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Abstract

Recently, deep graph neural networks (GNNs) have attracted significant atten-

tion for point cloud understanding tasks, including classification, segmentation,

and detection. However, the training of such deep networks still requires large

amount of annotated data, which is both expensive and time-consuming. To al-

leviate the cost of collecting and annotating large-scale point cloud datasets, we

propose an unsupervised learning approach to learn features from unlabeled point

cloud ”3D object” dataset by using part contrasting and object clustering with

GNNs. In the contrast learning step, all the samples in the 3D object dataset are

cut into two parts and put into a ”part” dataset. Then a contrast learning GNN

(ContrastNet) is trained to verify whether two randomly sampled parts from the

part dataset belong to the same object. In the cluster learning step, the trained

ContrastNet is applied to all the samples in the original 3D object dataset to ex-

tract features, which are used to group the samples into clusters. Then another

GNN for clustering learning (ClusterNet) is trained to predict the cluster IDs of

all the training samples. The contrasting learning forces the ContrastNet to learn

high-level semantic features of objects but probably ignores low-level features,

while the ClusterNet improves the quality of learned features by being trained to

discover objects that probably belong to the same semantic categories by using

cluster IDs. We have conducted extensive experiments to evaluate the proposed

framework on point cloud classification tasks. The proposed unsupervised learn-

ing approach obtain comparable performance to the state-of-the-art unsupervised

learning methods that used much more complicated network structures. The code

of this work is publicly available via: https://github.com/lingzhang1/ContrastNet
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Chapter 1

Introduction

1.1 Background

With ever increasing applications, point cloud data understanding with deep graph

convolutional neural networks (GNNs) has drawn extensive attention [1–4]. Var-

ious networks, such as PointNet [1], PointNet++ [3], DGCNN [2] and etc., and

datasets such as ModelNet [5], ShapeNet [4], and SUNCG [6], have been proposed

for point cloud understanding tasks. With the help of deep models and large-scale

labeled datasets, significant progress has been made on point cloud understanding

tasks, including classification, segmentation and detection.

GNNs typically have millions of parameters which could easily lead to over-fitting.

Large-scale annotated datasets are needed for the training of such deep networks.

However, the collection and annotation of point cloud datasets are very time-

consuming and expensive since pixel-level annotations are needed. With the pow-

erful ability to learn useful representations from unlabeled data, the unsupervised

learning methods, sometimes also known as self-supervised learning methods, have

drawn significant attention.

The general pipeline of unsupervised learning with a deep neural network is to

design a ”pretext” task for the network to solve while the label for this pretext

tasks can be automatically generated based on the attributes of the data. After

1
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Figure 1.1: The Figure of segments of objects. Each row consists of a 3D
point cloud object and its four different segments. Human can easily recognize
the object and the locations of the segments in the object even for a small
segment. Inspired by this observation, we propose to train GNNs to learn
features from unlabeled dataset by recognize whether two segments are from
the same object.

the network is trained with pretext tasks, the network will be able to capture use-

ful features. Recently, many unsupervised learning methods have been proposed

to learn image features by training networks to solve pretext tasks such as playing

image jigsaw [7], clustering images [8], predicting image rotations [9], image in-

painting [10], generating images with generation adversarial network [11], etc. The

unsupervised learning methods for image feature learning have obtained great suc-

cess and the performance of the unsupervised learning methods sometimes come

very close to that of the supervised methods [8, 12].

Some unsupervised learning methods have also been proposed for point cloud

unsupervised learning [13–18]. Most of them are based on Auto-Encoder (AE)

[15–18]. Various AEs are proposed and the features are obtained by training AEs

to reconstruct the 3D point cloud data. Since the main purpose of an AE is to

reconstruct the data, the networks may need to memorize the low-level features

of the point cloud.
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1.2 Overview of the Work

In this paper, we propose an unsupervised feature learning approach for point

cloud by training GNNs to solve two pretext tasks consecutively, which are part

contrasting and object clustering. Specifically, the network is trained to accom-

plish two pretext tasks: to compare (contrast) two point cloud cuts and to cluster

point cloud objects. First, all the 3D point objects are cut into two parts and a

GNN (ContrastNet) is trained to verify whether two randomly sampled parts from

the dataset belong to the same object. Second, the point cloud data is clustered

into clusters by using the features learned by the ContrastNet, and another GNN

(ClusterNet) is trained to predict the cluster ID of each point cloud data. The

contrasting learning forces the ContrastNet to learn high-level semantic features

that describe the similarities between parts of the same objects, whereas the pre-

dicted cluster IDs boost the quality of learned features by training the ClusterNet

to discover objects that belong to the same semantic categories.

