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1. INTRODUCTION 

This chapter will discuss another important topic in 3D reconstruction: 
obtaining structure from camera or object motion. We put it in the general 
area of visual motion, which includes both structure from motion and motion 
recognition. But we are going to focus on the structure from motion 
problem. The outline of this chapter is as follows: 

 
Section 1. (this section). Problems and Applications 
- The importance of visual motion 
- Problem Statement 
 
Section 2. The Motion Field of Rigid Motion 
- Basics – Notations and Equations 
- Three Important Special Cases: Translation, Rotation and Moving 

Plane 
- Motion Parallax 
 
Section 3. Optical Flow 
- Optical flow equation and the aperture problem 
- Estimating optical flow 
- 3D motion & structure from optical flow 
 
Section 4. Feature-based Approach 
- Two-frame algorithm – feature matching 
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- Multi-frame  algorithm – SLAM and SfM 
- Structure from motion – Factorization method 
 
Section 5. Advanced Topics: Motion-Based Video Computing  
- Change detection 
- Video mosaicing 
- Layered Representation 

1.1 The Importance of Visual Motion 

Structure from Motion (SfM) using the so-called apparent visual motion 
is a strong visual clue for 3D reconstruction. It is more than a multi-camera 
stereo system. As an example, a human vision system can do remarkably 
well in the recognition of structure only by motion. In fact, biological visual 
systems can use visual motion to infer properties of the 3D world with little 
a priori knowledge of it. Figure 1 shows a close-up image of a 15×20-pixel 
digital frame from a blurred image sequence. If we watch the video 
sequence, we can recognize the object from motion (a person sitting down) 
even if we cannot distinguish it in any images of the sequence. 

 

Figure 1.A close-up of an image of resolution 15x20 pixels  

From:  James W. Davis at MIT Media Lab 

In fact visual motion studies typically deal with video sequences, which 
include the following research and application topics:  

• Video Coding and Compression: MPEG 1, 2, 4, 7… 
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• Video Mosaicing and Layered Representation for IBR 
• Surveillance, Human Tracking and Traffic Monitoring 
• HCI using Human Gesture 
• Image-based Rendering 
• And many more… 

 

1.2 Problem Statement 

The problem of structure from motion can be divided into the following 
two sub-problems: 

 
1. Correspondence: Which elements in one frame correspond to which 

elements in the next frame? 
2. Reconstruction: Given a number of correspondences and possibly, 

the knowledge of the camera’s intrinsic parameters, how to recover 
the 3-D motion and structure of the observed world 

 
For both of these two sub-problems, there are two or more approaches. For 
the correspondence problem, differential methods create dense measures 
(optical flow), whereas matching methods generate sparse measures. The 
reconstruction problem here is more difficult than in stereo, since we have to 
estimate motion (i.e., 3D transformation between frames) as well as the 
structure of 3D objects. Meanwhile, small “baseline” lengths ease the 
correspondence problem but they also cause large errors in 3D 
reconstruction. 

 
What are the main differences between motion and stereo? 
First, regarding the correspondence problem, disparities between 

consecutive frames are much smaller due to dense temporal sampling in 
Structure from Motion (SfM) than in stereo vision. 

Second, the visual motion evaluated during reconstruction may, however, 
be caused by multiple motions (instead of a single 3D rigid transformation in 
the case of stereo vision). 

 
Furthermore, we may have a third or even fourth sub-problem, namely: 
Motion segmentation: what are the regions in the image plane 

corresponding to different moving objects? 
Motion understanding: lip reading, gesture, expression, event 

understanding,  and etc.. 
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The motion segmentation problem is a chicken and egg problem: Which 
should be solved first - matching or segmentation?  We need to do 
segmentation for extracting matching elements, but we may need to perform 
matching for scene and motion segmentation. 

2. THE MOTION FIELD OF RIGID OBJECTS 

In order to fully understand the structure from motion problem, we will 
need to understand the details of the motion field of rigid objects. This will 
serve as the basis for structure from motion. A motion in 3D can be 
characterized by a rotation matrix R and a translation vector T, and can be 
caused by the motion of a camera viewing a static scene, or a stationary 
camera viewing a single object in motion. However, we can always use one 
rigid, relative motion between the camera and the scene (or object). The 
image motion field is defined as the 2D vector field of velocities of the 
image points induced by the relative motion. 

The input of visual motion is an image sequence that may include several 
frames, captured at time t=0, 1, 2, … For the basic principle of visual 
motion, we will only consider two consecutive frames (i.e., a reference 
frame and its consecutive frame). In this case, the image motion field can be 
viewed as a disparity map of two frames captured at two consecutive camera 
locations (assuming we have a moving camera). 

2.1 Basic Equations of Motion Field 

To formally define the motion field, we need to have the following 
notations: Let P = (X,Y,Z)T represent a 3-D point in the camera reference 
frame, and p = (x,y,f)T the projection of the scene point in the pinhole 
camera, then we have, 

 
Pp

Z
f

=  (1) 

The relative motion of P in the camera coordinate system is defined as 
(Figure 2): 

 PωTV ×−−=  (2) 

where T= (Tx,Ty,Tz)T is the translation component of the motion, and ω=(ωx, 
ωy, ωz)T is the angular velocity, which is further explained below. 
 

Now we would like to answer the following two questions: 
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1) How can we connect the equation with the stereo geometry using R 
and T? 

2) How can the image velocity v be represented in terms of the 3D 
point P? 

