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Abstract

Navigating safely and independently presents considerable challenges for people who

are blind or have low vision (BLV), as it requires a comprehensive understanding of

their neighborhood environment. Our user study reveals that materials and objects

on sidewalks play a crucial role in navigation tasks. Unfortunately, current methods

for assessing sidewalk materials are suboptimal, often relying on labor-intensive and

expensive manual assessments that fail to capture the full range of sidewalk features

critical to individuals with BLV.

In response to this problem, this master’s thesis investigates deep learning approaches

specifically designed for the classification of multi-modal sidewalk materials. The pro-

posed framework aims to empower individuals with BLV to automatically gather infor-

mation about sidewalk materials while navigating their surroundings. This innovative

solution comprises two primary components. (1) First, the study focuses on designing a

lightweight data collection methodology that involves attaching an inertial measurement

unit (IMU) and a microphone to the white cane. This sensor design enables the measure-

ment of the haptic and audio feedback, represented by acceleration data and audio data,

respectively, as the white cane interacts with the sidewalk surface. The collected accel-

eration and acoustic signal data effectively capture the unique characteristics of different

sidewalk materials. Utilizing this novel data collection method, we have successfully

generated a multi-modal sidewalk material (MSM) dataset, encompassing a wide range

of sidewalk material categories. (2) the research develops a deep learning-based classifier

to identify different sidewalk materials using this multi-modal data. We investigate two

model architectures: the ResNet-Encoder model and the Transformer-Encoder model

to understand their efficacy in sidewalk material classification. Experimental results

indicate that the ResNet-Encoder model provides superior performance, achieving an

optimal accuracy of 83% when trained with 4-second-long data clips.

In summary, our research has significant implications for the development of AI-based as-

sistive navigation solutions for individuals with BLV. It contributes to both the method-

ology for sidewalk material data collection and the algorithm of deep learning for sidewalk
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material classification. By employing the proposed multi-modal deep learning approach,

BLV people can effortlessly acquire information about sidewalk materials. Furthermore,

this data can be utilized to generate an urban accessibility geospatial map, thereby fa-

cilitating independent travel for individuals with BLV.

Keywords: Machine Learning, Sensor Design, Multi-modal Data, Audio Data Process-

ing, Assistive Navigation, Blind or Low Vision
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Chapter 1

Introduction

1.1 Background

The World Health Organization (WHO) estimates that there are 285 million people with

visual impairment worldwide, among whom 39 million are totally blind [31]. People who

are blind or have low vision (BLV) face many challenges in their daily lives, including

the difficulty of navigating safely and independently [11]. In order to navigate effectively,

individuals with BLV need to acquire as much spatial information as possible from their

surroundings, including information about sidewalk materials and defects [21]. Regret-

tably, most existing advanced applications [2, 5, 7] do not provide sufficient functionality

to help BLV people collect landmark information and understand sidewalk conditions.

Mobile navigation applications with GPS and mapping services (such as Google Maps

and Apple Maps), mainly focus on finding efficient, short navigation routes. However,

while this is beneficial for the average user, it is insufficient for BLV people [1, 4]. Their

preferences tilt towards paths rich in tactile landmarks and minimal sidewalk defects,

prioritizing safety and reliability over shorter distances.

1
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1.2 Problem Statement

As for the BLV individuals, they often rely on white canes to scan their surroundings,

receiving auditory and haptic feedback that not only enhances their spatial awareness

but also assists in self-localization [21]. For example, they can follow the tactile shore-

line in their travel by identifying surface material changes, such as grass edges or raised

curbs. Many street intersections are equipped with tactile pavements of varying mate-

rials and patterns, designed to aid BLV people in identifying important locations like

street crossings, bus stops, and the direction of streets. These surface materials serve as

invaluable landmarks and their inclusion in accessible maps is crucial. These maps prove

to be incredibly useful to BLV people, facilitating real-time navigation and also serving

as tools for orientation and mobility training. To better understand the challenges the

BLV people are facing in their life, we also conducted an informal user study, which

reveals that materials and objects on sidewalks play a crucial role in navigation tasks.

Although New York City has comprehensive sidewalk and intersection designs, but cur-

rent regulations do not provide sufficient data resources for sidewalk materials [8]. This

oversight leaves a huge gap in the creation of fully accessible maps that are essential

to BLV people. Given the laborious and time-consuming nature of large-scale data col-

lection, the urgency for a more efficient sidewalk material data collection solution is

becoming increasingly apparent.
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1.3 Overview of Proposed Solution

To address this problem, we proposed an Artificial Intelligence (AI)-based data collection

framework that enables BLV people to independently survey sidewalk material informa-

tion during their travels. This innovative solution comprises two primary contributions.

The first contribution is the design of a lightweight data collection methodology dedicated

to the acquisition of non-visual information of sidewalk materials. While deep learning

methods have shown impressive performance in numerous image recognition applications

[18, 36], acquiring image data is a challenge for individuals with BLV, especially in

cluttered sidewalk environments. This highlights the need for alternative non-visual

information sources. Notably, BLV people rely heavily on non-visual sensory feedback

from the white canes to discriminate various landmarks, including surface materials,

suggesting that non-visual information holds key landmark characteristics. To capitalize

on this, we equipped the white cane with an inertial measurement unit (IMU) and

microphone that captures haptic and auditory feedback in the form of acceleration and

audio data as the cane interacts with the sidewalk surface. In addition, we have guided

a group of volunteer students to collect a large amount of sidewalk material data by

applying this innovative data collection method, leading to the generation of a high-

quality, multi-modal sidewalk material (MSM) dataset.

The second contribution focuses on the algorithm development of a deep learning-based

classifier, which is able to identify different sidewalk materials using multi-modal data.

We investigate two main model architectures, the ResNet-encoder model and the Transformer-

encoder model, to understand their efficacy in sidewalk material classification. The choice

of these models is guided by their specific computational strengths. The ResNet-Encoder

model uses its convolutional layers to learn the regional information of the input data
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[32]. This ability to extract, process, and classify local patterns from the data makes

it a suitable candidate for our solutions, where understanding the specific characteris-

tics of the sidewalk materials is crucial [10, 22, 27, 28, 42, 43]. On the other hand,

the transformer-encoder model emphasizes the learning of temporal information and is

able to identify the relationships between the various temporal observations from our

input data [41]. This ability to discern temporal relationships has the potential to cap-

ture the complex nuances of various material sounds over time, which is a key aspect in

understanding different sidewalk materials [12, 15, 20, 26, 48].