In summary, our main contributions in this paper are as follows:

• A generalized and effective unsupervised feature learning framework is pro-

posed for point cloud data. By training deep neural networks to solve two

pretext tasks, part contrasting and object clustering, the networks are able

to learn semantic features related to object parts and categories from point

cloud data without using any annotations.

• In particular, aligning pseudo-labels for point clouds using clustering is able

to transfer knowledge from pre-training models to fine-tuning models by

learning semantic features that put object into the same clusters. This step

significantly boosts the classification performance, a 2.9% improvement on

ModelNet40.

• The extensive experiments show that our proposed approach outperforms

most of the state-of-the-art unsupervised learning methods. With the fea-

tures learned from the unlabeled dataset, the proposed model obtains 86.8%

and 93.8% on ModelNet40 and ModelNet10 dataset respectively.
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1.3 Outline of the Thesis

The organization of the thesis is as the following. After an introduction in Chapter

1, related work is discussed in Chapter 2. Then in Chapter 3, the proposed

approach is described, with details of two main components: the ContrastNet and

the ClusterNet, after the introduction of the base graph CNN model. Chapter 4

provides experimental results and analyses. Finally in Chapter 5 we conclude the

work and discuss a few future research directions.



Chapter 2

Related Work

2.1 Point Cloud Understanding

Various approaches have been proposed for point cloud understanding tasks, in-

cluding classification, segmentation, and recognition and detection. All the ap-

proaches can be classified into three categories: hand-crafted methods [14, 19–25],

CNNs on regular 3D data [5, 26–33], and CNNs on unordered 3D data (Point

Clouds) [1–4].

The first type of methods is hand-crafted based methods. These traditional meth-

ods capture the local geometric structure information of point clouds such as

intrinsic descriptors [19–21], or extrinsic descriptors [14, 22–25]. Although the

hand-crafted methods have been applied to point cloud data, these methods have

very limited performance of 3D data analysis.

Applying 3D convolutional neural networks to regular 3D data usually obtained

better performance than traditional hand-crafted features. There are several ap-

proaches to handle the regular 3D data with CNN: Volumetric methods [5, 26–29]

voxelize unordered data to a static 3D grid then 3D CNNs are used to process the

data. This kind of methods has a constraint on efficiency and complexity due to

the data sparsity and cost of CNNs. Multi-view methods [30, 31] use 2D CNNs

5



Related Work 6

after rendering the 3D data to 2D images, which have obtained significant per-

formance improvement on the classification task. However, this kind of methods

has constraints in doing point level task, such as segmentation. Spectral methods

[34, 35] apply spectral CNNs on meshes that are constrained by the expandability

to other data formats. Feature-extracting methods [32, 33] extract features of 3D

data and then apply CNNs to the features, which deeply depend on the quality of

the extracted features.

Recently, a number of methods have been proposed for understanding unordered

point cloud data [1–4]. Qi et al. made the first attempt to designing a deep

net architecture, named PointNet [1], for using unordered point cloud to perform

3D shape classification, shape part segmentation and scene semantic parsing tasks.

PointNet process each 3D point in a sample individually, therefore disarrangement

of the point cloud will not constrain the function of the model. However, because

of this, PointNet does not utilize the local structure of point cloud, which limits

its ability to recognize fine-grained patterns. Later, they proposed PointNet++

which applied PointNet recursively on a nested partitioning of the input point set

[3] to improve the PointNet and address the impact of local information lost. To

capturing local structure, Wang et al. proposed an edge-convolutional network to

specifically model local neighborhood information by applying convolutions over

the k nearest neighbors calculated by KNN in metric space, and the k nearest

neighbors can be dynamically updated in different layers [2].