 
Figure 2. Motion field of a rigid body 

Answering the first question will help us to better understand 3D motion. 
Angular velocity is defined by a rotation axis ω  / |ω | (a unit vector) and a 
rotation angle |ω |. So, the cross product ω  × P describes the rotational 
movement of the point P. With this we have: 
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where P and P’ represent the points before and after the motion. After some 
re-arrangement, we have the following form that looks familiar to us: 

TRPP +=ʹ′  (3) 

where the rotation matrix is 
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Think about where the diagonal ones (1’s) came from. Recall that a rotation 
matrix that is generated by performing three rotations around the X, Y and Z 
axis consecutively can be written as: 
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Equation (4b) will be almost the same as equation (4a) when the three angles 
α, β and γ are all very small angles.  

 
The answer to the second question will lead to the motion field equation 

of rigid body motion. Taking the time derivative of both sides of the 
projection equation (1), we have  

)(2 PVv zVZ
Z
f

−=  

Inserting the 3D motion equation (2) into the above equation, we obtain the 
motion field equation: 

 (5) 

 

Note that the motion field is the sum of two components: the translational 
part that includes the depth information, and the rotational part that doesn’t 
have any depth information. Here we assume the intrinsic parameters are 
known. 
 

Table 1 summarizes a comparison of motion field and stereo disparity. 
 

Table 1. Motion field vs. stereo disparity 

 Stereo Motion 

Terms Disparity Motion field 

Concepts Displacement – (dx, dy) Differential concept – velocity 
(vx, vy), i.e. time derivative 

(dx/dt, dy/dt) 

Constraints Epipolar geometry for 
searching corresponding 

points 

Consecutive frame close each 
other to guarantee good discrete 

approximation of derivative 
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2.2 Special Cases 

Before discussing the general case of motion parallax, it would be 
interesting to see some very useful special cases: pure translation, pure 
rotation and motion of a plane. 

2.2.1 Special Case 1: Pure Translation 

Under pure translation (i.e., ω =0), the motion field can be simplified as, 
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 (6) 

which can be further divided into the following two cases: radial motion 
field and parallel motion field. 
 

1. Radial Motion Field (Tz ≠ 0) 
We define the vanishing point p0 =(x0, y0)T as : 

 (7) 

which can be used to compute the 3D motion direction.  Then we can write 
the motion field equation as 

 (8) 

From equation (8), we can easily see that the vanishing point p0 represents 
the focus of expansion (FOE) if Tz < 0,  since all the motion vectors  point 
away from p0; if Tz > 0, it is called  the focus of contraction (FOC) since all 
the motion vectors move towards p0 (Figure 2a – TO DO) . The depth of a 
point can be estimated as, 

 (9) 

 
Here we can clearly see that the depth Z is inversely proportional to the 
magnitude of motion vector v, and proportional to both the translation 
magnitude in the Z direction and the distance from p to p0. 
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2. Parallel Motion Field (Tz = 0) 
 
The motion field of a translational motion with Tz = 0 can be written as 

 (10) 

which shows that the motion field is a parallel field in the direction of the 
motion (Tx,Ty) (Figure 2b  – TO DO). The depth of a 3D point can be 
estimated as 

 (11) 

Again, the depth is inversely proportional to magnitude of motion vector v, 
and proportional to the 3D motion magnitude. 

 

2.2.2 Special Case 2: Pure Rotation 

Under pure rotation (T = 0), the motion field equation can be written as 
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Clearly, the motion field of a pure rotation does not carry any 3D 
information; Z is not included in the equation. The motion vector equation is 
a quadratic polynomial function of image coordinates (x,y,f)T

.  Given more 
than two points with known velocities, we will have more than four linear 
equations of the three angles, and therefore they can be fully estimated. 
 

Note that in practice, the motion field equation is an approximation when 
the motion is very small. For pure rotation, we can actually write an accurate 
image transformation between two frames, and the rotational motion can be 
large. A 3D rotation transformation can be written as: 

RPP ='  
where P and P’ are the 3D point representations before and after the rotation. 
Since we can write the projections of the 3D point before and after motion 
as, 
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we have 

Rpp ≅'  (12) 

where the equality is a projective equality. Equation (12) can be 
implemented using pure image transformation, therefore two images before 
and after a pure rotation can be precisely registered. This can be used for 
image mosaicing from a rotating camera, for example, to generate 360 
degree panoramas. 

2.2.3 Special Case 3: Moving Plane 

Planes are common in the man-made world. So it is interesting to see 
what relation can be obtained for the motion field of a plane when the 
camera undertakes an arbitrary motion, or a moving plane is viewed by a 
stationary camera. A plane equation can be written as 

d=PnT  
where n = (nx, ny, nz) T is the normal of the plane, and P = (X, Y,Z)T is a 3D 
point on the plane. Using the camera projection equation, we have  

fd
fnynxn

Z
zyx )(1 ++

=  (13) 

Inserting equation (13) into the motion field equation (5) and therefore 
eliminating Z, which is different from point to point, we will get a quadratic 
polynomial equation in the image, which only has 8 independent parameters. 
(Question 2. Write it out!). However, we again note that the motion field is 
only an approximation given small motion; if the motion between two 
images is large, we can use a precise image transformation. For an arbitrary 
motion, we have  

App ≅'  (14) 

where A is the homography (3x3 matrix) for all points [Question 3. Derive 
homography]. Note that equation (14) has the same form as equation (12); 
therefore equation (12) can also be viewed as a special homography, which 
is a rotational matrix. Equation (14) is very useful for generating image 
mosaicing for a planar scene; examples include generating wide field-of-
view mosaics from an aerial image sequence, or a video of a classroom 
blackboard. 
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2.2.4 Special Cases: Summary 

Let us summarize the three special cases:  
■ Pure Translation 

● Vanishing point and FOE (focus of expansion) 
● Only translation contributes to depth estimation 

■ Pure Rotation 
● Does not carry 3D information 
● Motion field: a quadratic polynomial in image, or  
● Transform: Homography (3x3 matrix R) for all points 
● Image mosaicing from a rotating camera 

■ Moving Plane 
● Motion field is a quadratic polynomial in image, or 
● Transform: Homography (3x3 matrix A) for all points 
● Image mosaicing for a planar scene 

2.3 Motion Parallax 

To understand motion parallax, which reflects the different apparent 
motion vectors due to different depths of the 3D points, we make the 
following two observations: 

 
[Observation 1]  The relative motion field of two instantaneously 

coincident points does not depend on the rotational component of the 
motion, and points towards (or away from) the vanishing point of the 
translation direction. 