Through a comprehensive study of these models, we aim to investigate their effective-

ness in sidewalk material classification, offering valuable insights into the potential of

deep learning techniques in enhancing the robustness of our AI-enabled data collection

framework.

1.4 Outline of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 reviews related work

in accessibility data collection, material recognition, and audio classification, providing

crucial context for our study. Chapter 3 details our innovative data collection approach,

introducing the lightweight collection equipment, assistive mobile application, and the

multi-modal sidewalk material dataset. Chapter 4 describes the sidewalk material clas-

sification process, introduces the training dataset, and describes the technical aspects of

our two models, the ResNet-Encoder Model and the Transformer-Encoder Model. We

conduct a series of experiments to investigate their efficacy and conclude with a compar-

ative analysis. In Chapter 5, we present our conclusions and future work, starting with

a comprehensive summary of our findings followed by a reflection on unexpected results.
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We discuss the limitations identified and suggest potential improvements and present a

detailed plan for evaluating the performance of our model on unlabeled continuous data.

The chapter concludes by exploring potential applications of our findings to real-world

scenarios.



Chapter 2

Related Work

2.1 Crowdsourcing and Accessibility Data Collection

Local and state governments often need to collect data on street accessibility [6]. Thanks

to the ubiquitous Internet and mobile technologies, data can be collected more efficiently

and economically using crowdsourcing methods [29]. A wide range of studies has high-

lighted the efficacy of crowdsourcing methods to collect a large amount of data on street-

level images, where they focus on urban road construction and beautification [39, 47].

Beyond the field of urban construction improvement, there are several studies that focus

on data collection on sidewalk accessibility. Several papers have used crowdsourcing and

Google Street View (GSV) to allow people to remotely identify bus stops and curb ramps

[17, 37]. One notable study designed a web-based crowdsourcing platform that collab-

oratively leverages GSV and image detection models to collect storefront accessibility

data [25]. Moreover, a methodology similar to our approach was introduced in another

study, where a tri-axial accelerometer was fitted under a wheelchair seat. This setup

was utilized to infer sidewalk accessibility features such as slope and curb presence from

6
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the behavior of the wheelchair [44]. Analogously, in our project, we mounted a wearable

sensor and mini microphones on a white cane and collected sidewalk material data while

the BLV people walked with the white cane.

2.2 Material Recognition

Most existing research on material recognition relies heavily on visual cues, with some

progress in deep learning approaches. One notable study [40] achieved significant results

by focusing on three key elements: material image datasets, contextual influences, and

unique descriptors of material appearance. In addition, numerous studies have explored

the utility of light field (LF) images for material identification [23]. LF images provide

richer light information, thus enriching the scope of vision-based measurement applica-

tions, including material identification. An alternative view of material recognition has

been proposed through the use of haptic acceleration signals. In combination with sur-

face images, a fully convolutional network has been deployed for joint surface material

recognition [46]. In contrast, our project mainly utilizes non-visual data, specifically ac-

celeration and audio data. Our deep learning classifier aims to use both forms of data to

discriminate sidewalk materials, thus providing a new perspective in the field of material

recognition.

2.3 Audio Classification

The popularity of deep learning has increased dramatically in recent years, emerging as

a reliable approach for a wide range of machine learning tasks, including audio classi-

fication. Various audio classification tasks are addressed by deep learning algorithms,
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such as speech recognition, music classification, and environmental sound classification

[13, 16]. A prevalent trend in this domain involves the preprocessing of raw audio data to

convert it into spectrograms, including Mel-Spectrogram and Mel-frequency cepstral co-

efficients (MFCC). These characteristic representations then serve as inputs to intricate

network models for training. Several studies have affirmed the effectiveness of Convo-

lutional Neural Network (CNN) based models when applied to spectrograms [28, 42].

Remarkably, most state-of-the-art results have been achieved through transfer learning,

employing pre-trained CNN models like ResNet50 [22]. Interestingly, one notable study

indicated that CNNs pre-trained with regular images, such as ImageNet, remain pro-

ficient at extracting critical features from audio spectrograms [33]. On the contrary, a

part of the research still advocates a traditional approach, using recurrent neural network

(RNN) based models to explore continuous audio information [12, 15, 20, 26, 48]. Recog-

nizing the power and popularity of transformer structures, a recent study introduced an

audio spectrogram transformer model that achieved state-of-the-art results in different

classification tasks [15]. Following these advances, our project explores two main model

architectures: the ResNet-Encoder model and the Transformer-Encoder model. We aim

to gauge their effectiveness in the specific task of sidewalk material classification.
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Data Collection

3.1 Introduction of Data Collection Methodology

One of the main contributions of this project is to design a data collection methodology

for BLV people to collect the data on sidewalk materials by themselves. People with BLV

typically navigate various sidewalk surfaces with their white canes, which interact with

a range of distinct sidewalk materials, generating distinct haptic and acoustic feedback

in the process. Each type of feedback is uniquely representative of the sidewalk material,

playing a crucial role in providing BLV individuals with essential information about their

surroundings.

The translation of sidewalk material characteristics into distinguishable haptic and au-

ditory feedback forms the basis of our data collection methodology. These two feedbacks

are subjective, relying on individual BLV people’s experience. For example, when the

cane strikes the sidewalk surface, it generates a sensory response in the form of haptic

and acoustic feedback. These responses convey crucial information about the sidewalk

material type, texture, and condition. Consequently, our data collection methodology

9
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is intentionally designed to capture these two determinative feedbacks. Specifically, our

data collection methodology addresses two key challenges:

1. Lightweight Data Collection: We needed to ensure that the equipment used to

collect haptic and acoustic feedback did not burden the BLV individual. Thus, a

primary concern was the design and selection of lightweight collection equipment

that did not interfere with the cane’s use or compromise the user’s comfort.

