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Abstract
For many lawmakers, energy-efficient buildings have been
the main focus in large cities across the United States. Build-
ings consume the largest amount of energy and produce the
highest amounts of greenhouse emissions. This is especially
true for New York City (NYC)’s public and private buildings,
which alone emit more than two-thirds of the city’s total
greenhouse emissions. Therefore, improvements in building
energy efficiency have become an essential target to reduce
the amount of greenhouse gas emissions and fossil fuel con-
sumption. NYC’s buildings’ historical energy consumption
data was used in machine learning models to determine their
ENERGY STAR scores for time series analysis and future pre-
diction. Machine learning models were used to predict future
energy use and answer the question of how to incorporate
machine learning for effective decision-making to optimize
energy usage within the largest buildings in a city. The re-
sults show that grouping buildings by property type, rather
than by location, provides better predictions for ENERGY
STAR scores.

CCS Concepts: • Applied computing → Forecasting; •
Computing methodologies → Feature selection; • Net-
works → Network performance evaluation.

Keywords: Building Energy Efficiency, Data Analysis, Ma-
chine Learning
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1 Introduction
Most of the city’s greenhouse gas emissions come from build-
ings, with higher temperatures, more frequent and intense
rainfall, and rising seas chipping away at New York’s coastal
edges. The City Council passed Local Law 97 in 2019 aimed
at reducing the greenhouse gas (GHG) emissions that cause
climate change. There are about 12 months until the deadline
for building owners to meet the first GHG limits, and there is
a threat of fines that could climb to millions of dollars a year
for buildings that do not comply. Some buildings are owned
by large corporations, while others are run by families and
mom-and-pop small investors. Real estate companies with
large portfolios are on track to avoid penalties, but mom-
and-pop companies that own older buildings are still trying
to figure out what they need to do and how they’ll pay for
these projects [3].

Meeting greenhouse gas emission limits is easier for newly
constructed buildings, but for older buildings, especially res-
idential buildings, compliance is difficult. Many buildings
still have oil-burning furnaces, and obtaining the funds for
a complete renovation is challenging [12]. Building owners
need help identifying building processes to reduce emissions.
Some are just starting out in the exploratory phases, while
others have projects in the works. However, confusion about
how the law works and uncertainty about the next steps,
including how to pay for upgrades, has been the experience
so far for many property owners and co-op boards. Most
building owners to whom the law applies must comply by
2024, and citywide, about 70% of buildings are expected to
be ready as they are, according to a November report from
the New York City Comptroller [15]. However, for many
of those same buildings, starting in 2030 when emissions
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limits decrease, only 30% of the buildings will already be in
compliance.
The ENERGY STAR rating [14] is NYC’s measure of a

building’s energy efficiency. It is determined using the United
States Environmental Protection Agency (EPA) online bench-
marking tool, ENERGY STAR Portfolio Manager [13], which
compares a building’s energy performance to similar build-
ings in similar climates.

If a building’s energy consumption can be reduced through
data analysis, it can help lawmakers develop transitional
initiatives to make the city carbon neutral. This analysis
provides insights into how implementing or replacing equip-
ment can minimize energy waste and emissions, ultimately
improving the energy score. Considering the high cost of
adding new systems to buildings, understanding how to
maximize energy efficiency while keeping costs low offers
an economic advantage. These changes would enhance the
quality of life for all New Yorkers and address the challenges
posed by climate change. Potential measures may involve
identifying green and sustainable alternatives for outdated
equipment in various buildings. The objective of this study
is to present a new algorithm with significant features appli-
cable to any NYC building, aiming to reduce greenhouse gas
emissions.
The primary contribution of this work includes the fol-

lowing:
1. Identified the most significant factors impacting build-

ing energy efficiency based on NYC Energy and Water
Data Disclosure.

2. Utilized classification and regression models to predict
the ENERGY STAR score of a building based on speci-
fied parameters, in order to understand the impact of
each factor on determining the ENERGY STAR score.

3. Employed time series analysis on building data from
2014 to 2020 and predicted its value in 2021 using Long
Short-Term Memory (LSTM) and Facebook Prophet
models.

The paper is organized as follows. Section 2 discusses the
state-of-the-art models. Section 3 provides an overview of
the dataset. Next, Section 4 describes the methods applied
in the evaluation, and Section 5 compares and discusses the
results. Finally, Section 6 concludes the paper and provides
potential further research.