 

 
Figure 3. Motion parallax 
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Observation 1 is derived from image motion equation (5) where the pixel 
location (x,y) is the same for two points at the time t, thus instantaneously 
coincident points.  Figure 3 shows how we can derive the motion parallax. 
At instant t, three pairs of points happen to be coincident. The difference of 
the motion vectors of each pair cancels the rotational components and the 
relative motion field point towards or away from the vanishing point of the 
translational direction.  

 
[Observation 2] The motion field of two frames after rotation 

compensation includes only the translation component  
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The motion field also has the following two properties: 
(1) It points towards (or away from) the vanishing point p0 (the 
instantaneous epipole) 
(2) The length of each motion vector is inversely proportional to the depth, 
and directly proportional to the distance from the point p to the vanishing 
point p0 of the translation direction (if Tz <> 0)  

2
0

2
0 )()( yyxx

Z
Tz −+−=v  (16) 

Rotation compensation can be done by image warping after finding three 
pairs of coincident points [Question 4] 

 

 

Figure 4. Instantaneous epipole 
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2.4 Summary 

Here is a brief summary of the basic visual motion concepts. 
■ Image motion field of rigid objects 

● Time derivative of both sides of the projection equation 
■ Three important special cases 

● Pure translation – FOE  
● Pure rotation – no 3D information, but lead to mosaicing 
● Moving plane – homography with arbitrary motion 

■ Motion parallax  
● Only depends on translational component of motion 

3. OPTICAL FLOW 

In this section, we will discuss the basic techniques for estimating the 
motion field using optical flow. Three important aspects will be discussed: 
(1) the notation of optical flow; (2) the estimation of optical flow; and (3) the 
use of optical flow. 

3.1 Notation of Optical Flow 

An image sequence can be represented as a 3D cube I(x,y,t). A point in 
the 3D cube at location (x,y,t) with intensity I(x,y,t) will move by δx, δy and 
δt between the two image frames due to the relative motion between the 
camera and the scene. Under most circumstances, the apparent brightness of 
moving objects remains constant. Then, we have the following brightness 
constancy equation: 

     I(x + δx,y + δy,t + δt) = I(x,y,t)
 (16a

) 

Assuming the movement to be small, the left hand side of equation (16a) can 
be expanded to a Taylor series at I(x,y,t) as: 

(16b) 

Comparing equations (16a) and (16b), and ignoring the higher order terms 
(H.O.T.), we arrive at the famous optical flow equation: 

0=++ tyx EvEuE  (16) 

where Ex,  Ey and Et are the partial derivatives (i.e., ∂I/∂x, ∂I/∂y, ∂I/∂t ) of 
I(x,y,t) in x, y, and t directions, respectively, and (u,v) =(δx/δt, δy/δt) is the 
optical flow vector at the current point (x,y,t). 
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The optical flow equation builds a relation between the apparent motion 

(u,v), and the spatial and temporal derivatives of the image brightness 
function; the derivatives can be estimated directly from the image function 
I(x,y,t). However, it includes two variables in a single equation for each 
point.  This leads to the aperture problem as shown in Figure 5: only the 
component of the motion field in the direction of the spatial image gradient 
can be determined. An example of the aperture problem is the barber pole 
illusion. The stripes within the pole appear to move upwards, but the actual 
motion is a horizontal movement. The component in the direction 
perpendicular to the spatial gradient is not constrained by the optical flow 
equation, unless a corner can be seen in the small aperture window that is 
used to calculate the spatial-temporal gradients [Question 5]. In the 
following subsection, we will discuss a few basic techniques to solve this 
problem in more principled ways. 

 

 

Figure 5. Aperture problem 

 

3.2 Estimating Optical Flow 

We will discuss three techniques for estimating optical flow: the constant 
flow method, the weighted least square method and the affine flow method. 
All the three methods are designed to give solutions to the aperture problem 
and to generate a dense optical flow field. The complexity of the methods is 
from the simple to sophisticated and accurate. 

 
1. Constant Flow Method  

● Assumption: The motion field is well approximated by a 
constant vector within any small region of the image plane 
(corresponding to a frontal planar patch). 
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● Solution: Least square of two variables (u,v) from n×n 
equations that are provided by an n×n spatial window in I(x,y) at 
time t. Thus a linear equation system can be formed as Av = b, 
where A is the n2×2 coefficient matrix, v=(u,v), and b  is  an n2 
dimension vector. 

● Condition: ATA is NOT singular (null or parallel gradients)  
 

2. Weighted Least Square Method 
● Assumption: The motion field is approximated by a constant 

vector within any small region, and the error made by the 
approximation increases with the distance from the center where 
optical flow is to be computed 

● Solution: Weighted least square of two variables (u,v) from n×n 
equations that are provided by an n×n spatial window in I(x,y) at 
time t 
  

3. Affine Flow Method 
● Assumption: the motion field is well approximated by a affine 

parametric model  uT = ApT+b (a plane patch with arbitrary 
orientation) 

● Solution: Least square of 6 variables (A,b) from n×n equations 
that are provided by an n×n spatial window in I(x,y) at time t 

 

Figure 6. Estimating optical flow: three methods 

3.3 Using Optical Flow 

Now we give a sketch of the algorithm to infer 3D motion and structure 
from optical flow.  