2.2 Unsupervised Feature Learning

Various unsupervised learning methods have been proposed to learn features from

unlabeled data [8, 13–18]. Girdhar et al. proposed the TL-embedding network[15],

which consists of an autoencoder that ensures the representation is generative and

a convolutional network that ensures the representation is predictable. Sharma

et al. proposed a full convolutional volumetric autoencoder to learn volumet-

ric representation from noisy data by estimating the voxel occupancy grids [16].
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Achlioptas et al. proposed LatentGAN by introducing a new deep AutoEncoder

(AE) network with state-of-the-art reconstruction quality and generalization abil-

ity for point cloud data [17]. Yang et al. proposed FoldingNet which is a novel

end-to-end autoencoder that is the state-of-the-art for unsupervised feature learn-

ing on point clouds [18]. A graph-based enhancement is applied to the encoder to

enforce local structures on top of PointNet, and a folding-based decoder deforms

a canonical 2D grid onto the underlying 3D object surface of a point cloud.

Most of the deep learning based methods use auto-encoder variations for learning

features on unlabeled point cloud data. However, the purpose of the autoencoder

is to reconstruct the data and the feature may have a good performance on low-

level tasks such as completion, reconstruction, and denoise, but have an inferior

performance on tasks demands more high-level semantic meanings. Therefore,

we propose the ContrastNet and ClusterNet to learn features by exploring high-

level semantic features in the part and object levels respectively. Our method

outperforms most of the unsupervised methods on two MoldelNet datasets and

only 0.6% lower than the supervised method PointNet on the ModelNet40 dataset.



Chapter 3

Method

3.1 An Overview

To learn features from unlabeled point cloud data, we propose to learn features

by training networks to accomplish both of the part contrasting and the object

clustering pretext tasks. The pipeline of our framework is illustrated in Fig. 3.1,

which includes three major steps: ContrastNet for part contrast learning, clus-

tering using the learned features, and then ClusterNet for object cluster learning

using the cluster IDs. Here is a summary of the three modules before we get into

details of the ContrastNet and ClusterNet.

a) ContrastNet: Semantic Features from Part Contrasting: The first step

is to learn features by training a network called ContrastNet to accomplish the

part contrast task. Specifically, the part contrast task is to verify whether two

point cloud segments (parts) belong to the same sample (object). The positive

pair is drawn by selecting two different segments from the same object, while the

negative pair is drawn by selecting two segments from two different objects.

b) Clustering to Obtain Pseudo-labels: After the training with the part con-

trasting finished, the trained ContrastNet can obtain high-level semantic features

from point cloud data. Using the extracted features, the 3D point cloud data sam-

ples are clustered into different clusters. Kmeans++ [36] is used as the clustering

8
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Figure 3.1: The Figure of pipeline. The unsupervised feature learning
includes three main steps: (a) ContrastNet for part contrast learning, by
verifying whether two point cloud cuts belong to the same object; (b) Cluster
samples of 3D objects and assign cluster IDs, using the features learned by
ContrastNet; (c) ClusterNet for object clustering learning, by training the
network with the 3D point cloud data while the labels are the cluster IDs
assigned by the clustering step.

algorithm in the paper. The point cloud data from the same cluster have high

similarity while the data from different clusters have low similarity.

c) ClusterNet: Semantic Features from Clustering: Once obtained the

clusters for the training data by using the Kmeans++ algorithm, the cluster IDs

can be used as the pseudo-labels to train another network called ClusterNet, which

is also based on the GNN structure in our implementation. The clustering is used

to boost the quality of the learned features of the ContrastNet. We would like

to note that the architecture of the network for this step does not depend on

the previous self-supervised model ContrastNet and therefore it can be flexibly

designed as the demands.

Since both of our ContrastNet and ClusterNet use Graph Convolutional Neural

Networks (GNNs) as the base models, we will first describe the basis of GNNs,

before presenting the ContrastNet and the ClusterNet.
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Figure 3.2: The architecture of PointNet [1]. For the classification network,
the input is a set of n 3D points in the form of (X,Y,Z) which is transformed
by T-nets and then predictions are made by several multi-layer perceptrons
(mlp). For the segmentation network, the local features and global features
are concatenated and the segmentation predictions are made based on the
features. In the figure, mlp stands for multi-layer perceptron, and numbers in
the parentheses are numbers of kernels for the layers. The figure is originally
presented in [1].

3.2 GNN: Graph CNN for Point Cloud

Graph Convolutional Neural Network (GNN) is type of deep neural network to

handle unordered data which has been successfully applied for point cloud appli-

cations [1–3]. PointNet [1] is the pioneer work for applying a novel deep neural

network on point cloud data. The architecture of PointNet is shown in Fig. 3.2.