2 Related Work
The integration of artificial intelligence (AI) in big cities aids
in shaping energy consumption patterns and planning for
the future. These cities consume large amounts of energy and
generate GHG emissions, which poses a persistent challenge
to address. The reduction of emissions can help improve
urban air quality and mitigate the frequency of disastrous
weather events. Various studies on building energy efficiency
utilize artificial neural networks and cluster-based methods

to develop predictive models. Research based on the Com-
mercial Buildings Energy Consumption Survey [18] suggests
that grouping data into smaller samples yields better pre-
dictions. When buildings are grouped by property type, the
artificial neural network model exhibits lower mean squared
error compared to multiple linear regression approaches for
each specific property type.

Artificial neural networks (ANN) have emerged as the pri-
mary method for predicting energy consumption. Mena et
al. [4] utilized ANN to estimate Spain’s CIESOL bioclimatic
building electricity demand. The study demonstrated that
outdoor temperature and solar radiation significantly impact
electricity consumption. Similarly, Yalcintas et al. [18] em-
ployed ANN to predict electricity consumption per square
meter (EUI) based on energy benchmarking data from the U.S.
Commercial Buildings Energy Consumption Survey, consid-
ering climate variations. The model incorporated physical
properties and occupancy information for office-type build-
ings. To enhance accuracy, categorical variables, such as
lighting and cooling percentages, were converted from nom-
inal to categorical before developing the ANN model. The
predictive accuracy of EUI was compared with multiple lin-
ear regression methods, showcasing a significant advantage
over simple linear regression.

Clustering algorithms have been employed to provide de-
tailed insights into building energy usage. Petcharat et al.
[9] utilized three different methods to estimate potential
energy savings in lighting systems in Thailand. The first
two methods compared the light power density (LPD) and
average LPD of each building to the target, while the third
method employed the Expectation Maximization algorithm
for clustering. The research demonstrates that cluster-based
analysis (with an error range of 0-11%) outperforms the aver-
aging method, which consistently underestimated potential
savings (with an error range of 1-100%) due to its susceptibil-
ity to outliers. Gao et al. [2] also demonstrate that employing
clustering algorithms with energy benchmarking data yields
higher accuracy compared to relying solely on the ENERGY
STAR score. The clustering approach takes into account all
relevant building features that impact energy consumption,
whereas the ENERGY STAR approach merely categorizes
buildings based on use types without considering the influ-
ence of other building features. The proposed methodology
clusters buildings based on their total energy performance
and climate differences.

The aforementioned research offers valuable insights into
predictive models for building energy efficiency. However,
these studies do not address the challenges faced by building
owners in implementing specific changes to improve energy
efficiency effectively. The use of the ENERGY STAR rating
alone is not sufficient. Scofield et al.[11] analyzed the EN-
ERGY STAR models for typical building types and found that
the scores produced by their models have uncertainties of
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Table 1. ENERGY STAR score by letter grade.

ENERGY STAR Score
A – score is equal to or greater than 85
B – score is equal to or greater than 70 but less than 85
C – score is equal to or greater than 55 but less than 70
D – score is less than 55
F – Benchmarking information not submitted

±35 points. The study concludes that there is no justifica-
tion for quantitative claims of energy savings or reduction
in GHG emissions based solely on ENERGY STAR scores.
This paper aims to fill that gap by analyzing NYC energy
and water benchmarking data and developing an algorithm
to understand the impact of different building features on
energy consumption and greenhouse gas emissions.

3 Dataset
The NYC Mayor’s Office of Climate and Environmental Jus-
tice conducts an annual data collection process through the
EPAENERGY STAR PortfolioManager, gathering over 29,000
building metrics related to water and energy consumption.
This data encompasses privately owned buildings exceeding
25,000 sq ft and City-owned buildings exceeding 10,000 sq
ft [7]. The primary purpose of this data collection process
is to enable building owners to measure and compare their
energy and water consumption with similar structures in
the city, promoting transparency in building energy and wa-
ter usage [8]. The collected data includes various building
metrics such as water consumption, electric consumption,
gas consumption, and greenhouse gas (GHG) emissions. Ad-
ditionally, each building is assigned a ENERGY STAR score
based on its energy use compared to the best and worst per-
forming buildings, as well as those in between. This score is
calculated by comparing the estimated energy values with
the actual energy data provided, allowing for benchmarking
against peer buildings within the same property type group
[14].
The present research utilized data obtained from the En-