 
[Input] We assume that the intrinsic camera parameters are known, and a 

dense motion field (optical flow) of single rigid motion has been already 
estimated. 

 
[Algorithm]The algorithm is a good compromise between ease of 

implementation and quality of results. 
 
Stage 1: Translation direction  
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The instantaneous epipole (x0, y0) can be obtained through approximating 
the motion parallax. Then, we can obtain the translational vector up to a 
scale s (following equation (7)): 
     (Tx, Ty, Tz) = s (x0,y0,f)  (16) 

The key is to find more than two pairs of instantaneously coincident image 
points. In reality, an approximation is made to estimate differences of motion 
vectors for almost coincident image points, then the epipole can be found by 
the intersection of the translational motion vectors (equation (15), Figures 3 
and 4). 
 

Stage 2: Rotation flow and depth 
For a point (x,y) in the reference image, since we know its original flow 

vector (vx, vy), and the direction of 3D translational component as in 
equation (16), we can derive one linear equation (without including depth) of 
the three angles from equation (5). This can be achieved by re-arranging 
equation (5) as: 
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Equation (17) includes two equations; by dividing the first one by the second 
one, we arrive at a linear equation of the three angles (ωx, ωy, ωz). Then a 
least approximation can be calculated by using at least three points with 
known motion vectors. 
 
Finally, the depth Z of each point can be found up to the same scale s, by 
using equation (17), given that we know the angular velocity (ωx, ωy, ωz), 
and the translation vector  (Tx, Ty, Tz) = s (x0,y0,f) up to the scale s. 

 
 [Output]: As a summary, here is the list of outputs using the algorithm: 
■ Direction of translation (f Tx/Tz, f Ty/Tz, f) = (x0, y0, f), thus the 

translation vector up to a scale s:     (Tx, Ty, Tz) = s (x0,y0,f) 
■ Angular velocity  ω  = (ωx, ωy, ωz) 
■ Depth Z (up to a scale s) given T/s and ω  
■ 3-D coordinates of scene points (up to a common unknown scale s ) 
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4. FEATURE-BASED APPROACH (FROM HAO 

TANG’S SURVEY) 

4.1 Two frame method - Feature matching approach 

The key in a feature matching method is to detect features. A number of 
feature detection methods can be found in Section 4.2.2 in the Stereo Vision 
Chapter. After features are extracted from two consecutive frames, a match 
can be performed between them. Due to the small motion between the two 
consecutive frames, corresponding features should be very similar to each 
other. After the feature correspondences are built, we can treat them as a 
sparse motion field. Then, the optical flow method we described in Section 
3.3 can be applied to estimate 3D structure and motion. Alternative more 
general approaches have been developed for solving the structure from 
motion problem even under large motion. 

 
First we assume that the intrinsic parameters of a camera or cameras are 

known. After correspondences based on feature points between two or more 
different views are found, relative camera poses can be estimated. The 
problem can be stated as the following: 

 
Problem statement: recovering relative camera poses from the 

correspondences of a set of 2D points in two consecutive 2D frames of the 
image sequence.  

 
Nonlinear solution 
The basic idea of a direct solution is as follows. Two observations of a 

3D point in the two images give us four measurements, i.e., a pair of 2D 
points (x1,x2), (y1,y2), but we have three unknowns, i.e., its 3D coordinates 
<X, Y, Z>. This is in addition to the 6 unknown extrinsic parameters (3 for 
orientation and 3 for translation) common for all the points. Thus, if n points 
are observed in the two views, we have 6 + 3n unknowns, and 
4n measurements (nonlinear equations). If we only have to recover the 
camera translation up to a scale factor, we only have 5 + 3n unknowns. 
Therefore, in theory five corresponding points are enough to solve the 
nonlinear system. Kruppa (1913) proves that the system may have up to 
eleven solutions using five points. Recently, Nistér (Nistér 2004) proposed 
an efficient solution. It uses the epipolar constraint, and constraints of the 
fundamental matrix and the essential matrix to construct a ten-degree 
polynomial and then obtain the camera pose by solving it. Because the 
solution is somewhat ad hoc, H. Li and R. Hartley (Li and Hartley 2005) 
give a simple solution using a hidden variable technique. 
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Linear solution 
A non-iterative algorithm (i.e., 8-point algorithm) to solve the problem of 

relative camera placement was first given by (Longuet-Higgins 1981). 
Assuming the intrinsic parameters of the camera are known, the extrinsic 
parameters (R and T) can be solved given 8 pairs of point correspondences 
in two views. A unique solution may be obtained by solving the linear 
equation system. Later, the algorithm was generalized for uncalibrated 
cameras (Hartley and Zisserman 2000), i.e., cameras with unknown intrinsic 
parameters. 

 

4.2 Multiple frame method – SLAM and SfM 

Pose estimation is a key step in visual motion. In this subsection, typical 
solutions that obtain both camera pose and structure of sparse features are 
reviewed. These solutions are classified into two groups: Simultaneous 
Localization and Mapping (SLAM), and Structure form Motion (SFM).  

