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1. INTRODUCTION 

The fundamental problem in stereo vision is to infer 3D structure of a 
scene from two or more images taken from different viewpoints. A pair of 
stereo images is usually captured by a pair of cameras, thus constructing a 
stereo pair.  

 

Figure 1. Stereo vision: correspondence and reconstruction problems.  

CMU CIL Stereo Dataset : Castle sequence 

http://www-2.cs.cmu.edu/afs/cs/project/cil/ftp/html/cil-ster.html 

There are two primary sub-problems: the correspondence problem and 
the reconstruction problem (Figure 1). The correspondence problem (or 
stereo matching problem) is to find the corresponding points (or 
correspondences) in a pair of images of each 3D point in the field of view of 
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the stereo cameras and then generate a disparity map. There are two 
important issues in finding correspondences. First, since the corresponding 
points of a 3D point in two images are not identical due to the changes in 
views and illumination, we shall measure if they are “similar” instead of the 
“same”. Second, we will often encounter the occlusion problem: some parts 
of the scene are visible only through one of the cameras (i.e., eyes). 

The reconstruction problem is to find the 3D coordinates of a point given 
its stereo correspondences. In order to do this, we will need to know some 
things about theparameters of the two cameras. The reconstruction problem 
often includes a stereo calibration problem, i.e., to find the camera 
parameters between the two cameras.  

The topics that are going to be covered in this chapter include: 
• Stereo vision basics – a simple stereo vision system 
• Stereo geometry – epipolar geometry  
• Correspondence problem – two classes of approaches 
• 3D reconstruction problem – three approaches 

2. A SIMPLE STEREO VISION SYSTEM  

In this section, we will start with a biomimetic stereo vision system, i.e., 
the fixated stereo system. Then we will discuss a simple stereo vision system 
with parallel optical axes. Using this simple stereo vision system, we will 
derive an important disparity equation, and then analyze the depth resolution 
of the stereo system. Then we will come back to the fixated stereo system to 
discuss similar issues as well as its unique properties, such as zero-disparity 
horopter. 

 
Figure 2. Binocular (or stereo) vision system
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The fixated binocular (or stereo) geometry is shown in Figure 2.  The 

vergence angle is the angle between the two image planes, which for 
simplicity we assume are aligned in such a way that the y-axes are parallel.  
Given either image of the pair, all we can say is that the object point imaged 
at pr or pl is along the respective rays through the lens center.  If in addition 
we know that pr and pl are the image projections of the same object point, 
then the depth of this point can be computed using triangulation (we will 
return to this with more details in the section on the simple stereo system 
with parallel axes). 

In addition to the camera geometry, a key additional piece of information 
in stereo vision is the knowledge that pr and pl are projections of the same 
object point.  The correspondence problem in stereo vision is to determine 
the projection of a point (pr)in an image  given a point (pl)in the other image. 
Many solutions to the correspondence problem have been proposed in 
literature, but none of them have been proven to be entirely satisfactory for 
general vision (although excellent results can be achieved in many cases). 

 

2.1 Disparity Equation 

Now we will derive the disparity equation when the vergence angle is 
180 degrees, or the two optical axes are parallel to each other. Figure 3 
shows the geometry, where only the XZ plane is drawn. Let us assume that 
the two cameras only have an offset in the X direction, where the baseline 
length, the distance between the two cameras, is B. One of the camera 
coordinate systems, say the left camera coordinate system, will be used as 
the reference coordinate system to measure the 3D coordinates (X,Y, Z) of a 
point in space.We also assume that the focal lengths of both cameras are f. 
Then for a corresponding point pair pr (xr,yr,f) and pl(xl,yl, f), both measuring 
in their own camera coordinate systems, we have yl = yr. If we define the 
disparity in the x direction as  

lr xxd −=  (1) 

we can easily show that the depth (i.e. the Z coordinate of the point 
P(X,Y,Z)) is 

d
BfDZ ==  (2) 
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This is the important disparity equation. Note that this equation always holds 
no matter where the point P is located in front of the cameras. 

 

Figure 3. Stereo vision geometry (redraw the figure so P will not be right in the middle) 

2.2 Depth Accuracy 

It is also important to understand how accurate the depth has been 
calculated, or the depth resolution, given the same image localization error 
(i.e. the correspondence error). In Figure 4, the image localization error 
includes the angles of projection cones that define the localization accuracy 
of the corresponding points in both the left and right images, i.e., there are 
localization errors in both xl and xr. For simplicity, we can use an overall 
error in the disparity as the correspondence error, ∂d. Assuming that both the 
focal length f and the baseline length B are known and without errors, then 
the depth error can be derived by finding the partial derivative of Z with 
respect to the disparity d. The absolute depth error can be calculated as  

d
fB
Z

∂=∂
2

Z   (3) 

Note that in equation (3) we only keep the magnitude of the error in Z by 
removing the negative sign. Readers are encouraged to derive the above 
equation, noting it will take a few steps to arrive the form of Eq. (3): one of 
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the important steps is to replace the variable d in the equation so that it will 
not show up in the final equation. The relative error can be written as 

d
fB
Z
∂=

∂
Z
Z   (4) 

 
Figure 4. Depth accuracy 

From equation (3) we could have the following three observations. 
 
(1) Depth Accuracy (Depth Resolution) vs. Baseline: Depth error is 

inversely proportional to the baseline length. One of the advantages of a 
longer baseline is that we could obtain better depth estimation. However, the 
disadvantages of a longer baseline are that we have a smaller common FOV 
between the two cameras, and the correspondence problem is harder due to 
occlusions. 