2. Simultaneous Multi-modal Data Collection: The integrity of our data hinges

on the precise and simultaneous collection of multi-modal data, capturing both

haptic and acoustic feedback. Hence, a significant aspect of our methodology fo-

cuses on ensuring the accuracy and completeness of the data collected, while still

remaining user-friendly and unobtrusive to the BLV people.

3.1.1 Light-Weight Collection Equipment

As previously stated, our data collection methodology is fundamentally designed to ac-

quire haptic and acoustic feedback. It is crucial to understand the inherent significance of

these two forms of feedback and the methodology we have implemented for their precise

measurement.

Haptic feedback is a sensory reflection of sidewalk material characteristics. As BLV

people swing their canes over various sidewalk surfaces, the interactions with different

materials generate varied degrees of resistance. These changes in resistance are discerned

by the user as distinct tactile sensations, representing the haptic feedback. In this project,

we have devised a system to convert these sensory experiences into quantifiable data. To

do so, we employ an Inertial Measurement Unit (IMU) on the white cane to record

the acceleration of the white cane in a three-dimensional (3D) space. The recorded



Data Collection 11

acceleration data serves as a proxy for the resistance felt by the user and, thus, for the

haptic feedback. Streamlining the data acquisition process is crucial for the practical

implementation of our methodology. Therefore, to ensure the stability of the IMU and

the quality of the recorded data, we have set a configuration of 400 Hz for the IMU.

This configuration effectively balances the need for high-quality data and the practical

constraints of data acquisition, paving the way for the effective collection of acceleration

data for our study.

Acoustic feedback is another crucial piece of information we want to collect in our data

collection methodology. When the white cane interacts with different sidewalk mounted

a microphone on the white cane, specifically positioned near the cane tip to maximize

the clarity of recorded sounds while minimizing ambient noise.

Figure 3.1: The white cane is equipped with a microphone and IMU sensor (the white
device is the IMU sensor and the black unit is a mini microphone attached to a blue

sponge)

With this configuration (Fig 3.1), we can efficiently collect acoustic and haptic feedback,

represented by audio data and acceleration data, respectively. This dual mode of data
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collection allows for the creation of a rich, high-quality, multi-modal dataset. Moreover,

the lightweight nature of both the wearable IMU sensor and the mini microphone ensures

mobility and comfort for the user, allowing BLV individuals to integrate this solution

seamlessly into their daily routines.

3.1.2 Accessible Mobile Application

To facilitate the simultaneous collection of multi-modal data, audio data, and acceler-

ation data, we designed a dedicated iOS mobile application called "SidewalkVacuum".

This application constitutes a key element of our data collection methodology, providing

an efficient and user-friendly platform for BLV people to engage in self-directed data

collection.

A key feature of the "SidewalkVacuum" application is the incorporation of a third-party

API from the IMU platform. This integration permits the application to interface directly

with the IMU sensor, effectively managing its operations. As such, the application can

remotely control the initiation, pausing, and termination of the sensor’s data acquisition

process, ensuring an effortless interaction between the user and the sensor. Building on

this seamless integration, we devised an innovative algorithm to simultaneously capture

video and acceleration data, which is useful to our multi-modal data collection framework.

The video data includes audio signals from the sidewalk environment, serving as auditory

feedback, while the acceleration data acquired from the IMU sensor act as a proxy for

the haptic feedback as experienced by BLV people.

Notably, we’ve also embedded annotation functionality into our application, empowering

sighted data collectors to label the data in real time during the collection process. This
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feature enables us to collect an extensive and high-quality multi-modal dataset of side-

walk materials, which is a vital training resource for our deep-learning classifier. We will

discuss this dataset in more detail in the subsequent section. However, it’s important to

note that for BLV people, the annotation function is disabled, meaning all data collected

by them remains unlabeled and requires a deep learning classifier for interpretation.

Through meticulous system design and integration, we’ve succeeded in interconnecting

all facets of our application, thereby ensuring a seamless and efficient user experience in

multi-modal data collection.

After successfully acquiring the data, our application will also store the geographic co-

ordinates of the current location. Later it will package the location information, video,

and acceleration data in preparation for transferring them to our secure cloud-based

database. To accommodate user preferences and data limitations, we provide an option

for users to postpone the data upload process until a WIFI connection is available, thus

saving the use of cellular data. To further improve transfer speed and data security, we

developed a dedicated algorithm to split long data records into manageable 1-minute

segments. This segmentation not only speeds up the upload process but also adds an

additional layer of data integrity, minimizing the risk of data loss during transmission.

Once in the cloud, these data will be saved under different users’ folders. This cloud-

based architecture ensures convenient access to the dataset for subsequent analysis and

model training, facilitating scalability and efficiency. It also guarantees data safety and

allows for the rapid accumulation of information over time.
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3.2 Multi-modal Sidewalk Material Dataset

While we have established a comprehensive and robust data collection framework, it

constitutes only half of our overarching objective. The second and equally critical part

involves the development of a deep-learning classifier. This AI-driven classifier was pro-

grammed to automatically identify unlabeled data collected by the community of BLV

people. Therefore, it becomes critical to produce a large-scale, high-quality multi-modal

sidewalk material (MSM) dataset. This dataset is indispensable because it provides foun-

dational training material for refining the accuracy and reliability of our deep learning

classifier.

To assemble the MSM dataset, a large-scale data collection effort was initiated involving

27 student volunteers. These students were tasked with collecting extensive sidewalk

material data in three different boroughs: Brooklyn, Manhattan, and Queens. To en-

sure accuracy and relevance, we classified the collected sidewalk material data strictly

according to the criteria specified in the New York City Street Design Manual [8] and

the Guidebook for Accessible Sidewalk and Street Intersection Information [3].