ergy and Water Data Disclosure, sourced from NYC Open
Data [6], spanning the years 2014 to 2021. The original
dataset included a substantial number of buildings with di-
verse property types. However, for the purpose of our study,
we focused on investigating the relationship between prop-
erty types and locations. Consequently, our analytical sample
comprised 3777 residential buildings in the Bronx, 1491 office
buildings in Manhattan, and 513 educational buildings in
Brooklyn. The selection of these buildings was guided by
specific criteria to ensure variations in location and primary
property type, enabling us to compare significant features
between the groups.

4 Method
The objective of this research is to identify the most signif-
icant factors that impact building energy efficiency and to
forecast future energy wastage by considering the existing
equipment and potential effects of equipment replacement
on energy wastage and emissions. The researchmethodology
encompasses several stages. Firstly, classification and regres-
sion models will be utilized to predict the ENERGY STAR
score of a building, taking into account specified parameters.
This analysis aims to comprehend the impact of each factor
on determining the ENERGY STAR score. Secondly, time
series analysis will be employed using building data from
2014 to 2020, enabling the prediction of ENERGY STAR score
values for the year 2021. Lastly, the influence of property
type and location on ENERGY STAR score evaluation will
be investigated. This step aims to examine how these factors
contribute to the overall energy performance of buildings.

4.1 Feature Extraction
This research utilized the 2014 to 2021 energy and water
data, which initially consisted over 29,000 buildings and
250 building attributes for each year. The primary objective
was to comprehend the building energy usage by examin-
ing the characteristics of these buildings. The data was ini-
tially provided in JSON format, with all variables represented
as strings. Consequently, several attributes in the dataset
are technically numeric, but they were initially represented
as strings. Therefore, it was necessary to convert these at-
tributes from string to numeric type in order to ensure their
appropriate treatment and analysis. Additionally, the dataset
contained instances of "Not Available" and "Insufficient ac-
cess" in many cells, which were replaced with "NAN." As
a result, the columns containing only numeric values were
successfully converted to the appropriate numeric type.

There were several building attributes in the dataset that
had more than 75% missing data. To maintain the integrity
of the sample, those columns were dropped, as filling them
with a descriptive statistic would not accurately represent the
data. On the other hand, for the remaining columns that had
less than 10% missing data, the missing cells were filled with
the column mean. Furthermore, a new indicator value was
added to identify the rows where imputation was performed.
To address the presence of potential outliers, the z-score

function was applied to filter out buildings’ attributes that
deviated more than three standard deviations from the mean.
Following this cleaning process, approximately 22,000 build-
ings and 89 building attributes remained in the dataset. Ad-
ditionally, the data were scaled using standardization and
normalization techniques to account for variations in unit
measurements across different building consumption met-
rics, which span a range from tens to millions. The perfor-
mance of these scaled values will be compared to that of the
raw data to obtain the most optimal results.
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Figure 1. Flowchart: classification and regression model training and evaluation for singer year data.

4.2 Building ENERGY STAR Score Estimation
After completing the preprocessing phase, three distinct sam-
ple sets were carefully chosen to construct machine learning
models. These sets were specifically comprised of residen-
tial buildings in the Bronx (3777 buildings), office buildings
in Manhattan (1491 buildings), and educational buildings
in Brooklyn (513 buildings), as elaborated in Section 3. To
ensure an effective evaluation process, the dataset was split
into randomized train-test-validation subsets. The training
set was allocated 70% of the data and utilized for model train-
ing. A separate validation set, encompassing 10% of the data,
was employed for fine-tuning the network architecture and
optimizing the model’s parameters to achieve optimal per-
formance. Lastly, the remaining 20% of the data constituted
the test set, which was utilized to comprehensively assess
the performance of the trained models.