 
(2). Depth Accuracy (Depth Resolution) vs. Focal Length: Depth error is 

inversely proportional to the focal length. Longer focal length will provide 
better depth resolution, but at the same time the cameras will have smaller 
FOVs. 

 
(3). Depth Accuracy (Depth Resolution) vs. Depth: Depth error is 

proportional to the square of the depth, indicating that the depth error is a 
quadrate function of the depth itself. This means that the nearer the point is, 
the more accurate the depth estimation.  
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The observation in (3) is also illustrated in Figure 4. We can also use an 
example to show the decrease of depth accuracy when the distance (depth) 
of a 3D point increases. Let’s assume that the focal length of a camera is f = 
16 x 512/8 pixels, i.e. 16 mm focal length with an 8mm wide sensor target 
and a 512 wide image size. The baseline length is B = 0.5 m. Then the 
following table shows the relation between depth and depth accuracy, 
assuming the pixel localization error is 1 pixel. With the normal focal length 
(16 mm), a decent image resolution (512 pixels), and a large baseline length 
(0.5 meters), it can be seen that the depth error is very large at a distance of 
32 meters, and it is too large to be useful at 128 meters. With a comparable 
baseline length to human eyes (0.1 meters), the depth errors will be 5 times 
the values in the table. Therefore, such a stereo vision is basically useless 
when the depth Z is more than 32 meters. 

Table 1. Depth error versus depth  

(f = 16 x 512/8 pixels, B = 0.5 m, ∂(dx) = 1 pixel, then ∂Z = Z2 /29from Eq. 3)  

Z (m) 2 4 8 16 32 64 128 256 

∂Z(m) 1/128 1/32 1/8 ½ 2 8 32 128 

2.3 Stereo with Converging Cameras 

We have seen that the stereo vision system with parallel optical axes has 
a dilemma (Figure 5):  a shorter baseline length can provide a larger 
common FOV between the two cameras, but will produce a larger depth 
error. On the other hand, a longer baseline length will yield a smaller depth 
error, but unfortunately it will result in a smaller common FOV and 
increased occlusion problems.  

 

Figure 5. Stereo with converging axes 
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To break this dilemma, one solution is to use a stereo vision system with 
converging cameras (Figure 5 right), where two optical axes intersect at a 
fixation point in space, where the two image planes form a vergence angle 
shown in Figure 1. In this setting, the common FOV increases with the same 
large baseline as in the setup in the middle of the figure. For the convenience 
of discussion, we define converging angle as θ, as shown in Figure 5. 

 

 
Figure 6. Stereo horopter 

 
We could also derive some interesting disparity properties for the stereo 

vision system with converging axes as we did for the stereovision system 
with parallel optical axes. Here the disparity is defined in angles instead of 
distances, as 

lrd ααα −=  (5) 

 
(1). A zero disparity is created at the fixation point, and in fact a zero-

disparity surface in space, which is called zero-disparity horopter, can be 
defined when αr = αl. 

 
(2) The magnitudes of disparity values increase with the distances of 

object points from the fixation point (and the zero-disparity horopter). 
Clearly we have dα > 0, when a point is outside of the horopter and dα < 0 
when it is inside the horopter. 
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(3). Depth Accuracy vs. Depth: The fixation stereo does not change the 
fact that the depth resolution is still proportional to the square of depth 
(Question 2). 

3. EPIPOLAR GEOMETRY 

In this section, we will formally discuss the epipolar geometry of a 
general stereo vision system. We will first define epipolar lines – to 
determine where to search correspondences, from the formation of the 
epipolar plane and epipoles. Then we will introduce two important matrices 
in stereo vision: the essential matrix E and the fundamental matrix F. We 
will give an Eight-Point Algorithm to find the fundamental matrix, and 
discuss how to compute the epipoles. Finally we will discuss stereo 
rectification to ease the correspondence problem. 

 
Figure 7. Parameters of stereo system 

 

3.1 Parameters of a Stereo Vision System 

A stereo vision system can also be specified by a set of intrinsic 
parameters  and a set of extrinsic parameters. The intrinsic parameters 
characterize the transformation from camera to pixel coordinate systems of 
each camera, including the focal lengths, image centers, aspect ratios of the 
two cameras. In the following, we will only use the two focal lengths, fl and 
fr, as parameters, assuming the image coordinates are all measured in their 
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image coordinate systems. The extrinsic parameters describe the relative 
position and orientation of the two cameras, and can be represented by the 
rotation matrix R and translation vector T. 

 
For a 3D point P, its representations in the left and right camera 

coordinate systems are noted as Pl =(Xl, Yl, Zl) and Pr =(Xr, Yr, Zr). They are 
the vectors of the same 3-D point P, represented in the left and right camera 
coordinate systems respectively.  We have 

T)R(PP lr −=  (6) 

The extrinsic parameters have obvious meanings. The translation vector  T is 
simply a vector from the centers of the left camera to the right camera, (Or-
Ol), measured in the left camera coordinate system. The rotation matrix R 
represents the relative rotational relation between the two cameras. 

Define pl =(xl, yl, zl) and pr =(xr, yr, zr) as projections of P on the left and 
right image planes respectively. For all image points,  if we note zl=fl, zr=fr , 
then we can represent the perspective projection equations of the two 
cameras in matrix forms: 

r
r

r
r Z

f Pp =  , lPp
l

l

l Z
f

=  (7) 

Usually we define the left camera as the reference camera. The 
translational vector T is represented in the left camera system, the rotation 
matrix is defined as a transformation from the left to the right cameras. 
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Figure 8. Epipolar geometry 

 
The main purpose of establishing the epipolar geometry is to define 

where to search for correspondences. For a 3D point P, its epipolar plane is 
defined as a plane going through the point P and the centers of projections 
(COPs) of the two cameras, Ol and Or. The two conjugated epipolar lines are 
the lines where the epipolar plane intersects the two image planes, whereas 
each of the two epipoles (el and er) is the image projection of the COP of one 
camera onto the other.  