After several months of intensive data collection, we successfully released the MSM

dataset with a total duration of 7 hours. This dataset represents a diverse and com-

prehensive encapsulation of 11 primary categories and 2 secondary categories of sidewalk

materials. The primary categories span a variety of common sidewalk materials including

concrete, asphalt, dirt, grass, metal, manhole, granite, tactile pavement, brick, subway

grate, and cellar door. To further enrich our dataset, we also introduced two secondary

categories: concrete mixed with stone and concrete tactile pavement. The relationship

between these categories is illustrated in the following figure (Fig 3.2).
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Figure 3.2: Tree structure of sidewalk material categories

Considering the uncommon nature of some sidewalk materials, it is reasonable to assume

that the distribution of the data we collected is unbalanced. The figure below (Fig 3.3)

demonstrates the distribution of all sidewalk material types, where the y-axis represents

the duration in minutes. From the figure, we can see that the main sidewalk material

types such as concrete, subway grate, etc. are still relatively easy to collect. Conversely,

certain subcategories, such as concrete tactile pavement, presented a more substantial

collection challenge due to their rarity.

Figure 3.3: Distribution of multi-modal sidewalk material dataset

In summary, despite the inherent challenges associated with certain material properties,

our robust MSM dataset provides an inclusive representation of typical and atypical side-

walk materials, thereby creating a valuable resource for further research and applications

in this field.



Chapter 4

Sidewalk Material Classification

4.1 Dataset

4.1.1 Overview of Training Dataset

Training a deep learning model necessarily requires a large amount of data. In this

study, we strategically used the top nine categories with the largest amount of data

in the MSM dataset as our training dataset. These categories (Fig 4.1) include a wide

variety of sidewalk materials: concrete, tactile pavement, subway grate, manholes, bricks,

dirt, metal, cellar doors, and grass.

Figure 4.1: Images of nine classes

16
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Figure 4.2 shows the data distribution for these categories. The figure highlights data-rich

categories such as concrete, tactile pavement, subway fencing, manholes, and bricks that

collectively represent the prevalent types of sidewalk materials. Each of these categories

encompasses data with a duration of around 50 minutes, creating a robust foundation for

our model training. In contrast, specific categories, such as dirt, metal, cellar door, and

grass have less data, with grass having the least amount of data at 19.89 minutes. This

discrepancy is largely due to the challenges inherent in collecting high-quality data for

these specific sidewalk material types. Materials like metal, cellar doors, and especially

grass often prove to be more difficult to collect data on than concrete or brick, which is

more commonly encountered.

Figure 4.2: The distribution of the training dataset

It is worth noting that although this training dataset is not perfectly balanced, it does

provide a great deal of diversity for our deep learning model. The nine categories do not

fully cover all possible types of street material, but the available data still provide a solid

foundation for the training process.
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4.1.2 Data Preprocessing

Data preprocessing is a crucial step in any machine learning project for transforming

raw data into a form that machine learning models can learn effectively. In this project,

the goal of data preprocessing is twofold: to slice our multi-modal data into manageable,

trainable pieces, and to convert these pieces into a format suitable for deep learning

classifiers to learn. Figure 4.3 provides a schematic diagram of the data preprocessing

pipeline used in this study. The pipeline consists of three main components: data prepa-

ration (Fig 4.3, Part I), data slicing (Fig 4.3, Part II), and data transformation (Fig 4.3,

Part III). These components are introduced in detail in the following subsections.

Figure 4.3: Schematic diagram of data preprocessing pipeline

4.1.2.1 Data Preparation

The first step in our data preprocessing pipeline is data preparation (Fig 4.3, Part I),

including the extraction of audio data from the video data and the resampling of ac-

celeration data to a uniform frequency of 400 Hz. Although our IMU was configured

to collect data at 400 Hz, it still occasionally records at a slightly lower frequency. To

maintain uniformity, we resample the data using the Sinc interpolation method [45].

The Sinc function is a well-acknowledged technique in signal processing, mainly used for

its accuracy in reproducing the original signal’s frequencies and its robustness to missing
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or irregularly-spaced samples. The Sinc function is given by:

sinc(x) =


1, if x = 0

sin(πx)
πx , otherwise

(4.1)

Applying Sinc interpolation allowed us to resample the acceleration data to 400 Hz with-

out causing significant distortion or information loss, ensuring consistent and uniform

data for model training.

4.1.2.2 Data Slicing

The next step is data slicing (Fig 4.3, Part II), which is the process where we decompose

the original multi-modal data into manageable segments that are suitable for training

our deep learning classifier. The sliding window technique operates by first establishing

a window of a fixed length that moves across the data sequence with a determined step

size. Each shift of this window generates a new data segment, enabling the extraction of

localized features from the time series data. Notably, the choice of window length and

step size directly affects the amount of data samples. The shorter the window length and

step length, the larger the number of data samples. Figure 4.4 demonstrates the process

of data slicing.

This method is particularly useful for dealing with sequential data such as audio data,

where temporal dependencies exist. By maintaining a fixed window length, the sliding

window technique ensures that each sliced data segment encompasses a complete cycle of

the sequential pattern present in the dataset. This encapsulation is critical for preserving

the inherent temporal correlations in the data and allows the model to learn from the

sequential characteristics of the audio and acceleration signal.
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Figure 4.4: Schematic diagram of data slicing

4.1.2.3 Data Transformation

The final step is data transformation (Fig 4.3, Part III) where we performed a Mel-

spectrogram transformation on the segmented audio and acceleration data. This trans-

formation maps raw data onto a two-dimensional grid, with the horizontal axis repre-

senting time and the vertical axis denoting frequency. The Mel-spectrogram efficiently

captures both the spectral and temporal properties of the raw audio and acceleration

signals, which are crucial for our sidewalk material classification task. There are three

important steps for Mel-spectrogram transformation.

First, we apply a Short-Time Fourier Transform (STFT) [34] to the windowed signal

which is audio data and acceleration data in our case. STFT is denoted as below, where
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W [t] is the window function:

STFT (x(t)) = X(m,ω) =

N−1∑
n=0

x[n] ·W [t] (4.2)

Once we obtain the spectrogram by applying STFT, we then map the result onto the

Mel scale, which approximates the human ear’s response more closely than the linearly-

spaced frequency bands. The formula to convert the frequency f to Mel scale m is given

by:

m = 2595 log10(1 +
f

700
) (4.3)

Next, we apply Mel filter banks [30] to the spectrogram. These filter banks are triangular

filters that are overlapped such that each filter’s peak corresponds to the center frequency

of the previous filter. The Mel-filter bank function is given by:

Hm(k) =



0, if k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) , if f(m− 1) ≤ k ≤ f(m)

f(m+1)−k
f(m+1)−f(m) , if f(m) ≤ k ≤ f(m+ 1)

0, if k > f(m+ 1)

(4.4)

Finally, we take the logarithm of all the Mel-filter banks to obtain the final Mel-spectrogram.