For the classification network, the input is a set of n 3D points which is trans-

formed by 3x3 T-nets and then predictions are made by several fully connected

mlp layers. For the segmentation network, the local features and global features

are concatenated and the segmentation predictions are made based on the fea-

tures. With 1 × 1 convolution kernels to extract local features for each point

and then concatenated with the global features extracted by the global pooling,

the PointNet obtained state-of-the-art performance on point cloud classification,

part segmentation, and semantic segmentation tasks. However, PointNet does

not specifically capture the local structure of point cloud data. Later, Qi et al.

proposed PointNet++ [3] which is an enhanced version of PointNet by involving
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Figure 3.3: The figure of EdgeConv proposed in DGCNN [2]. It shows an
example of computing an edge feature , eij , from a point pair, xi and xj . The
output of EdgeConv is calculated by aggregating the edge features associated
with all the edges emanating from each connected vertex. The figure is
originally presented in paper DGCNN [2].

local structures. However, the improvement of the point cloud tasks is not signifi-

cant. To model the local structure of the point cloud data, Wang et al. proposed

the dynamic graph convolutional neural network (DGCNN) by utilizing a novel

convolutional operation called EdgeConv, which specifically model the local struc-

ture by using the KNNs over each 3D point data in both the original data space

and feature space [11]. With the local structure, the DGCNN achieved significant

improvement over PointNet over several point cloud applications.

The illustration of the EdgeConv is shown in Fig. 3.3. Based on the EdgeConv, a

deep dynamic graph convolution can be built recursively into a convolutional neu-

ral network. The output of one EdgeConv layer can be fed to another EdgeConv

layer as the input to extract high-level semantic features. Based on this operation,

The DGCNN proposed by Wang et al. [2] consists of a number of EdgeConv layers

for point cloud tasks. In this paper, the DGCNN is used as the base graph network

to extract features in all our experiments. Before getting into details, we would like

to note that while DGCNN was designed for supervised classification/segmenta-

tion tasks, we use this graph neural network for our two consecutive unsupervised

networks: ContrastNet and ClusterNet, to extract features that capture semantic

features of object parts and object categories, respectively.
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Figure 3.4: The architecture of ContrastNet for part contrast learning. The
positive pairs are generated by randomly sampling two segments from the
same point cloud sample, while the negative pairs are generated by randomly
sampling two segments from two different samples. A dynamic graph
convolutional neural network (GNN) is used as the backbone network. The
features of two segments are concatenated and fed to fully connected layers to
make the prediction of positive or negative. The part contrast learning does
not require any data annotations by humans.

3.3 ContrastNet: Semantic Features from Parts

When a point cloud data is observed from different views, only a part of the 3D

object can be seen. The observable part can be very different based on the view.

For example, as shown in Fig. 1.1. For the same airplane, when it is observed

from different views, the observed segments can be totally different. However, the

different segments still belong to the same object.

Inspired by this observation, we proposed the part (segment) contrast as the pre-

text task for a GNN to solve. The task is defined as to train a ContrastNet to

verify whether two point cloud segments belong to the same object. The positive

pair is drawn by selecting two different segments from the same object, while the

negative pair is drawn by selecting two segments from two different objects. The

illustration of the part contrast task is shown in Fig. 3.4.

We randomly split one object into two segments with almost the same number of

3D points, and then a pair of objects includes 4 segments. If a pair of the segments

are segmented from the same object, this pair is a positive instance that will be

labeled as 1. Otherwise, if a pair of segments comes from two objects, this pair is a

negative instance and will be labeled as 0. For example, if segment A and segment
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B come from different parts of object 1, and segment C and segment D come from

different parts of object 2, then there will have 6 pairs, AB, CD, AC, AD, BC, and

BD. In the 6 pairs, AB and CD are positive pairs since the two segments in the

pair are from the same object and the other four pairs are the negative pairs. We

model this task as a binary classification problem. As the training goes on, the

segments from the same object should have a smaller distance while the segments

from different objects have a larger distance. In this way, the semantic features

can be learned by this process.

Note that since a pair of objects may belong to the same category, the training of

positive and negative has a certain percentage of ”noisy data”. For example, In

ModelNet40 dataset, objects belong to 40 categories. Without using the labels in

training ContrastNet, there is a 1/40 (2.5%) error in the input data for verifying

positive or negative instances.