 
The epipolar constraint can be stated as: corresponding points must lie on 

conjugated epipolar lines. 
 
Note that given two cameras, Ol and Or , for any image point pl in the 

reference (left) image, an epipolar plane can be defined by these three points: 
Ol , Or  and pl. Then, an epipolar line can be defined as the intersection of the 
epipolar plane with the right image plane, as the dashed pink line in Figure 
8, and the corresponding point pr must lie on the epipolar line. In other 
words, if the stereo system is calibrated, i.e., we know all the intrinsic and 
extrinsic parameters, the equation of the epipolar line in the right image of 
any point in the left image can be written out, by using plane intersection. 

However, we are more interested in understanding how many parameters 
we really need to know in order to define an epipolar line. So the goal is to 
build up a relation between the two corresponding points and then analyze 
what we need to know to define their conjugated epipolar lines. 
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3.2 Essential Matrix 

Note that the vectors T = (Or-Ol), Pl and (Pl-T) are on the same plane 
(the epipolar plane of the point P), all represented in the left camera 
coordinate system. The projection of the vector T×Pl on the vector (Pl-T) is 
zero, since they are orthogonal to each other.  So we have: 

0=×− ll PTT)(P T  (8) 

From equation (6) we have 

  RPT)(Pl
T
r

T =− .  

Plugging this into equation (8) and defining an Essential Matrix     

E = RS  (9) 

where, 
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We will have, 

0=l
T
r EPP    

Note that the essential matrix is 3x3 matrix constructed from R and T. Since 
rank(S) = 2, we have rank (E) = 2, and E has two equal nonzero singular 
values. By using the relations in equations in (7), we have: 

0=l
T
r Epp   (10) 

This gives a natural link between the stereo point pair in the two images, and 
the extrinsic parameters of the stereo system. We can make the following 
two observations from equation (10):  

(1) A pair of correspondence (pl, pr) provides a linear equation of 9 
entries of the essential matrix E, therefore given 8 pairs of 
correspondence points, we can obtain an estimation of the essential 
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matrix. We will provide a detailed algorithm later in the section for 
estimating the fundamental matrix, which can be used to estimate the 
essential matrix as well. 

(2) Equation (10) provides the mapping between a pair of 
correspondence points and their epipolar lines that we are looking 
for.  For example, given pl and E, equation (10) represents a line 
equation of pr in the right plane. 

 
Note that pl, pr are in their corresponding camera coordinate systems,  not 

pixel coordinates that we can directly measure. Therefore we have to know 
the intrinsic parameters of the two cameras in order to use equation (10) for 
deriving the epipolar line relation. From observation (1), it means that we 
find the epipolar geometry relation of the stereo system given eight pairs of 
images points if the intrinsic parameters are known.  

 
Here we provide more analysis of epipolar line geometry. 
 
The essential matrix equation represents the epipolar plane in either the 

left or the right image. On one hand it represents the epipolar line in the right 
image, of a point in the left image, pl 

 (Epl)T pr=0 
where pr = (xr,yr,fr)T is a column vector representing the corresponding point 
in the right image, and (Epl)T is a row vector of three coefficients. On the 
other hand, it also represents the epipolar line in the left image, of a point on 
the right image, pr 

 (pr
TE) pl=0 

where pl = (xl,yl,fl)T is a column vector representing the corresponding point 
in the left image, and (pr

TE) is a row vector of three coefficients. 
 

We also note that the epipolar line about pr in the right image will pass 
through the location pl if and only if the rotation matrix is an identity matrix, 
i.e., R = I , which says 

 
pl

T S pl ==  0 [Question 3. check if this is correct] 
 

We will see in the next chapter that this is actually the focus of expansion 
(FOE) geometry in visual motion. If the rotation matrix R is not an identity 
matrix, then the epipolar line for pr will not pass through the point pl, if 
putting both of them in the right image.  
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3.3 Fundamental Matrix 

Now we are ready to derive the mapping between a pair of 
correspondence points and their epipolar lines in the two pixel coordinate 
systems, without knowing the intrinsic parameters. 

We will need to derive a matrix representation M of intrinsic parameters 
of a camera, including f, sx, sy, ox and oy. We know that fx = f/sx, fy = f/sy, 
then for an image point p = (x,y,f)T in the camera coordinate system, we 
have  its pixel representation as  

T
yyxx

T
yyxx

T

osyosxffoyffoxf
xxx

)1,/,/(),,(

),,( 321

+−+−=+−+−=

=p
 

Or in the matrix form as  
pMp =  

where  
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M  (11) 

and it’s corresponding pixel coordinates are xim = x1/x3, yim = x2/x3. 
 
Now let us define Ml and Mr as the intrinsic matrices of the left and the 

right cameras, respectively, then we have: 

rrr pMp 1−=  l
1
ll pMp −=   (12) 

Inserting equation (12) into equation (10) we have the following 
fundamental matrix equation  

0=l
T
r pFp  (13) 

where the fundamental matrix can be written as, 

1−−= lr EMMF T  (14) 

where –T represents both the transpose and the inverse (of the matrix Mr). 
This includes both intrinsic and extrinsic parameters in a 3x3 matrix. 
Looking into equation (13) we see that 
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We can summarize the following observations about the Fundamental 
Matrix. 

(1) Rank (F) = 2. 
(2) It encodes information on both intrinsic and extrinsic parameters. 
(3) It enables full reconstruction of the epipolar geometry. 
(4) It is in the pixel coordinate systems without the need of knowing any 

knowledge of the intrinsic and extrinsic parameters. 
(5) A pair of corresponding points provides a linear equation of the 9 

entries of F. 
 