Figure 4.5 showcases the Mel-spectrograms of audio data clips for nine classes.
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Figure 4.5: Mel-spectrograms of audio data clips for nine classes (the clip length is
2-second long)
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4.1.3 K-Fold Cross-Validation

To achieve a rigorous and accurate assessment of model performance, we used a K-fold

cross-validation approach [9]. In the scope of this study, our dataset was divided into

eight folds, each of which was systematically stratified to include all eight categories. For

instance, when we slice the audio and acceleration data with a step size of 0.5 seconds

and a window length of 2 seconds, we are able to get the dataset shown in the following

table (Tab 4.1). Notably, this dataset will be used as a training dataset in the following

experiments.

K-fold #Samples #Classes #Collectors
0 6402 9 19
1 5715 9 19
2 5964 9 18
3 5700 9 20
4 5959 9 21
5 5915 9 18
6 5166 9 20
7 5675 9 18

Table 4.1: Overview of data distribution among k-folds with respect to sample count,
class diversity, and collector numbers.

As shown, each folder contains approximately 5,000 to 6,000 data samples distributed

in equal proportions across nine different categories. In addition, the data in each folder

was compiled by a different collector, thus ensuring the generalizability and breadth of

the data. Importantly, our implementation of the K-fold cross-validation technique is

performed on the original, full-length video recordings prior to any sliced data. This

ensures that sliced data segments are isolated in their respective folds and do not bleed

into other folds, thus maintaining data integrity and preventing any potential cross-fold

contamination.

Considering computational constraints and time efficiency, we did not perform exhaustive

cross-validation for all eight folds. Instead, each model was cross-validated using three
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unique folds chosen at random. In the design of this project, seven of the eight folds have

been allocated for model training, with one fold reserved for testing purposes. The train-

ing data is derived from 80% of the seven designated training folds, while the remaining

20% is earmarked for validation. This approach ensures a reasonable estimate of model

performance, maintaining an essential equilibrium between computational demands and

the practical constraints of the study.

4.2 ResNet-Encoder Model

4.2.1 The Overview of the ResNet-Encoder Model

An overview of the ResNet-Encoder model is depicted in Figure 4.6. Within the ResNet-

Encoder model, we employ the transfer learning technique to expedite the learning pro-

cess, effectively leveraging pre-trained models to extract generic featuresr. Considering

the remarkable generality and power of the ResNet model [19], we chose ResNet-50 as

the encoder to extract features from the input data.

Our study involves multi-modal data consisting of two input sources: audio and accel-

eration data. Each of these inputs was transformed into a Mel-spectrogram, a format

that facilitates our classification task. In the designed model, each ResNet-50 encoder is

assigned an input data type that extracts the underlying representation from the corre-

sponding Mel-spectrogram (Fig 4.6, Part I). The features extracted by each encoder are

combined into a composite vector, which is then imported into a fully connected layer,

often known as the fusion layer (Fig 4.6, Part II). With respect to the structure of the

model, we determined that the output representation of each ResNet encoder is (512*1),

thus defining the size of the fusion layer as (1024*1).
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Figure 4.6: RetNet-Encoder model architecture

A critical element of our model structure is the inclusion of dropout and batch normal-

ization techniques after each fully connected layer. This technique serves as a protection

against overfitting. Specifically, we used a dropout rate of 0.2, a strategy that involves

randomly deactivating 20% of the neurons during the training process. Simultaneously,

batch normalization was implemented to stabilize the learning process and aid in pre-

venting overfitting. Batch normalization standardizes the inputs to each layer of the

model, reducing internal covariate shifts. As for the activation function, the Rectified

Linear Unit (ReLU) was selected for its simplicity and effectiveness in deep neural net-

works. ReLU is computationally efficient and helps in mitigating the vanishing gradient

problem, facilitating a more effective learning process within our model’s architecture.

After passing through the fusion layer, the representation is passed to another fully

connected layer (Fig 4.6, Part III), configured in the shape of (512*1). Subsequently,

the output is directed to the output layer (Fig 4.6, Part IV) of the model. For the loss

function, we use a cross-entropy loss function, a choice based on its ability to handle

multi-class classification tasks.
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4.2.2 Experiment 1: Assessing the Impact of Individual and Combined

Inputs on Model Performance

The first experiment we conducted aims to understand the relative contribution and com-

bined potential of acceleration and audio data in identifying sidewalk materials when fed

into our ResNet-Encoder model. Since our data collection method involves the capture

of these two types of data, it is crucial to investigate how each, and their combination,

affects the performance of the model. This investigation can help us understand how the

model learns and interprets this interconnected data.

The following table (Tab 4.2) presents the accuracy and F1-scores for the ResNet-Encoder

model when trained with different input types:

Input Accuracy F1-Score
Acceleration data 46.83% 46.59%

Audio data 76.24% 76.55%
Acceleration and audio data 77.64% 77.68%

Table 4.2: Model performance of ResNet-Encoder model with varying input data

The findings from this experiment provide several interesting insights. When the model

was trained with acceleration data alone, it achieved an accuracy of 46.83% and an F1-

score of 46.59%, demonstrating a modest performance. However, when trained solely

with audio data, the model showed a significant improvement in both accuracy (76.24%)

and F1-score (76.55%). This suggests that the audio data may contain more distinctive

features or patterns that aid in classifying sidewalk materials than the acceleration data.

Perhaps the most important finding from this experiment was that using a combination

of acceleration and audio data further improved the model’s performance, with the ac-

curacy and F1-score rising to 77.64% and 77.68%, respectively. This indicates that while

the acceleration and audio data individually provide certain insights for the classification
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task, they also complement each other when used together, capturing a more compre-

hensive representation of sidewalk materials. Therefore, this investigation substantiates

the effectiveness of a multi-modal data approach for the sidewalk material classification

task.