SLAM was first proposed in robot field around mid-1980s (Smith, and 
Cheeseman 1986). This topic addresses an important problem in robotics: to 
build up a map in an unknown environment meanwhile keeping track of a 
robot’s current position. It is typically treated as the problem of estimating 
spatial uncertainties of both scene structure and the robot’s location, and it is 
usually modeled in a probabilistic framework. The Kalman filtering is one of 
the most popular mathematic tools used in SLAM systems. It is a linear 
Gaussian filter within the probabilistic framework to produce optimal 
estimates of the states of a dynamic system. Starting from the 90’s, the 
framework has been extensively applied in the robotic field to solve SLAM 
problems (Leonard and Durrant-whyte 1991). In robot navigation, the 
estimation of a mobile robot’s locations at different time stamps is assumed 
to be a dynamic system. At any time stamp, the Kalman filter predicts a 
robot location based on the estimated location in the previous time stamp 
under the assumption that the predication has linear relation with the robot 
actual location and that the noise complies with Gaussian. Then, a sensor 
(i.e., a laser range finder) gives a measurement of robot location, which has a 
linear relation with the robot’s actual location with a Gaussian noise added. 
Then, the final optimal estimate of robot location is obtained by combining 
both measurement and predication. 

 
Basics of the Kalman Filtering: (TO DO) 
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Different traditional range sensors (e.g. laser rangefinder 
and sonar sensor) are used in SLAM. Recently, however, video camera has 
been applied because it can provide richer information than the traditional 
sensors, although the algorithms with a camera are not yet as robust as 
people expect them to be.  

On the other hand, classical SFM methods solve the “mapping and 
localization” problem by using iterative global optimization methods (bundle 
adjustments) that minimizes the overall re-projection errors of sparse 
features among an image sequence (Hartley and Zisserman 2000). Recently 
these two classes of methods are coming together; many solutions have been 
provided by combining the above two groups of methods (e.g., Mouragnon 
2006, Klein and Murray 2007). 

Recent advances in vision algorithms and hardware enable the design and 
implementation of real time visual navigation systems. However, algorithms 
using pure vision methods still face the well-known problems (i.e. drift and 
break), though systems using stereo camera can produce relatively reliable 
results. One general solution relies on an optimization method, either locally 
or globally, such as in bundle adjustment techniques [XXX]. However, 
solving the problem in real-time for a large environment is not recommended 
due to the expensive computation of global optimization. The PTAM 
partially solves the problem, but it’s still limited to a small work space. 
Therefore, incorporating probabilistic framework gives us an alternative 
solution to build a more reliable system. In other words, the Kalman filter is 
beneficial when processing time is limited, otherwise bundle adjustments 
can give optimized solutions. This is shown in the work of Strasdat, et al. 
(Strasdat, et al. 2010). Further, hardware improvement or hardware speedup 
may enable real time visual odometry systems using global optimization to 
produce reliable and accurate results in the near future. 

4.3 Using a sparse motion field - Factorization method 
(More here) 

● 3D motion and structure by feature tracking over frames 
● Factorization method 

■ Orthographic projection model 
■ Feature tracking over multiple frames 
■ SVD   

 
 
 
 

Figure 7. Factorization 
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5. MOTION-BASED VIDEO COMPUTING 

5.1 Change Detection (From Tao Wang’s Survey) 

There are mainly two conventional approaches to change detection with a 
stationary camera: temporal difference and background subtraction. Note 
that in surveillance applications, cameras are usually stationary. 

The first approach (temporal difference) consists of the subtraction of 
two consecutive frames followed by thresholding. The second approach 
(background subtraction) includes the subtraction of a reference background 
model and current image followed by a labeling process. Those images are 
usually smoothed in the preprocessing and the noise in the difference image 
is reduced by morphological operations.   

The advantages of using temporal difference are: 1) it is adaptive to 
changes in dynamic environment; and 2) no assumption is made about the 
scene. However, only the motion at edges is detectable for a homogeneous 
object. On the other hand, background subtraction has better performance in 
extracting whole objects, but it is sensitive to dynamic changes in the 
environment.  

Therefore, the performance of the object detection using background 
subtraction is significantly affected by the background modeling step. The 
terms foreground and background are not scientifically defined. A moving 
object is usually considered as a foreground but when it remains still for a 
long period of time, it is considered a part of the background. Also, it is 
possible to have a moving object to be considered a part of the background if 
it is not of interest for the target application. Therefore the meaning of 
background may vary across different tasks. In short, a relatively static 
model in the scene is considered as the background which is partially 
occluded by entering objects that is considered as the foreground. For video 
sequence, the background needs to be continuously updated during a period 
of time in order to make the foreground extraction more robust. However, a 
good updating of the background model is very difficult to achieve due to 
the factors of illumination variance, movement of the background objects 
such as shaking branches, their shadows, etc. A good overview of the most 
frequently cited background modeling algorithms is given in (McIvor, 2000). 
A comparison between various background modeling algorithms is given in 
(Toyama et al., 1999), as well as a discussion on the general principles of 
background maintenance systems.   
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The background modeling can be achieved using a Gaussian model that 
models the intensity of each pixel with a single Gaussian distribution (Wren 
et al., 1997) or with a mixture of Gaussians (Stauffer and Grimson, 2000; 
Tian et al., 2008a). A single Gaussian models the color of each pixel of a 
stationary background with a single 3D (Y, U, and V color space) Gaussian. 
Initially several consecutive frames are trained for the mean and covariance 
of the background model. The likelihood of pixel color is computed for 
every pixel in the input frame. The pixels that deviate from the background 
model are labeled as the foreground pixels. However, a single Gaussian is 
not a good model to multiple color changes due to the repetitive object 
motion, shadows or reflectance in outdoor surveillance (Gao et al., 2000).  
Stauffer and Grimson (2000) use a mixture of Gaussians to check a pixel in 
the current frame against the background model by comparing it with every 
Gaussian in the model until a matching Gaussian is found. If a match is 
found, the mean and variance of the matched Gaussian is updated; otherwise 
a new Gaussian with the mean equal to the current pixel color and some 
initial variance is introduced into the mixture. Each pixel is classified based 
on whether the matched distribution represents the background process. 
However, it cannot be used to adapt to quick lighting changes and handle 
shadows. Tian et al. (2008a) model the mixture of Gaussians adaptively and 
integrate texture information of the area that is caused by the lighting 
changes similar to the background into the foreground mask computation. To 
remove shadows, they normalize the intensities calculated at each pixel of 
the foreground region between the current frame and background image. 
Finally, the abandoned objects are detected from the static foreground using 
a region growing method. 