Below we provide the algorithms to calculate the fundamental matrix F, 

and epipoles (Figure 8). Similarly we can compute E given intrinsic 
parameters. 

 
[Normalizing: The Points] 
The reason for the normalization is to balance the coefficients in the 

linear equation system so that it could be less ill-conditioned. 
 
■ Input: n points ( n >= 8) 

● Find the mean value of the x and y coordinates of the entire 
group of points. 

● Find the scaling factor by dividing the sqrt(2) by the 
hypotenuse of the x and y means. 

● Create a 3x3 translation matrix in the form of: 
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● Translate all of the points by doing pT ×  
■ Output: n Normalized points 

 
[Computing F: The Eight-point Algorithm] 
 
■ Input: n point correspondences ( n >= 8) 

● Construct homogeneous system Ax = 0 from 0=l
T
r pFp  

■ x = (f11,f12, f13, f21,f22,f23 f31,f32, f33)T :  entries in F 
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■ Each correspondence give one equation 
■ A is a nx9 matrix 

● Obtain estimate F̂  by SVD of A  TUDVA =  
■ x (up to a scale) is the column of V corresponding to 

the least singular value 
● Enforce singularity constraint: since Rank (F) = 2 

■ TUDVF =ˆ  Compute SVD of F̂   
■ Set the smallest singular value to 0:  D -> D’ 
■ TVUDF' '= Correct estimate of F :  

■ Output:  an estimate of the fundamental matrix, F’ 
 

[Denormalizing F:] 
■ Input: Normal Fundamental Matrix FN, Translation Matrixes Tl, Tr 

●  lN
T
r TFTF =   

■ Output: Regular Fundamental Matrix F 
 
When calculating the fundamental matrix of a pair of images, a better 

estimate will require more than 8 pairs of points.  The chosen points should 
also be scattered all around the image to get a uniformly accurate 
fundamental matrix. 

 
[Locating the Epipoles from F] 
 
■ Input: Fundamental Matrix F 

● Find the SVD of F  
● The epipole el is the column of V corresponding to the null 

singular value (as shown above) 
● The epipole er is the column of U corresponding to the null 

singular value 
■ Output:  Epipole el and er  

 
A few notes on estimating epipoles (Figure 8): 
(1) Epipole on the left image 
First, let us define the dot product of two vectors pr and Fel as a scalar 

value ql. Since F is a non-zero matrix, pr could be anything, and ql must be 
zero (from Equation (13), then we know Fel has to be a zero vector: i.e., Fel 
= 0. Multipling the transpose of F to both sides, we have a homogeneous 
equation system. 

FT Fel = 0 
By applying SVD, F = UDVT, we have the columns of V  as the 
eigenvectors of FTF, therefore the solution is the eigenvector corresponding 
to the null eigenvalue 0. 
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(2) Epipole on the right image 
Do the same thing to er.  

3.4 Stereo Rectification 

The simple stereo system with parallel optical axes has both its epipoles 
at infinity. Note that for such a stereo vision system, R = I, and T =(Tx,0,0) = 
(B,0,0). Therefore all the epipolar lines are horizontal scan lines such that 
yr=yl. 

 
Figure 9. Epipolar lines of stereo vision with parallel optical axes 

We can arrive at the same conclusion from equation (10). Since R = I, we 

have 

0=l
T
r SPP   (16) 

with the matrix S that have (Tx, Ty, Tz) = (B, 0, 0), where B is the baseline 
length. That is 
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If fl=fr, we can easily arrive at the same result w yr=yl. The horizontal 
epipolar scanline constraint makes the simple stereo vision system very 
attractive particularly for hardware implementation since the search for the 
corresponding point of any given point in the reference image is along its 
horizontal scanline. 

 
Figure 10. Stereo rectification 

Since we have this advantage, it is very desirable to perform an image 
rectification of the stereo pair so that given the stereo pair and its intrinsic 
and extrinsic parameters; we can find an image transformation to achieve a 
stereo system with horizontal epipolar lines. 

Here we discuss a simple algorithm, assuming the stereo cameras have 
been calibrated. 

 
[Stereo Rectification Algorithm] 
Step 1. Rotate the left camera so that its new X axis (X’) points to the 

direction of  T, i.e., the vector point from the right camera center to the left 
camera center.  One solution is to find an orthogonal coordinate system 
Xl’Yl’Zl’ by finding three unit vectors pointing towards its three axes, Xl’ = 
T/|T|, Yl’ = X’ × Zl where Zl=(0,0,1)T, and Zl’=Xl’× Yl’. Then the rotation 
matrix to rectify the left camera can be defined as Rrect = (Xl’, Yl’ , Zl’): 

Pl’ = Rrect Pl (18) 
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Step 2. Rotate the right camera so that its three axes have the same 
directions as those of the left camera. From equation (6), we can see that the 
rotation matrix for rectifying the right camera is RrectRT: 

Pr’ = Rrect RT Pr  (19) 

In the rectified stereo vision system, we have 

P’r = P’l – T’ (20) 

where T’ =RrectR, which is in the form of (B, 0, 0)T,               
 
Step 3. The stereo rectification can be implemented by software image 

transformations instead of actually rotating the two cameras as shown in 
equations (18) and (19).  As we have discussed in the camera model chapter, 
a rotational transformation can be implemented as an image rectification. For 
example, for the left camera, the transformation for the image rectification is 

lrectl pRp ≅'  (21) 

where the equality is a projective equality. 
 