The data was transformed into a classification problem by
replacing the ENERGY STAR score with its corresponding
letter grade rating, as shown in Table 1. The higher the rat-
ing, the better the energy efficiency performance [7]. The
models used for classification included Decision Trees, Ex-
treme Gradient Boosting, Support Vector Machine (SVM),
and Random Forest.
The regression methods employed to identify significant

features for energy consumption in public buildings included
AdaBoost, Decision Trees, Extreme Gradient Boosting, SVM,
and Random Forest. These methods were selected for their
capacity to capture nonlinearity and effectively learn from

historical data. The objective was to extract important pre-
dictors that could serve as inputs for time series forecasting.
The design utilized for each model is illustrated in Figure 1.

During the hyperparameter tuning process for eachmodel,
various parameters were adjusted to achieve improved re-
sults. For the AdaBoost and Extreme Gradient Boosting mod-
els, the main parameters that were modified included the
number of estimators, subsample, maximum depth, and the
learning rate. In the case of the Decision Tree and Random
Forest models, the parameters that were adjusted were the
number of estimators, maximum depth, maximum leaf nodes,
and minimum samples per leaf. Lastly, for the SVM model,
the regularization parameters (C and gamma) as well as the
choice of kernel function were fine-tuned.

4.3 Time Series Analysis
The second objective of this research was to predict building
ENERGY STAR scores using time series data. For the analysis,
the energy and water dataset spanning from 2014 to 2021
was divided into train, test, and validation sets following the
same ratio as described in Section 4.2.
Three baseline models (KNN, decision trees, and linear

regression) were employed along with deep learning models
(LSTM and Prophet) for the analysis.

The baseline models utilized the Skforecast Python library,
which leverages scikit-learn regressors as multi-step forecast-
ers [10]. Thesemodels served as a benchmark for comparison
against the more advanced deep learning models.
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LSTMwas chosen for its ability to capture important infor-
mation from a sequence while disregarding less significant
details, while Prophet was selected for its capability to ana-
lyze trend and seasonality [16]. Utilizing the relevant features
identified from the regression analysis, time series models
were developed to predict a building’s energy score based on
past years’ data. Prior to constructing the models as depicted
in Figure 2, a data imbalance issue was addressed where
certain boroughs contained a larger number of buildings. To
ensure consistency, a general matrix was created that main-
tained the same set of buildings for comparing the general
model with the models specific to boroughs and property
types.

Figure 2. Flowchart for predicting ENERGY STAR score
with time series models.

To create the general matrix, the data from 2014 to 2021
underwent the same preprocessing steps as described in Sec-
tion 4, with the exception of removing outliers and variable
reduction since the variables used were extracted features as
explained above. Property ids were also checked to ensure
that a property was present throughout each year, and prop-
erties that were not present were excluded from the analysis.
This process resulted in data imbalances, with approximately
10,000 buildings remaining, the majority of which belonged
to three different property types: multifamily, educational,
and offices, out of a total of nine property types. With the
remaining data, bootstrap sampling was applied to create
equally-sized subsets of data based on a building’s location
and property type, ensuring a balanced dataset.

5 Experiments
5.1 Building Attributes and ENERGY STAR Score

Correlation
The permutation feature importance is a model inspection
technique that proves useful for non-linear estimators. In

Table 2. Mean absolute error (MAE) of building ENERGY
STAR score estimation by regression models: original data,
normalized data, and standardized data comparison.

Model Original Normalized Standardized
AdaBoost 11.43 16.66 12.13
Decision Trees 8.59 12.04 8.63
Gradient Boosting 6.05 8.51 6.05
SVM 24.9 22.58 19.73
Random Forest 5.59 8.67 5.58

this process, the relationship between the feature and the tar-
get is disrupted, whereby a single feature value is randomly
shuffled. The decrease in the model’s score indicates the ex-
tent to which the model relies on the feature [1]. Feature
importance was calculated on the validation set to highlight
the features that contribute the most to the model. This pro-
cess aided in reducing the remaining 89 features necessary
for ENERGY STAR score prediction. Although the weights
of these features differed across datasets (Bronx residential
buildings, Manhattan office buildings, and Brooklyn edu-
cational buildings), all three shared energy usage and site
electricity as the top 2 predictors. Longitude and latitude
are important predictors since building density within an
area can impact energy usage [5]. This affects the amount of
solar energy a building can receive. After comparing the 89
features within each dataset, the 12 features were identified
as being significant for future prediction. Table 3 displays
the top 5 important features of the building type and bor-
ough. The remaining 7 important features include occupancy,
number of buildings, natural gas use (kBTU), eGrid output
emissions rate((kgCO2e/MBtu)), offsite green power (kWh),
and the previous year’s score.