In outdoor surveillance, most color bands are sensitive to illumination 
variations. In scenarios where the illumination effect is inevitable, optical 
flow based method can be used to detect independent moving objects even in 
the presence of camera motion. Although it is commonly used as a feature 
for contour tracking (Cremers et al., 2003), it is useful in motion 
segmentation where a motion vector is assigned to every pixel of the image 
by comparison of successive frames. Thus, object correspondences can be 
built to extract the foreground objects from the background. More detailed 
discussion of using optical flow can be found in Barron (1994) and Shin 
(2005). 

In the last few years, there has been increasing interest in moving target 
detection (particularly human detection) using cameras on moving platforms. 
This is more challenging than object detection from stationary cameras, but 
these methods could be used for surveillance applications when cameras are 
mounted on an aerial or a ground vehicle, and will extend the capacity of 
traditional video surveillance. Typically, there are two approaches in object 
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(human) detection with a moving camera. The first approach uses a brute 
force multi-scale shift window to generate many candidates for possible 
humans, and rely on the following classifiers to pick up the correct human 
regions (Wojek et al., 2009). The second approach uses a motion-based 
background alignment, for example, by assuming the moving people are on a 
relatively flat ground plane. This is valid for high-altitude aerial surveillance 
or low-altitude aerial surveillance with a relative flat background (e.g., Yu 
and Medioni, 2009), or a moving vehicle on a flat road (e.g., Enzweiler et 
al., 2008). But for aerial or ground surveillance of urban areas, a 3D 
background alignment (Tang and Zhu, 2008) approach and a multi-frame 
affine background modeling approach (Sheikh, et al, 2009) have been 
proposed. 

 

5.2 Video mosaicing (From Zhu’s ECV Item) 

Image mosaicing is the process of generating a composite image (mosaic) 
from a video sequence, or in general from a set of overlapping images of a 
scene or an object, usually resulting in a mosaic image with a larger field of 
view than any of the original images. 

5.2.1 Background 

When collecting video about a scene or object, each individual image in 
the video may be limited compared to the desired final product, including 
limitations in the field of view, dynamic range, or image resolution. This is 
the case not only with personal video capture [1,9, 10], but also with image-
based rendering [12, 14,15], aerial videography [7, 11, 18-20], and document 
digitization [5]. Generating mosaics with larger fields of view [5, 6, 9, 10, 
14, 20], higher dynamic ranges [4], and/or higher image resolutions [8] 
facilitates video viewing, video understanding, video transmission and 
archiving.  When the major objective of video mosaicing is to generate a 
complete (e.g. 360 degrees) view of an object (or a scene) by aligning and 
blending a set of overlapping images, the resulting image is also called a 
video panorama [10, 14, 15]. 

5.2.2 Theory and Application 

Video mosaicing takes as input a video sequence and generates one or 
more mosaiced images with either a larger field of view, a higher dynamic 
range, a higher image resolution, or a combination of them. This entry will 
mainly discuss the principles in generating large field of view mosaics 
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(panoramas), but the principles can also be  applied to mosaics for other 
objectives (high dynamic range imaging and super-resolution imaging). 
Here, video mosaicing implies that the images in the sequence are taken by a 
video camera, usually at 30 frames per second, but images taken by a digital 
camera in such a way that there is a large amount of spatial overlap between 
two consecutive frames can also be viewed as a video sequence.  

There are three key components in a typical video mosaicing algorithm: 
(1) motion modeling, (2) image alignment, and (3) image composition.   

 
Depending on the type of camera motion and the structure of the objects 

or scenes, the motion model can be a 2D rigid motion model (rotation, 
translation, scaling), an affine model, a perspective model (homography), or 
a full 3D motion model. Many popular video mosaicing methods [16], e.g., 
in [4, 15], assume a pure rotation model of the camera in which the camera 
rotates around its center of projection (i.e., the optical center, sometimes 
called nodal point). In this case, the motion between two consecutive frames 
can be modeled by a homography, which is a 3x3 matrix. Then, depending 
on the fields of view (FOVs) of the mosaic, the projection model of the 
mosaic can be either a perspective projection (FOV is less than 180 degrees), 
a cylindrical projection (FOV is 360 degrees in one direction), or a spherical 
projection (full 360 degrees FOV in both direction). Figure 8 illustrates the 
relations between the original images and the three types of mapping 
surfaces each image can be projected onto: planar, cylindrical and spherical 
surfaces.  

 

 
Figure 8. Mapping a set of overlapping images into a mosaic: planar, cylindrical or spherical 
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However, the applications of video mosaics from a pure rotation camera 
are limited to mostly consumer applications such as personal photography, 
entertainment and online maps. For more specialized applications such as 
surveillance, remote sensing, robot navigation, and land planning, to name a 
few, the motion of the camera cannot be limited to a pure rotation. 
Translational motion usually cannot be avoided, causing the motion parallax 
problem to arise. There are three kinds of treatments for the motion parallax 
problem.  

First, when the translational components are relatively small, the motion 
models can be approximated by a pure rotation. In this case, the generated 
mosaics lack geometric accuracy but with some treatments for the small 
motion parallax and moving targets, such as de-ghosting [15] the mosaics 
usually look very good.  

Second, if the scene can be regarded as planar, for example, because the 
distance between the camera and the scene is much larger than the depth 
range of the scene, the perspective motion model (homography) or in some 
applications, a 2D rigid motion model or an affine model can be used 
[6,11,19]. In these cases, the problems are much simpler due to the 2D scene 
assumption.  