3.5 Epipolar Geometry Summary 

We have discussed the epipolar geometry in details. The purpose is to 
define where to search for correspondences. Here is a brief summary of what 
we have learned. 

 
(1) About epipolar plane, epipolar lines, and epipoles: depending on 

the knowledge of the intrinsic and extrinsic parameters, we can do 
the following:  

● known intrinsic (f) and extrinsic (R, T) 
■ co-planarity equation (8) 

● known intrinsic but unknown extrinsic  
■ essential matrix (10) 

● unknown intrinsic and extrinsic  
■ fundamental matrix (13) 

(2) About stereo rectification: 
● Generate a stereo pair (by software) with parallel optical 

axis and thus achieving horizontal epipolar lines, from an 
arbitrary stereo vision setup. 
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4. CORRESPONDENCE PROBLEM 

We have three questions to ask when we deal with the correspondence 
problem: 

(1) What to match?  Should the features be points, lines, areas, or 
structures? 

(2) Where to search for correspondence? We know the corresponding 
points shall be searched along epipolar lines, but what else shall we 
consider? 

(3) How to measure similarity? We know the correspondence points are 
usually not identical, they are just similar. Depending on features, 
what kinds of similarity measures could we use? 
 

In this section, we will discuss two basic approaches: the correlation-
based approach and the feature-based approach. After discussing these two 
topics, we will briefly mention some advanced topics that have been 
proposed to improve the performance of stereo vision algorithms, including: 

■ Image filtering to handle illumination changes 
■ Adaptive windows to deal with multiple disparities 
■ Local warping to account for perspective distortion 
■ Sub-pixel matching to improve accuracy 
■ Self-consistency to reduce false matches 
■ Multi-baseline stereo 

4.1 Correlation-based approach 

The basic steps for the correlation-based stereo matching approach are 
defined as: For each point (xl, yl) in the left image, define a window centered 
at the point, then search its corresponding point within a search region in the 
right image. The disparity (dx, dy) is the displacement when the correlation 
is maximum. Figure 11 illustrates the idea. 

 
As we have mentioned, there are three important issues in stereo 

matching. 
(1). Elements to be matched. In the correlation-based approach, an image 

window of fixed size centered at each pixel in the left image is defined as the 
matching element for the pixel. 

(2). Similarity criterion. This is the measure of similarity between 
windows in the two images. The corresponding element is given by the 
window that maximizes the similarity criterion within a search region; we 
will provide more details below. 
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Figure 11. Correlation-based approach 

(3). Search regions. Theoretically, search regions can be reduced to a 1-D 
segment, along the epipolar line, and within the disparity range, given that 
the depth range is known. In practice, we search a slightly larger region both 
along and normal to the epipolar line, due to errors in calibration. 
 

With these, we formally write the correlation between two WxW 
windows, in the left image and the right image, respectively, as  

∑ ∑
−= −=

++++++=
W

Wk

W

Wl
ylxlrlllyx ldykdxIlykxIddc )),(),,((),( ψ  (22) 

where Ψ is a similarity measure function. The similarity criterion typically 
has the following three forms: 

(1) Cross-Correlation 

uvvu =Ψ ),(  (23) 
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(2) Sum of Square Difference (SSD)  

2)(),( vuvu −−=Ψ  (24) 

(3) Sum of Absolute Difference (SAD)  

||),( vuvu −−=Ψ  (25) 

After calculating all of the similarity values in the search range {(dx,dy)}, the 
final disparity vector is defined as: 

)},({maxarg),( yxRyx ddcdd
∈

==
d

d  (26) 

This simple approach has both pros and cons that we list below: 
PROS:  

(1) It is easy to implement, both in software and hardware. 
(2) It produces a dense disparity map, for each pixel. 
(3) It might be slow without optimization, but the algorithm can be 

implemented in parallel, e.g., using GPUs. 
CONS: 

(1) It needs highly textured images to work well. 
(2) It is inadequate for matching image pairs from very different 

viewpoints, due to illumination changes. 
(3) Windows may cover points with quite different disparities, thus 

producing blurs on depth changes. 
(4) It produces inaccurate disparities on the occluding boundaries. 

 
A stereo pair of a campus scene at UMass Amherst (Figure 12) illustrates 

all the issues of this approach: regions with less or no texture, depth 
boundaries between two objects, and different occlusions due to view 
changes. For example, the centers of the blue boxes within the red circles are 
corresponding points, but the rectangular windows cover two three planar 
surfaces in the left image and two surfaces in the right image: the side of the 
building is occluded in the right image. Even without this problem, the two 
windows still cover multiple depths that make the simple window-based 
correlation problematic. As a [Project], please check out all the issues you 
could find in these two images. 
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Figure 12. Problems in stereo correspondences 

 

4.2 Feature-based Approach 

4.2.1 Basic Ideas 

Matching primitives in feature-based approaches can be the following 
(Figure 13): 

■ Edge points: Points defined on those points that have high gradient 
magnitudes and thus, can be declared as edge points. 

■ Lines: Line segments extracted by linking edge points via either 
edge tracking or Hough Transform, with their attributes, such as 
length, orientation, average contrast, etc. 

■ Corners: Points on contours that have high curvatures, for example 
Harris corners [REF] 

■ Structures: Higher-level structures that are formed by group edge 
points, lines, and/or corners. For example, the closed contour of a 
surface. 

 
A matching algorithm usually includes the following three steps. 
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Figure 13. Feature-based matching 

Step 1. Extract features in the stereo pair. For example, if the matching 
primitives are line segments, an edge detector such as Canny edge detector 
can be used to detect edges. Line segments can be formed by a line tracking 
and fitting approach or a Hough Transform based approach. A line segment 
can be defined by its endpoints, length, orientation, and average contrast. 

