXn wzwywx =++  

which can be written in the matrix form as 
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d=w
TPn  (27) 

where n is the parameters (normal and distance) of the plane, and Pw is a 3D 
point on the plane. Usually, Zw can be written as a function of Xw and Yw. If 
we, for example, consider the special case of a mobile robot moves on the 
floor, the plane equation is as simple as  
 

Zw=0  
 
For every point on the ground plane, this yields Pw = (Xw, Yw, 0, 1)T. The 
3D point (Xw, Yw, Zw) is imaged as a 2D point (Xw, Yw), and we have the 
following model for a plane projection: 
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Note that the transformation matrix is only has a size of 3x3 and has only 8 
independent parameters. Both characteristics are preserved in the general 
case. If nz<>0, without the loss of generality, we can assume nz = 1, therefore 
the plane equation can be written as 

wywxw YnXndZ −−=  

We can easily derive the following 3x3 transformation matrix for the more 
general case by plugging the above equation into Eq. (21), with the M matrix 
in Eq. (24): 
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The key is to distribute the column of the M matrix corresponding to Zw to 
the other three columns. Here is an interesting observation: if we identify 
four known points on a plane (in the world coordinate system) that can also 
be viewed and extracted in an image, we can use Equation (28) or (29) to 
estimate the 3x3 transformation matrix. After this calibration, we can 
calculate the 3D coordinates of any point on the plane in the world 
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coordinate system. In that sense, we can obtain depths of points of a 3D 
plane from a single image. 

5. CONCLUDING REMARKS 

5.1 Summary 

In this chapter, we have discussed the geometric projection of a camera. 
We started with the pinhole camera model, derived the perspective 
projection transformation and finally the weak-perspective projection.  

 
We further discussed the camera parameters including the intrinsic 

parameters (f, ox,oy, sx,sy,k1) and extrinsic parameters (R, T). We derived the 
linear equations of the camera models (without distortion) and then the 3x4 
matrix for the general projection transformation equations (11 parameters). 
We have also introduced the following four models: 

 
Perspective Camera Model: 11 parameters  
Weak-Perspective Camera Model: 8 parameters  
Affine Camera Model: generalization of weak-perspective: 8 parameters 
Projective transformation of planes: 8 parameters 
 

5.2 Applications and related issues 

The camera models, in particular the full perspective transformation 
model, will be used in rendering, reconstruction and camera calibration.  The 
following is a list of related issues: 

 
(1) Graphics /Rendering 
Goal: From 3D world to 2D image 
Tasks:  
Changing viewpoints and directions 
Changing focal length 
Fast rendering algorithms 
 
(2) Vision / Reconstruction 
Goal: From 2D image to 3D model 
Tasks:  
Inverse problem, much harder / unsolved 
Robust algorithms for matching and parameter estimation 
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Need to estimate camera parameters first 
 
(3) Calibration 
Goal: Find intrinsic & extrinsic parameters given image-world point pairs 
Tasks: 
11 independent entries  
<-> 10 parameters: fx, fy, ox, oy, α,β,γ, Tx,Ty,Tz 
Probably a partially solved problem ? 
 
 
 

6. QUESTIONS AND PROJECTS 

6.1 Questions 

[Question. 1] Please derive the equations to calculate the three rotation 
angles from the rotation matrix R in Eq. (17). 

[Question. 2]  Prove that the vector from the viewpoint of a pinhole camera 
to the vanishing point (in the physical image plane) of a set of 3D parallel 
lines is parallel to the parallel lines. 

Hint: Due to perspective, all parallel lines in 3D space appear to meet at 
a point on the image - the vanishing point, which is the common intersection 
of all the image lines. Figure 13 shows the vanishing point VP1 in the image 
of a set of parallel lines on the calibration cube in space.  

 

Figure 13. Vanishing point 
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You can either use geometric reasoning or algebraic calculation.  
 
If you choose to use geometric reasoning, you can use the fact that the 
projection of a 3D line in space is the intersection of its “interpretation 
plane” with the physical image plane.  Here the interpretation plane (IP) is a 
plane including both the 3D line and the center of projection (viewpoint) of 
the camera.  Also, the interpretation planes of two parallel lines intersect in a 
line passing through the viewpoint, and the intersection line is parallel to the 
parallel lines. 

If you decide to use algebraic calculation, you may use the parametric 
representation of a 3D line: P = P0 +tV, where P= (X,Y,Z)T is any point on 
the line (here T denote for transpose),   P0 = (X0,Y0,Z0)T is a given fixed 
point on the line, vector V = (a,b,c)T represents the direction of the line, and t 
is the scalar parameter that controls the distance (with sign) between P and 
P0. 
 
[Question. 3]. Show that relation between any image point (xim, yim)T of a 
plane (in the form of (x1,x2,x3)T in projective space) and its corresponding 
point (Xw, Yw, Zw)T on the plane in 3D space can be represented by a 3x3 
matrix. You should start from the general form of the camera model 
(x1,x2,x3)T = MintMext (Xw, Yw, Zw, 1)T, where the image center (ox, oy), the 
focal length f, the scaling factors( sx and sy), the rotation matrix R and the 
translation vector T are all unknown. Note that in Eq. (29) we still assume 
nz≠ 0 which might not be true. You should use the general form of the 
projective matrix, and the general form of a plane nxXw + nyYw + nzZw  = d. 
Please derive the equation(s) that work for all the cases. 

 

6.2 Projects 

[Project 1]. Using the results of [Question 3], design a program that can map 
a planar surface from one image to another. You may first derive a relation 
between the corresponding 2D image points in the two images, and analyze 
how many pairs of correspondences you need to build up the relation 
between the two views of the plane. Then design an efficient algorithm that 
can map all points of one image into the other. Consider how to handle 
overlapping pixels and non-overlapping pixels. 
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