Finally, a 3D camera motion model is applied when the translational 
components of the camera motion are large and the scene is truly 3D.  In this 
case motion parallax cannot be ignored or eliminated. Examples include a 
camera mounted on an airplane or a ground vehicle translating a large 
distance [7, 9, 12, 20], or a camera’s optical center moving on a circular path 
[10, 14]. Here, multi-perspective projection models are used to generate the 
mosaics, enabling stereo mosaics or stereo panoramas to be created that 
preserve the 3D information in the scene, allowing the structure to be 
reconstructed and viewed in 3D. In this case, the accuracy of geometric 
modeling and image alignment is crucial for achieving the accuracy of 3D 
reconstruction and viewing. 

Image alignment (or image registration) is the process of finding the 
alignment parameters (e.g., the homography in the rotational case) between 
two consecutive images. Image alignment is a critical step in mosaic 
generation, for both seamless mosaicing and for accurate geometric 
representation. There are two approaches to image registration: direct 
methods and feature-based methods.  

In a direct method, a correlation approach is used to find the motion 
parameters. Here, the images are divided into small blocks and each block in 
the first image is searched for over a predefined spatial range in the second 
image. The best match is determined by finding the maximal correlation 
value. Other approaches such as using optical flow or using an iterative 
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optimization framework also belong to the direct methods, in which no 
explicit feature points are extracted.  

In a feature-based method, a feature detection operator such as the Harris 
corner or SIFT (Scale Invariant Feature Transform) detector is used first, 
then the detected features are matched over the two frames to build up 
matches [16]. Either way, a parameter model is fitted using all the matches, 
usually using a robust parameter estimation method to eliminate erroneous 
feature matches. For more accurate or consistent results, a global 
optimization can be applied to more than two frames. For example, global 
alignment may be applied to all the frames in a full 360-degree circle in 
order to avoid gaps between the first and the last frame [15]. 

Image composition is the step of combining aligned images together to 
form the viewable mosaic. There are three important issues in this step: (1) 
compositing surface determination, (2) coordinate transformation and image 
sampling, and (3) pixel selection and blending. Mosaicing with the rotational 
camera model is a good starting point to discuss these issues (Figure 8); 
mosaic compositing under other motion models are discussed afterwards.   

If the video sequence only has a few images, then one of the images can 
be selected as the reference image, and all the other images are warped and 
aligned with this reference image. In this case, the reference image with a 
perspective projection is the compositing surface, and therefore the final 
mosaic is a larger perspective image, which is an extension of the field of 
view of the reference image. However, this approach only works when the 
view angles of the images span less than 90 degrees. If the camera rotates 
more than 90 degrees, a cylindrical or a spherical surface should be selected 
as the compositing surface. A cylindrical surface is a good representation 
when a full 360 panoramic mosaic is to be generated, in one direction. And a 
spherical surface is suitable if 360x360 degree mosaics are to be created.  

 After a compositing surface is selected, the next issue is coordinate 
transformation and sampling. This is also called image warping. Given the 
motion parameters obtained in the image registration step, the mapping 
between each frame to the final compositing surface can be calculated: for 
any pixel in an original image frame, its pixel location in the composition 
surface can be calculated. For generating dense pixels, an interpolation 
schema is needed, such as nearest neighbor, bilinear, or cubic interpolation 
methods. Usually a backward mapping relation is utilized such that in the 
mapping area on the compositing surface, each pixel obtains a value from 
the original image frame, line by line, and column by column. Therefore, for 
each integer pixel location in the mosaic, a decimal pixel location can be 
found in the original image; then an interpolation method is used in the 
original image to generate the value of the pixel in the mosaic. 
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The third important issue in image composition is pixel selection and 
blending. Naturally in generating mosaics, there are overlaps among 
consecutive frames, resulting in two key questions:  First, Where do we 
place the seam (i.e., the stitching line)?  (the pixel selection problem.)  
Second, How do we select the values of pixels in the overlapping areas? (the 
pixel blending problem.) For the second problem, the simplest methods are 
to average all the pixels in the same location in the overlapping area, or to 
use their median value. The former might create a so called ghost effect due 
to moving objects, small motion parallax or illumination changes, while the 
latter approach may generate a slightly better view effect. More sophisticated 
blending methods include Laplacian pyramid blending [3] and gradient 
domain blending [1]. The pixel selection problem is important when moving 
objects or motion parallax exist in the scene. In these cases, to avoid a 
person being cut in half or appearing twice in the mosaic, or to avoid cutting 
a 3D object that exhibits obvious motion parallax and hence could produce 
obvious misalignment in the mosaic, an optimal seam line can be selected at 
pixel locations where there are minimum misalignments between two frames 
[4]. 

 
Other considerations in image composition are high dynamic range 

imaging [4] and improved image resolution mosaicing [8]. For the former, a 
composite mosaic represents larger dynamic ranges than individual frames 
using varying shutter speeds and exposures, while the latter uses the camera 
motion to generate higher spatial resolution in the mosaiced image than that 
of the original images.  