 
Step2. Define similarity measure.   For example, if the features are line 

segments as defined in Step 1, the similarity measure between two line 
segments in two images (respectively) could be derived from their 
differences in orientation, length and contrast. 

 
Step 3. Search correspondences using similarity measure and the epipolar 

geometry. We expect that only a few candidates of a feature in the reference 
image are within the search ranges in the right image, and the candidate with 
the highest similarity values is picked up as the correspondence.  

 
For each feature in the left image, search in the right image; the disparity 

(dx, dy) is the displacement when the similarity measure is at maximum. As 
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in the correlation approach, the feature-based approach also has its pros and 
cons. 
 

PROS: 
(1) It is relatively insensitive to illumination changes. 
(2) It is good for man-made scenes with strong lines against surfaces 

with weak or no texture. 
(3) It works well on the occluding boundaries (edges). 
(4) It could be faster than the correlation approach. 

 
CONS: 
(1) It only creates a sparse depth map, therefore many points in the 

reference image may not have depth values. 
(2) Feature extraction may be tricky. For example, lines (edges) might 

be partially extracted in one image. It is also hard to know what the 
best way is to measure the similarity between two lines, since 
perspective distortion and feature extraction features in two images 
may be very different. 

4.2.2 Feature detection 

[Moved Section 4.1.1 from Visual Motion Chapter to here] 
 
In computer vision, a local feature represents a group of local 

information in either 2D or 3D space that is distinctive and easy to identify. 
It usually contains some special local image properties, such as a corner, a 
line, a textured region or a planar surface in a range image. Some are scale 
and orientation invariant, such as Harris corners and SIFT features so that 
they can be matched between two images with a large perspective distortion. 
In this section, some popular image features are briefly introduced. These 
features can be used in matching both stereo and motion images. 
 

Line features 
Many researchers use line segments as image features. In 2D image 

space, line segments can be extracted from the edge map of an image. They 
are reliable since edges are relatively invariant to projection distortion, even 
under illumination changes. The problem is that it’s hard to distinguish the 
true endpoints of an edge segment. A line feature descriptor may include the 
following values (Trucco and Verri, 1998): the length of the line, l, the 
orientation of line, θ , the midpoint of the line, m=[x, y]T and average 
contrast along the edge line c.  

Similarity match between two line feature descriptors is as following: 
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where w0, w1, w2  and w3 are weights and the subscripts l and r refer to the left 
and right images, respectively.  

 
Corner features 
A corner is a 2D image feature point that is the intersection of two edges. 

It is a popular “interest point” detector due to its strong invariance to 
rotation, scale, illumination and insensitivity to image noises. Consider the 
spatial image gradients, including gradients in both the horizontal and 
vertical directions. A covariance matrix C that represents the likelihood of a 
corner feature, is defined as  
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where Ex and Ey are the gradients in the vertical and horizontal directions, 
respectively. C is actually the least square form of the coefficient matrix of 
the spatial gradient evaluation (the 2x2 matrix ATA). 
  

The following local image properties around the pixel (x,y) can be 
obtained by the eigen value analysis of matrix C (Figure 14).  

(1) If both eigen values of C are small, then the pixel (x,y) is in an area 
with a rather uniform texture;  

(2) If one of the eigen values is small and the other is a large positive 
number, then the pixel (x,y) is close to an edge;  

(3) If both eigen values are large positive numbers, then the pixel (x,y) is 
around the intersection of edges, i.e., at a corner.   

 
Therefore, the corner detection can be achieved by enforcing a minimal 

value on the smallest eigen value (Shi and Tomasi 1994). It can also be 
achieved using the following corner response function 

2)()det( CtracekC ×−  (Harris and Stephens 1986) where it does not need 
the complicated eigen-analysis processing, and k is a constant (0.04-0.15) 
obtained from experiments. This method is the well-known “Harris corner” 
method. The corner response is used to determine whether a local region is a 
corner feature by comparing it with a threshold. The Harris corner detector 
can be of different sizes, from 3x3 to 15x15 and a match is usually 
performed with a correlation window. 
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Multi-scale as well as scale and affine invariant extensions of corner 
feature, Harris-Laplace and Harris-Affine are also proposed (e.g., in 
Mikolajczyk and Schmid 2004).  

 

 

Figure 14. Relation between local feature properties and eigen analysis of matrix C 

 
SIFT features 
Though Harris corner and its variations have been widely used in 

different image tracking and matching tasks, they cannot handle large 
perspective distortion. Lowe (Lowe 2004) proposed scale invariant feature 
transformation (SIFT) to address this issue. It takes an image and generates a 
large collection of feature vectors, which are invariant to the scaling, rotation 
or translation of the image. The SIFT feature extraction procedure includes 
the following four steps: (1) a scale space extrema detection; (2) key point 
localization; (3) orientation assignment; and (4) SIFT descriptor 
construction. 

 
a. Scale-space extrema detection 

In the first step, a ‘scale-space’ function (variant scales in the frequency 
domain) is used to identify the locations and scales that are invariant to 
different perspective views of the same “object”. The scale-space function is 
defined as  

),(*),,(),,( yxIyxGyxL σσ =  (29) 

where the operator * is a convolution operation, ),,( σyxG  is a variable-
scale Gaussian with a scale variable σ , and I(x, y) is the input image. To 
locate scale-space extrema, a difference of Gaussians is applied, 

),,(),,(),,( σσσ yxLkyxLyxD −=  (30) 
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which is the difference between two nearby scales separated by the factor k. 
To detect the local maxima and minima of ),,( σyxD , each point is 
compared with its 8 neighbors at the same scale, and its 9 neighbors up and 
down one scale. If this value is the minimum or maximum of all these points 
then this point is an extremum. 
 