To estimate the ENERGY STAR score of the buildings using
the available data, we employed various regression models
(i.e., AdaBoost, Decision Trees, Extreme Gradient Boosting,
SVM, and Random Forest) on three sample sets: residential
buildings in the Bronx, office buildings in Manhattan, and
educational buildings in Brooklyn, obtained from the Energy
and Water Data Disclosure for 2020.
Table 2 displays the average testing error between the

predicted ENERGY STAR score and the actual value. Among
the models, gradient boosting and random forest with the
lowest errors. These two models were further utilized for
parameter tuning. After hyperparameter tuning, the random
forest model yielded the best results, with a mean absolute
error of approximately 5.6. Consequently, the random forest
model was selected for comparing the significant features
across the individual sample datasets.
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Table 3. Top 5 significant features and their corresponding
importance scores extracted from regression models.

Feature Importance Score
Electricity Use 0.52
Gross Floor Area 0.10
Latitude 0.09
Year Built 0.07
Longitude 0.07

Table 4. Distribution of buildings by boroughs and property
types in time series model dataset.

Borough Residential Office Educational
Bronx 50 30 50
Brooklyn 50 30 50
Manhattan 50 30 50
Queens 50 30 50
Staten Island 50 30 50

5.2 Time Series Analysis
Prior to conducting various model tests, several data im-
balances were observed where the majority of the build-
ings were of office, residential, or educational property type.
Specifically, there was a notable disparity in the number of
residential and office buildings compared to other building
types. Similarly, when comparing buildings based on loca-
tion, there was a marked overrepresentation of buildings
located in Manhattan and Brooklyn in comparison to those
in Staten Island or Queens. To address this concern, a boot-
strapping technique discussed in Section 4.3 was applied on
the original dataset, narrowing the focus to buildings catego-
rized as residential, office, and educational, as illustrated in
Table 4. Due to insufficient data in multiple locations for the
other property types, sample subsets were created to achieve
a balanced dataset
In conducting our time series analysis, we utilized data

spanning from 2014 to 2020 and generated forecasts for 2021.
The input data consisted of the variables from feature ex-
traction along with the computed difference in the ENERGY
STAR score of the last 2 years and the output is the predicted
ENERGY STAR score for 2021. Our study incorporated five
distinct time series models discussed in Section 4.3, consist-
ing of three baseline models - KNN, decision trees, and linear
regression - as well as two deep learning models, LSTM and
Prophet. The results are outlined in Table 5. It is worth noting
that while both the linear regression and LSTMmodels exhib-
ited comparable performance, the linear regression model’s
predictions for unseen data were based on the mean value
of all buildings, rendering the results inconsequential.

Table 5. Performance comparison of time series models for
forecasting building ENERGY STAR scores. (MAE: mean
absolute error, RMSE: root mean square error)

Models MAE RMSE
KNN 27.10 35.11
Decision Trees 26.48 31.56
Linear Regression 21.22 25.55
LSTM 24.15 29.88
Prophet 28.27 35.31

The prediction of KNN and decision trees produced a
repetitive continuous pattern as shown in Figure 3. This may
be due to the model assuming seasonality in the data since
the ENERGY STAR score appears to repeat an increased score
to a decreased score between the buildings. The prediction
of prophet and LSTM is more adaptable and able to predict
the buildings’ large range in energy score. Although prophet
is more adaptable even after parameter tuning the predicted
ENERGY STAR score was not better than LSTM predictions.
Consequently, LSTM was deemed the optimal model for the
purposes of this analysis.

Figure 3. The predicted ENERGY STAR score of the baseline
models compared to actual values.