 
So far the discussions on image composition have focused primarily on 

2-D mosaics, assuming either the camera motion is (almost) a pure rotation, 
or the scene is flat or very far from the camera, in order to avoid or reduce 
the motion parallax problem. When motion parallax cannot be avoided, 3-D 
mosaics have to be considered. Methods have been proposed to generate 
mosaics, for example, for curved documents based on 3-D reconstruction 
[5], when the camera motion has translational components. Needless to say, 
with 3-D reconstruction, a composite image with a new perspective view, or 
a new projection representation (such as orthogonal projection), can be 
synthesized from the original images. However, a drawback of this approach 
is that a full 3-D reconstruction is needed, which is both computationally 
expensive and prone to noise.  A more practical yet still fundamental 
approach without 3-D reconstruction is to generate multi-perspective 
mosaics from a video sequence, such as mosaics on an adaptive manifold 
[11], creating stitched images of scenes with parallax [7], and creating 
multiple-center-of-projection images [12]. When the dominant motion of the 
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camera is translation, the projection model of the mosaic can be a parallel-
perspective projection, in that the projection in the direction of the motion is 
parallel, whereas the projection perpendicular to the motion remains 
perspective. This kind of mosaic is also called pushbroom mosaic [17] since 
the projection model of the mosaic in principle is the same as pushbroom 
imaging in remote sensing. A more interesting case is that by selecting 
different parts of individual frames, a pair of stereo mosaics can be generated 
that exhibit motion parallax, while each of them represent a particular 
viewing angle of parallel projection [20]. To generate stereo mosaics, the 
motion model is 3D and therefore a bundle adjustment for 3D camera 
orientation is needed. The projection model is parallel-perspective, and 
therefore the composition surface is a plane that holds the parallel-
perspective image. To generate a true parallel-perspective view in each 
mosaic for accurate 3D reconstruction, pixel selection is carried out for that 
particular viewing angle and a coordinate transformation is performed based 
on matches between at least two original images for each pixel. A similar 
principle can be applied to concentric mosaics with circular projection [10, 
14].	
  

 
In some applications such as surveillance and mapping, geo-referencing 

mosaicing is also an important topic. This is usually done when geo-location 
metadata is available, for example, from GPS and IMU measurements [18, 
19] taken with the video/images. Geo-referenced mosaics assign a geo-
location to each pixel either by directly using the metadata from the video 
frames used to generate the mosaic, or when metadata is not available, the 
video frames are aligned to a geo-referenced reference image such as a 
satellite image. 

 
Video mosaicing techniques are also used for dynamic scenes, for 

example, to generate dynamic pushbroom mosaics for moving target 
detection [17], and to create animated panoramic video textures in which 
different portions of a panoramic scene are animated with independently 
moving video loops [2, 13]. 

 
Figure 9 shows a 360-degree panoramic mosaic represented on a 

cylindrical surface, which is generated from a video sequence taken by a 
video camera that roughly rotates around its optical center. Figures 10 and 
11 show two stereo mosaics that can be viewed with a pair of 3D glasses, red 
for the right eye and the cyan for the left eye. High resolution mosaics can be 
viewed by clicking the images in the figures in the online edition. The 
concentric stereo mosaic in Figure 10 is generated from a video sequence 
taken by a hand-held video camera that undertakes an off-center rotation 
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with 360 degrees of field of view coverage. Figure 11 is a pair of pushbroom 
stereo mosaics created from a video sequence taken by a camera looking 
down from an airplane flying over the Amazon rain forest. 

 

 

Figure 9. A 360-degree panoramic mosaic generated on a cylindrical surface 

http://www-cs.engr.ccny.cuny.edu/~zhu/ThlibCylinder.JPG 
 

 
Figure 10. A pair of concentric mosaics of the City College of New York campus 

http://www-cs.engr.ccny.cuny.edu/~zhu/CSCI6716/CCNYCampus.jpg 
 

 

Figure 11. A pair of pushbroom mosaics of the Amazon rain forest 

http://www-cs.engr.ccny.cuny.edu/~zhu/57z10StereoColor.jpg 
 

 
 

5.3 Layered representation (From Hao Tang’s Survey) 

Even though a precise 3D model reconstruction is often desirable, it is 
not a trivial task and may not be required in some applications, such as 
image-based rendering and video coding. Therefore, layered-based methods, 
under the names of motion segmentation, layered segmentation, or layered 
representations have been proposed to represent a 3D scene from multiple 
images or a video sequence captured by a camera without explicitly 
computing the real 3D model. Common to these methods is that pixels 
sharing a common motion model are grouped into a single motion layer by 
analyzing the 3D geometric relations among different layers in the scene. 
Both ego-motion induced by the camera and independent motion induced by 
moving targets can be represented. 
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In order to improve the robustness, the layered segmentation problem is 
usually modeled as a global optimization problem. Representative 
approaches to solving the problem include Bayesian frameworks (Torr et al. 
2001), rank constraints (Ke and Kanade 2001, 2004) and graph cuts (Xiao 
and Shah 2004).  

The layered segmentation task usually consists of three sub-tasks:  
(1) the initial estimation of the number of layers;  
(2) the parameter (motion model) estimation of each layer; and  
(3) the assignment of a layer label to each pixel.  

The algorithms of the layer segmentation are usually performed iteratively. 
 

6. CONCLUDING REMARKS 

After learning motion, you should be able to: 
■ Explain the fundamental problems of motion analysis 
■ Understand the relation of motion and stereo 
■ Estimate optical flow from an image sequence 
■ Extract and track image features over time  
■ Estimate 3D motion and structure from sparse motion field 
■ Extract depth from a video under translational motion 
■ Know some important applications of motion, such as change 

detection, image mosaicing and motion-based segmentation 
 

7. QUESTIONS AND PROJECTS 

7.1 Questions 

1. Could you obtain 3D information of a scene by viewing the scene by a 
camera rotating around its optical center? Show why or why not. What 
about moving the camera along its optical axis? 
 
2.  Write out the equation of a moving plane. 
 
3. Derive the homography of a moving plane. 
 
4. Show that the rotation compensation can be done by image warping after 
finding three (3) pairs of coincident points  



#. Visual Motion 29 
 
 
5. Show that the aperture problem can be solved if a corner is visible through 
the aperture. 

7.2 Projects 

[TO DO] 
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