b. Key point localization 

In order to eliminate the key points obtained by the first step in regions 
with low contrasts or around edges, the second step first computes the value 
of the second-order Taylor expansion of Difference-of-Gaussian (DOG) 

),,( σyxD  at any key point; the key point with small value is filtered out, 
and then the principal curvatures of the DOG image in two directions, one 
along the direction of edge and the other in the perpendicular direction, is 
evaluated at each key point. If the two curvatures have a large difference 
(i.e., the ratio between the larger and the smaller is high and it represents an 
edge) and the key point is close to an edge, then it’s eliminated. 

 
c. Orientation assignment 

Both the magnitude and direction of Gaussian-smoothed image gradients 
at every pixel in the neighborhood area of a key point are computed. An 
orientation histogram is calculated (total N bins and each bin covers 360/N 
degrees) at each key point. The orientation of each pixel is weighted by its 
magnitude and inserted into the orientation histogram. 

 
d. Descriptor 

The local gradient data computed in the previous step, is also used to 
create key point descriptors. Key point descriptors usually use a set of 16 
(4x4 grid) histograms, each with 8 orientation bins (covering 360 degree). 
Therefore, feature descriptor includes 128 dimensions. 

After SIFT features of the same object scene in multiple views are 
extracted and stored into a database, features are matched against each other 
to find k nearest-neighbors for each feature. 

Above feature detection methods are used to search distinctive image 
features. A non-maximal suppression mechanism is usually used to 
guarantee that no duplicate features are found in a local region. 

 
 
Other local feature descriptors 
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SIFT performs very well in many applications, for example, in feature 

tracking and wide baseline camera matching. However, it has high 
computation expenses. Therefore, many different local feature descriptors, 
running in real-time or close to real-time, are introduced. These descriptors 
include Speeded Up Robust Features (SURF, Bay et al. 2008), Features from 
Accelerated Segment Test (FAST Rosten and Drummond 2006) and Daisy, 
which is an efficient dense descriptor (Tola et al 2010). 

 

 

4.3 Advanced Topics (TO DO) 

Here we discuss a few advanced techniques in stereo matching. They are 
mainly used in the correlation-based approach, but they can be applied to 
feature-based match algorithms as well. 

 
■ Image filtering to handle illumination changes 

● Image equalization 
■ To make two images more similar in illumination 

● Laplacian filtering (2nd order derivative) 
■ Use derivative rather than intensity (or original 

color) 
■ Adaptive windows to deal with multiple disparities 

● Adaptive Window Approach (Kanade and Okutomi) 
■ Statistically adaptive technique which selects at 

each pixel the window size that minimizes the 
uncertainty in disparity estimates 

■ A Stereo Matching Algorithm with an Adaptive 
Window: Theory and Experiment, T. Kanade and 
M. Okutomi. Proc. 1991 IEEE International 
Conference on Robotics and Automation, Vol. 2, 
April, 1991, pp. 1088-1095 

● Multiple window algorithm (Fusiello, et al) 
■ Use 9 windows instead of just one to compute the 

SSD measure 
■ The point with the smallest SSD error among the 9 

windows and various search locations is chosen as 
the best estimate for the given points 
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■ A Fusiello, V. Roberto and E. Trucco, Efficient 
stereo with multiple windowing, IEEE CVPR 
pp858-863, 1997 

 

 
Figure 15. Multiple window approach 

 
■ Sub-pixel matching to improve accuracy 

● Find the peak in the correlation curves 
■ Self-consistency to reduce false matches esp. for occlusions 

● Check the consistency of matches from L to R and from R 
to L 

■ Multiple Resolution Approach 
● From coarse to fine for efficiency in searching 

correspondences 
■ Local warping to account for perspective distortion 

● Warp from one view to the other for a small patch given an 
initial estimation of the (planar) surface normal 

■ Multi-baseline Stereo 
● Improves both  correspondences and 3D estimation by using 

more than two cameras (images) 

5. 3D RECONSTRUCTION PROBLEM 

So far we have dealt with the following two important issues: 
(1) Finding correspondences using either correlation or feature based 

approaches. 
(2) Defining epipolar geometry from at least 8 point correspondences. 
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Now we are going to discuss three cases of 3D reconstruction, depending on 
the amount of a prior knowledge of the stereo system. 

(1) If both intrinsic and extrinsic parameters are known, we can solve 
the reconstruction problem unambiguously by triangulation. 

(2) If only the intrinsic parameters are known, we can recover structure 
and extrinsic parameters up to an unknown scaling factor. 

(3) If only image correspondences are known, we can achieve 
reconstruction only up to an unknown, global projective 
transformation (*optional – further reading) 

5.1 Reconstruction by Triangulation 

■ Assumption and Problem 
● Under the assumption that both intrinsic and extrinsic 

parameters are known 
● Compute the 3-D location of a point from its projections, pl 

and pr 
■ Solution 

● Triangulation: Two rays are known and their intersection 
can be computed 

● Problem: Two rays will not actually intersect in space due to 
errors in calibration, correspondences and pixelization  

● Solution: find a point in space with minimum distance from 
both rays 

 
Figure 16. Reconstruction by triangulation 

This reconstruction is solved by triangulation since we already know both 
the extrinsic and intrinsic parameters. Visually, we need to find the 
intersection of line OlPl and OrPr. The intersection is the 3D coordinate of 
corresponding projected points Pl and Pr. Because of the error in the location 
of corresponding points, the two rays will not intersect exactly in space and 
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thus we have to approximate it by finding the closest midpoint between these 
two lines. 