4.2.3 Experiment 2: Evaluating the Effect of Freezing Pre-trained Lay-

ers on Model Performance

The motivation behind this experiment was to examine how freezing different numbers of

pre-trained layers of the ResNet-Encoder model impacts the classification performance.

Pre-trained models carry learned features from large datasets that might not align per-

fectly with the features of our specific task. Consequently, tweaking the extent to which

we allow our model to adjust these pre-existing features during training, by freezing

a certain number of layers, may lead to a better match with our task-specific feature

characteristics and thereby enhance model performance [38].

The table (Tab 4.3) below summarizes the results of this experiment, detailing the accu-

racy and F1-score achieved by the model with varying numbers of frozen layers and for

different input types:

Input #Freezed Layers Accuracy F1-Score
Acceleration data 0 48.71% 48.39%
Acceleration data 1 48.84% 48.39%
Acceleration data 2 46.83% 46.59%

Audio data 0 78.02% 78.56%
Audio data 1 78.24% 78.93%
Audio data 2 76.24% 76.55%

Acceleration and audio data 2 77.64% 77.68%
Acceleration and audio data 1 79.24% 79.68%

Table 4.3: Model performance of ResNet-Encoder model with varying numbers of
frozen layers and input data
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The results highlight some intriguing trends. When training on acceleration data alone,

freezing one layer resulted in a slight improvement in accuracy (48.84%), but the F1-

score remained consistent (48.39%). However, freezing two layers led to a decrease in both

accuracy and F1-score (46.83% and 46.59%, respectively). This suggests that freezing

too many layers can prevent the model from adequately learning from acceleration data.

A similar pattern is observed with audio data. Freezing one layer led to a marginal

improvement in both accuracy and F1-score (78.24% and 78.93%, respectively). However,

when two layers were frozen, the model’s performance dropped slightly.

Most notably, when combining acceleration and audio data, freezing one layer of the

model resulted in the best performance (accuracy of 79.24% and F1-score of 79.68%),

surpassing the performance obtained with two frozen layers. We will use this configura-

tion as the default setting in the next experiment.

4.2.4 Experiment 3: Investigating the Impact of Data Clip Length on

Model Performance

The objective of this experiment was to examine the impact of data clip length on

the performance of our ResNet-Encoder model. This analysis is essential as it helps

in understanding how the model’s ability to identify sidewalk materials changes with

variations in the amount of temporal information contained within each data clip. It

is hypothesized that data clips of longer duration could potentially provide the model

with more context and detailed information from audio and acceleration data, thereby

influencing its ability to classify sidewalk materials accurately. In this experiment, we will

use the multi-modal ResNet-Encoder model, which means that the input data includes

both audio and acceleration data.
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The table (Tab. 4.4) below presents the experimental results, summarizing the accuracy

and F1-score achieved by the ResNet-Encoder model when trained with 2-second and

4-second data clips:

Clip Length #Samples Accuracy F1-score
2-second 46496 79.24% 79.68%
4-second 43924 83.25% 83.43%

Table 4.4: Model performance of ResNet-Encoder model with varying clip length

From the results, it is apparent that the data clip length plays a substantial role in the

performance of the ResNet-Encoder model. Despite having a larger number of samples,

the 2-second data clips yielded a lower accuracy and F1-score (79.24% and 79.68%, re-

spectively) compared to the 4-second data clips (83.25% accuracy and 83.43% F1-score).

This finding suggests that the longer clips provided a richer, more detailed representation

of the sidewalk materials, allowing the model to capture subtler patterns and distinctions

that were possibly missed in the shorter clips. This experiment, therefore, illustrates the

significance of data clip length as a parameter to consider during data preprocessing.

Future work might explore an even wider range of clip lengths to identify the optimal

temporal scope for classifying sidewalk materials using audio and acceleration data.

4.3 Transformer-Encoder Model

4.3.1 The Overview of the Transformer-Encoder Model

An overview of the Transformer-Encoder model is depicted in Figure 4.7. In the Transformer-

Encoder model, we use the Transformer architecture as an encoder to extract features

from the input data. With the attention mechanism, Transformer-Encoder is able to

identify the relationships between the various temporal information. This ability to dis-

cern temporal relationships has the potential to capture the complex nuances of various
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material sounds over time, which is essential to our study. In terms of the architecture,

this Transformer model is designed with the same architecture as the traditional, scal-

able Natural Language Processing (NLP) transformer architecture [41]. In this study,

the Transformer-Encoder is configured with two layers for efficiency in computation.

Moreover, the self-attention mechanism within the encoder uses eight attention heads.

Likewise, the type of input data considered in this model is multimodal, including audio

data and acceleration data, both of which are uniquely processed.

With respect to audio data, it is transformed into a Mel-spectrogram, which is a two-

dimensional representation of the signal. This representation conveys the power distri-

bution of the signal over time, across different frequencies. Each Mel-spectrogram is

split into multiple frames, with each frame corresponding to a specific temporal win-

dow. The frames contain the number of Mel-frequency bands that capture the frequency

components of the signal within that specific window. In our case, each frame has 64

Mel-frequency bands. In addition, it is important to add a positional encoding (Fig 4.7,

Part I) to each frame before it passes through the Transformer Encoder (Fig 4.7, Part

II). Positional encoding helps maintain this sequence information, assigning a unique in-

dicator to each position in the input sequence, thereby preserving the sequential context.

The processed information from the Transformer-Encoder, which incorporates both fea-

ture and positional information, is then passed to an aggregation layer (Fig 4.7, Part

III). This layer condenses the high-dimensional output into a one-dimensional vector.

This vector serves as a significant representation of the audio data.

For the acceleration data, we process it using standard statistical methodologies. No-

tably, we apply the feature extraction methodology on each axis (x-axis, y-axis, and

z-axis) from the data clip. The methods are listed below.
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Figure 4.7: Transformer-Encoder model architecture

• Mean: The mean of each axis of the acceleration data is computed as the average

of all data points.

• Standard Deviation: The standard deviation measures the dispersion of the

data points for each axis.

• Median Absolute Deviation: This measure provides an understanding of the

statistical dispersion of each acceleration axis.

• Value-Mean Difference: This feature provides a measure of the deviation of

each data point from the mean.