5.2.1 Location-based Analysis. Rather than conducting
an analysis of buildings across all five boroughs of New York
City, we trained individual LSTM model specifically for each
borough. As a result, all five borough-based LSTM models
have better performance in comparison to the general LSTM
model. The general matrix predictions with all the buildings
together had a mean absolute error of 24.15. The results in
Table 6 show a decrease of approximately 6 or more in the
mean absolute errors (MAE) between the models by location.
Although there is a significant decrease when consider-

ing the letter grade the error range is still too high for an
ENERGY STAR score. Taking a closer look the high errors
may be due to errors in the dataset. It is possible the raw
inputs may be off by a number causing an extreme differ-
ence between the actual and predicted. The model predicts
accurately for several buildings. The high error is due to the
difference in less than 10% of buildings in the models. With
more data in the models, the prediction can be better.
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Table 6. Performance comparison of borough-based LSTM
models for forecasting building ENERGY STAR scores. (MAE:
mean absolute error, RMSE: root mean square error)

Borough MAE RMSE
Bronx 12.28 17.27
Brooklyn 16.03 21.40
Manhattan 16.97 21.48
Queens 18.96 24.80
Staten Island 13.29 17.45

Table 7. Performance comparison of property type-based
LSTM models for forecasting building ENERGY STAR scores.
(MAE: mean absolute error, RMSE: root mean square error)

Property Type MAE RMSE
Residential 13.66 18.22
Office 10.54 15.30
Educational 16.02 23.69

5.2.2 Property Type Analysis. The general matrix was
also split into property types to evaluate if the LSTM model
performs better. Overall the models performed better than
the general matrix. Looking at Table 7 the office model has
the lowest error; accurately predicting most of the buildings’
energy scores. The general matrix predicting the building
without grouping by property type has a higher mean abso-
lute error of at least 8.
Similar to the borough-based models, the property type-

based models demonstrate accurate predictions for some
buildings, while others exhibit significant deviations from
the actual values. Despite a few buildings with substantial
errors, the property type models outperform other models
in terms of overall performance.

6 Conclusion
In conclusion, our study employed feature extraction to iden-
tify predictive variables for estimating the ENERGY STAR
score. We also developed models for score estimation and
conducted time series analysis using multiple techniques.
Through the feature extraction process, we successfully iden-
tified the most useful variables for predicting the ENERGY
STAR score, resulting in a reduction of the original set of
over 250 attributes for each building to a final selection of
12 attributes. By understanding how those 12 attributes can
influence energy efficiency can have a positive impact on a
building owner’s decision-making process regarding future
improvements in energy usage.
When estimating the ENERGY STAR score, the compari-

son of several regression models consisting of AdaBoost, De-
cision Trees, Extreme Gradient Boosting, SVM, and Random

Forest, along with 2 different scaling techniques (standard-
ization and normalization), was performed. This analysis
revealed that the random forest model is better and more ac-
curately estimated the ENERGY STAR score, with the lowest
error.

In the time series analysis, KNN and Decision Trees mod-
els had a repetitive pattern in their predictions, while Lin-
ear Regression model predicted the average value of all the
buildings. Among Prophet and LSTM models, LSTM demon-
strated the best performance by accurately predicting the
ENERGY STAR scores of several buildings. The data also
showed higher predicted scores when the actual values were
lower, which could be attributed to potential errors in the
dataset, as it is submitted by building owners. The results
highlight that separating the data by property type yields
the highest performance in predicting their ENERGY STAR
score, suggested there might be different standard for energy
efficiency for different property type.

6.1 Future Work
For future research, obtaining more precise and compre-
hensive historical energy consumption data from various
property types will be crucial in achieving more accurate
results. The integration of third-party data, which includes
information on HVAC equipment and boiler types, would
prove valuable in enabling better predictions and identifying
areas where building owners can focus their efforts. Addi-
tionally, including additional attributes such as the number
of floors, total units in multifamily buildings, building con-
struction, and environmental information (such as external
climate conditions) as additional inputs would enhance the
models’ predictive power. Weather conditions, in particular,
play a significant role in determining and predicting build-
ing energy usage. Some studies have proposed simplifying
weather conditions in building energy calculations by utiliz-
ing average monthly temperatures, as attempted by White
and Reichmuth [17]. Incorporating these factors can signifi-
cantly improve the models’ predictions and assist building
owners in more effectively complying with LL97.

Based on the findings and methodology presented, future
studies could build upon this research by employing similar
machine learningmodels to predict ENERGY STAR scores for
buildings in various big cities, grouped by property type. This
approach would enable the identification and targeting of
low-performing buildings, as well as the estimation of future
ENERGY STAR scores. Energy disclosure data, coupled with
external sources like data from utility providers, serve as
crucial resources for long-term greenhouse gas reduction
and energy efficiency initiatives in big cities.
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