 
The point Pl can be represented on the line passing through Ol  and Pl , 

A0pl  in the left coordinate system, where A0 is a real number, and pl is the 
projected point of P in left image. The point Pr can be represented on the line 
passing through Or and pr, also in the left coordinate system, as T + B0RTpr, 

where B0 is a real number, T is the translation matrix, R is the rotation 
matrix, and pr is the projected point of P in right image. 

 
If the two lines intersect in space, then we have A0Pl = T+ B0RTPr.  If the 

two lines do not precisely intersect in space, we can find a line that is 
perpendicular to both lines, as C0(Pl x RTPr). To solve for the midpoint, we 
need to solve a system of equation, as presented in [3]: 

 
A0Pl – B0RTPr + C0(Pl x RTPr) = T  

 
Then A0, B0, C0 can be estimated. Suppose that the two intersections of 

this line with the two rays are given as: 
 

𝑃! = A0Pl 
𝑃! = T + B0RTPr 

 
Therefore, the midpoint can be represented as  

𝑃! + c(𝑃! – 𝑃!) 
With c = ½. 
 

 

5.2 Reconstruction up to a Scale Factor 

■ Assumption and Problem Statement 
● Under the assumption that only intrinsic parameters and at 

least 8 point correspondences are given 
● Compute the 3-D location from their projections, pl and pr, 

as well as the extrinsic parameters 
■ Solution 

● Compute the essential matrix E from at least 8 
correspondences 

● Estimate T (up to a scale and a sign) from E (=RS) using the 
orthogonal constraint of R, and then estimate R   

■ End up with four different estimates of the pair (T, 
R)  



32 Chapter # 
 

● Reconstruct the depth of each point, and pick up the correct 
sign of R and T. 

● Results: reconstructed 3D points (up to a common scale); 
● The scale can be determined if distance of two points (in 

space) are known  

5.3 Reconstruction up to a Projective Transformation 
(*) 

■ Assumption and Problem Statement 
● Under the assumption that only n (>=8) point 

correspondences are given 
● Compute the 3-D location from their projections, pl and pr 

■ Solution 
● Compute the fundamental matrix F from at least 8 point 

correspondences, and the two epipoles  
● Determine the projection matrices  

■ Select five points (from correspondence pairs) as the 
projective basis 

● Compute the projective reconstruction  
■ Unique up to the unknown projective transformation 

fixed by the choice of the five points 
 

6. CONCLUDING REMARKS 

This chapter discusses the following important topics: 
 
■ Fundamental concepts and problems of stereo 
■ Epipolar geometry and stereo rectification 
■ Estimation of fundamental matrix from 8 point pairs 
■ Correspondence problem and two techniques: correlation and feature 

based matching 
■ Reconstruct 3-D structure from image correspondences given 

● Fully calibrated 
● Partially calibration  
● Uncalibrated stereo cameras (*) 
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7. QUESTIONS AND PROJECTS 

7.1 Questions 

[Question 1].  Estimate the accuracy of the simple stereo system (Figure 7.4 
in Trucco & Verri’s book) assuming that the only source of noise is the 
localization of corresponding points in the two images. Discuss the 
dependence of the error in depth estimation as a function of the baseline 
width and the focal length. 
 
Hint: Take the partial derivatives of Z with respect to x, T, and f, 
respectively. 
 
[Question 2].  Prove that the fixation stereo does not change the fact that the 
depth resolution is inversely proportional to the square of depth. 
 
[Question 3].  Prove that the epipolar line about pr in the right image will 
pass through the location pl if and only if R = I. 
 
[Question 4]. Formulate the rectification rotation matrix Rrect, and prove that 
the rotation between the two “rectified” cameras is I, and the translation has 
the form of (B, 0, 0), thus forming a stereo vision system with parallel 
optical axes. 

7.2 Projects 

Use an image pair (Image 1, Image 2) for the following exercises. 
 
(1). Fundamental Matrix. - Design and implement a program that, given a 
stereo pair, determines at least eight pairs of point matches, then recovers the 
fundamental matrix and the location of the epipoles. Check the accuracy of 
the result by measuring the distance between the estimated epipolar lines and 
image points not used by the matrix estimation. Also, overlay the epipolar 
lines of control points and test points on one of the images (say Image 1- I 
already did this in the starting code below). Control points are the 
correspondences (matches) used in computing the fundamental matrix,  and 
test points are those  used to check the accuracy of the computation. 
 
Hint: As a first step, you can pick up the matches of both the control points 
and the test points manually. You may use my Matlab code (FmatGUI.m) as 
a starting point - where I provided an interface to pick up point matches by 
mouse clicks. The epipolar lines should be (almost) parallel in this stereo 
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pair. If not, something is wrong either with your code or the point matches. 
Make sure this is achieved before you move to the second step* - that is, to 
try to search for point matches automatically by your program. However, the 
second step is optional. 
  
(2). Feature-based matching. - Design a stereo vision system to do "feature-
based matching" and explain your algorithm in writing. The system should 
have a user interface that allows a user to select a point on the first image, 
say by a mouse click.  The system should then find and highlight the 
corresponding point on the second image, say using a cross hair. Try to use 
the epipolar geometry derived from (1) in searching  correspondences along 
epipolar lines. 
 
Hint: You may use a similar interface as I did for question (1). You may use 
the point match searching algorithm in (1) (if you have done so), but this 
time you need to constrain your search windows along the epipolar lines. 
 
(3) Discussions. Show your results on points with different properties like 
those in corners, edges, smooth regions, textured regions, and occluded 
regions that are visible only in one of the images. Discuss for each case, why 
your vision system succeeds or fails in finding the correct matches. Compare 
the performance of your system against a human user (e.g. yourself) who 
marks the corresponding matches on the second image by a mouse click. 
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