• Min, Max: These values represent the minimum and maximum data points for

each axis.

• Max-Min Difference: This measures the range of the data for each axis.
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• Interquartile Range: This is a measure of statistical dispersion, computed as

the difference between the 75th percentile (Q3) and 25th percentile (Q1) of the

data.

• Negative Count, and Positive Count: These are the total counts of negative

and positive data points, respectively.

• Values Above Mean: This is the count of data points exceeding the mean for

each axis.

• Number of Peaks: This represents the total count of peak values in the acceler-

ation data.

• Skewness: This is a measure of the asymmetry of the data distribution for each

acceleration axis.

• Energy: This quantifies the total energy of the acceleration signal.

• Kurtosis: This measures the "tailedness" of the distribution.

• Signal Magnitude Area (SMA): This represents the integral of the absolute

value of the acceleration data over an interval.

These features will be combined to form a comprehensive representation of acceleration

data, which is then processed further for classification tasks.

Once we have these two important representations for both audio and acceleration data,

we then merge them and input them to the decoder layer (Fig 4.7, Part IV) for classi-

fication purposes. Likewise, this model utilizes the cross-entropy loss function for loss

computation.
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4.3.2 Experiment: Comparative Analysis of Different Aggregation Pool-

ing Methods on Model Performance

The purpose of this experiment is to investigate the effect of different aggregation pooling

methods on the performance of the transformer-encoder model. Aggregation pooling is

an important component for processing the feature sequences obtained from the Trans-

former encoder output data. Specifically, we will use aggregation methods to extract a

one-dimensional representation vector from the Transformer encoder output data that

contains the most important features of the input data. The method of aggregation af-

fects the model’s ability to capture relevant temporal patterns in the sequence, affecting

its overall performance. The purpose of this experiment is to compare three common

aggregation pooling methods - maximum, average, and self-attention pooling [24] - and

to understand how they affect the classification of sidewalk material.

The following table (Tab 4.5) summarizes the results of this experiment, showing the

accuracy and F1-scores of different aggregation pooling methods and clip lengths:

Aggregation pooling methods Clip Length Accuracy F1-score
Max 4-second 70.93% 71.02%
Mean 4-second 71.25% 71.34%

Self-Attention Pooling 2-second 73.02% 73.45%
Self-Attention Pooling 4-second 73.31% 74.47%

Table 4.5: Model performance of Transformer-Encoder model with varying clip length
and aggregation pooling method

The results of this experiment reveal distinct patterns concerning the model’s perfor-

mance across different aggregation pooling methods. The Max and Mean pooling meth-

ods achieved similar accuracy and F1-score, with Mean pooling marginally outperforming

Max pooling. However, the Self-Attention Pooling method demonstrated superior per-

formance, achieving the highest accuracy and F1-score for both 2-second and 4-second

data clips.
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Interestingly, the clip length did not have a significant impact on the model’s performance

with Self-Attention Pooling, with both 2-second and 4-second data clips yielding similar

accuracy and F1-score. This suggests that the self-attention pooling method is efficient

in capturing and summarizing the relevant temporal patterns within the data clips,

regardless of their length.

4.4 Comparative Analysis of ResNet-Encoder Model and

Transformer-Encoder Model

The purpose of this section is to provide an in-depth comparative analysis of the two com-

plex deep learning architectures used in our study, the ResNet-Encoder and Transformer-

Encoder models. Both models were put through their paces in multi-modal sidewalk

material classification and their performance was evaluated based on two key metrics -

accuracy and F1-score.

Our comparison is primarily based on the accuracy and F1-score of the models, which are

commonly used performance metrics in classification tasks. Accuracy offers a measure of

the overall correctness of the models’ predictions, while the F1-score delivers a balance

between the precision and recall of the model. This provides a more nuanced picture of

the model’s ability to correctly identify each class while minimizing false positives and

negatives. The following table (Tab 4.6) illustrates the best results for both models:

Model Clip Length Accuracy F1-Score
Transformer-Encoder Model 4-second 73.31% 74.47%
ResNet-Encoder Model 4-second 83.25% 83.43%

Table 4.6: The best model performance from Transformer-Encoder model and
ResNet-Encoder model
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4.4.1 Loss Comparison

An additional avenue for comparing the ResNet-Encoder and Transformer-Encoder mod-

els is to consider their training and validation losses over epochs. This comparison pro-

vides vital insights into the models’ learning behaviors and capacity to generalize to

unseen data. A model is considered to be overfitting if it shows low training loss but

a comparatively high validation loss - indicating that it performs well on the training

data, but less so on new, unseen data. Conversely, underfitting occurs when the model

cannot achieve a low loss on the training set, indicating that it has not learned the data’s

underlying patterns effectively.

Figure 4.8: Comparison of training and validation loss between Transformer-Encoder
model and ResNet-Encoder model
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From the figure (Fig 4.8) above, we know that both the ResNet-Encoder and Transformer-

Encoder models have successfully converged. At the point of convergence, the ResNet-

Encoder model exhibits a training loss of 0.01476 and a validation loss of 0.07476, in-

dicating an impressive performance with a modest gap between training and validation

losses. This moderate difference suggests a good balance between bias and variance, a

prerequisite for effective generalization on unseen data. In contrast, the Transformer-

Encoder model shows higher loss values, which implies poorer learning compared to the

ResNet-Encoder model.

These observations align with the performance metrics we derived earlier, where the

ResNet-Encoder model outperformed the Transformer-Encoder model on both accuracy

and F1-score. The lower loss values of the ResNet-Encoder model suggest that it has

more effectively captured the underlying patterns in the training data and that this

learning translates better to new data, as indicated by its superior validation loss and

classification metrics.

4.4.2 Detailed Comparison

The confusion matrices (Fig 4.9 and Fig 4.10) and the table (Tab 4.7) of classification

reports further expound the performance of the models across the nine classes: concrete,

tactile, subway grate, manhole, brick, dirt, metal, cellar door, and grass.

For the Transformer-Encoder model, it is evident from the confusion matrix that it had

some difficulties distinguishing between certain classes. For instance, the model often

misclassified the manhole class as grass, and the metal class as manhole. The table of

classification report reinforces this, revealing that the model’s precision and recall are

particularly low for the manhole and metal classes.
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Figure 4.9: Confusion matrix chart of Transformer-Encoder model

Label ResNet-Encoder Model Transformer-Encoder Model
Precision Recall Precision Recall

Concrete 91.86% 88.48% 82.13% 94.94%
Tactile 91.73% 87.29% 89.65% 79.87%
Subway Grate 85.40% 98.05% 85.41% 89.37%
Manhole 69.57% 83.72% 55.86% 38.81%
Brick 83.97% 91.62% 64.51% 78.26%
Dirt 92.50% 88.62% 90.29% 87.72%
Metal 72.90% 52.96% 49.85% 58.71%
Cellar Door 83.22% 77.19% 89.54% 63.82%
Grass 87.79% 81.30% 86.74% 68.26%

Table 4.7: Classification report for Transformer-Encoder model and ResNet-Encoder
model

Contrastingly, the ResNet-Encoder model displayed a more balanced performance across

all classes. Its confusion matrix shows a high degree of correct classifications along the

diagonal, with fewer misclassifications. While some confusion occurred between the metal

and manhole classes, it was noticeably less than that seen with the Transformer-Encoder
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Figure 4.10: Confusion matrix chart of ResNet-Encoder model

model. The classification report table corroborates these findings, with relatively high

precision and recall across all classes.

4.4.3 Discussion

From the results, the ResNet-Encoder model excels over the Transformer-Encoder model

in terms of both accuracy and F1-score. One plausible reason could be that the ResNet-

Encoder, with its pre-training phase, is better equipped to discern effective feature repre-

sentations, thereby enhancing its classification accuracy. Nevertheless, the Transformer-

Encoder model still demonstrates potential, despite overall lower performance. It presents

a unique strength in handling shorter data clips efficiently, maintaining almost similar

performance for both 2-second and 4-second clips.
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Conclusion and Future Work

5.1 Summary

Our innovative data collection method, which incorporated an inertial measurement unit

(IMU) and microphones on the white canes, successfully led to the creation of a com-

prehensive, multi-modal sidewalk material (MSM) dataset. The success of this approach

highlights the untapped potential of non-visual data to help individuals with blind or

have low vision (BLV) navigate.

For the sidewalk material classification, we applied two distinct deep learning models: the

ResNet-Encoder model and the Transformer-Encoder model. Our experiments indicated

a superior performance of the ResNet-Encoder model, achieving an accuracy of 83% when

trained with a 4-second-long data clip, outperforming the Transformer-Encoder model,

which yielded an accuracy of 73.31%. The difference in performance can be attributed

to the lack of a pre-trained model for the Transformer encoder.

39
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5.2 Limitations and Improvements

While our findings exhibit potential, the research conducted possesses certain limitations

that warrant discussion. Our ResNet-Encoder Model solely focuses on utilizing ResNet-

50 as the encoder, hence, restricting our scope of understanding the performance of

other state-of-the-art models, such as CLIP (Contrastive Language–Image Pre-training)

[35] and ViT (Vision Transformer) [14]. This limited focus presents an opportunity

for potential enhancement of the model’s robustness and efficiency. Furthermore, our

Transformer-Encoder Model encounters the issue where there is no pre-trained model,

which may lead to sub-optimal performance. A reasonable solution to address this lim-

itation is to implement a large public audio dataset for training, which will help to

develop an optimized pre-trained transformer model. Therefore, we expect that this

could improve the performance and functionality of Transformer-Encoder model.

However, these limitations should not be viewed as setbacks, but rather as opportunities

to guide future research. By exploring and implementing advanced machine learning

models, we may discover the unexplored potential to improve the performance of the

system.

5.3 Future Work

5.3.1 Performance Evaluation on Unlabeled Continuous Data

To further refine and evaluate our classification model, we propose a plan for future

work that includes the application of unlabeled continuous data for real-world testing.

This step represents an important advancement in our research, providing a practical,
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user-oriented approach that allows us to evaluate the performance of the model under

real-world, non-laboratory conditions.

Our proposed approach is to create a testbed, which comprises an area of 4X4 streets. We

will first collect sidewalk material information from these 4X4 streets, and manually label

them. In subsequence, we will invite and guide BLV people to collect continuous and

unlabeled sidewalk material data using the proposed data collection framework. With

this evaluation, we can realistically test the validity of our models and the robustness of

our data collection framework.

We believe this future research direction represents a significant step towards a more

comprehensive evaluation of our model. By integrating real-world conditions and user

feedback into our assessment process, we anticipate gaining deeper insights into the

model’s performance, its potential areas of improvement, and its overall value to BLV

people. Ultimately, we hope that the insights gleaned from this future work will aid us in

refining our classification model and data collection framework, propelling our research

closer to a practical solution for BLV individuals navigating urban environments.

5.3.2 Potential Applications

Within the scope of our project, we introduced an AI-based data collection framework

designed to enable BLV people to autonomously collect information about sidewalk ma-

terials during their journeys. The main purpose of this tool, combined with the active

participation of BLV individuals, is to generate a comprehensive, large-scale accessible

map layer. The layer aims to encompass all necessary landmarks, such as different side-

walk materials, as well as other important environmental data.
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One of the potential applications of this accessible map layer is the development of a

novel assistive navigation application. This application could revolutionize how BLV

people navigate and interact with their surroundings. Users could strategically plan

their travel paths based on the availability and extent of accessible infrastructure, such

as tactile pavements. Accordingly, the application would suggest the safest and most

convenient routes for users, enhancing their mobility and independence. Additionally, the

application could possess the capability to calibrate direction and orientation, leveraging

the precise landmarks provided by our accessible map layer. This would allow for an

increase in navigational accuracy and dependability, further fostering user trust and

usability.

From an extended perspective, our framework’s potential applications could also cross

the bounds of accessibility and integrate with city planning and maintenance. For in-

stance, city administrators could utilize the detailed data provided by our system to

make informed decisions about where to implement accessible infrastructure or maintain

existing sidewalk materials. This could not only enhance the city’s overall accessibility

but also promote a more inclusive living environment.
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