As for the network architecture, we choose the DGCNN [2] as the backbone model

since this model specifically captures the local structure of the point cloud and

yields better performance. The details of the network architecture are shown in

Fig. 3.4. There are two branches, one for each point cloud segment, from a pair of

input segments. Each branch consists of a spatial transformer network to align the

point cloud and followed by 4 EdgeConv layers with 64, 64, 64, 128 kernel sizes, re-

spectively. After which, one convolutional layer with 256 channels is used to embed

the four embeddings obtained by the four EdgeConv layers to high dimensional

space. The feature then is pooled into a 256-dimension vector by applying the

max-pooling layer. The two feature vectors from the two branches are then con-

catenated into a vector to be fed to three fully-connected layers (with 1, 024, 512, 2

vector lengths, respectively). The ReLU activation and batch normalization are

used for each layer and 50% dropout is used on each fully-connected layer. The

cross-entropy loss is optimized by using mini-batch stochastic gradient descent

(SGD) and backpropagation to compute the gradient.
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3.4 ClusterNet: Semantic Features from Clus-

ters

The underline intuition of clustering is that 3D objects from the same categories

have high similarity than those from different categories. After obtaining the

clusters of the data by using the Kmeans++, based on the features extracted by

ContrastNet. The cluster IDs of the data are used as the ”pseudo” labels to train a

ClusterNet, so that more meaningful features may be extracted from it. We hope

that using cluster IDs as pseudo labels in ClusterNet can provide more powerful

self-supervision and therefore, the network can learn more representative features

for object classification.

Given any unlabeled point cloud dataset X = {x1, x2, . . . , xN} of N images, The

clustering process can be parametrized as [36]:

min
C∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k

‖fθ(xn)− Cyn‖22, y>n 1k = 1, (3.1)

where fθ is the feature extractor that can map any point cloud data into a vector

, θ is the set of corresponding parameters that need to be optimized, yn is the

cluster ID. Solving this clustering problem provides a set of optimal assignments

(y∗n)n≤N and a centroid matrix C∗. The cluster ID assignments (y∗n)n≤N are then

used as the pseudo-labels to train the GNN.

The training of ClusterNet, also based on DGCNN [2], with the cluster ID assign-

ments as the pseudo-labels, is described as:

min
θ,W

1

N

N∑
n=1

` (gW (fθ(xn)) , yn) , (3.2)

where the purpose of training is to find the optimal parameters θ∗ such that

the mapping fθ∗ produces good general-purpose features for point cloud data. A

parametrized classifier gW predicts the correct labels of the data based on the

features fθ(xn). All the parameters are learned by optimizing this loss function.



Method 15

In supervised training, parameters θ are optimized with the human-annotated

labels while each data xn is paired with a human-annotated label yn in {0, 1}k. In

our unsupervised learning training, each data xn is paired with a pseudo label yn

that is generated by the clustering algorithm. The label yn indicates the data’s

membership to one of the k clusters, where k can be specified in the clustering

algorithm. In our experiments (below), various number of clusters are tested for

comparing the impact on feature extraction. In training the ClusterNet, this loss

function is optimized by using mini-batch stochastic gradient descent (SGD) and

backpropagation to compute the gradient.



Chapter 4

Experimental Results

We conduct extensive experiments to evaluate the proposed approach and the

quality of the learned features for point cloud on the point cloud classification

task. After providing a few implementation details of our experiments, a number of

datasets that are used in the experiments are described. Three sets of experiments

were performed: (1) basic experiments on the effectiveness of ContrastNet and

ClusterNet; (2)further studies on the impact of number of clusters on performance,

accuracy of clustering, data amount ablation and partial object recognition; and

finally (3) comparison with the state of the art approaches.

4.1 Some Implementation Details

ContrastNet: During the part contrast unsupervised learning, each object is cut

by randomly generated 15 planes into 30 segments. Each segment has at least 512

points. Any two segments from the same object are treated as the positive samples

while any two segments from two different objects are treated as negative samples.

The DGCNN is used as the backbone of ContrastNet. During the unsupervised

part contrast training phase, the learning rate is 0.001, momentum is 0.9, the

optimizer is Adam, the learning rate decay rate is 0.7, and the decay step is

200000.

16
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ClusterNet: The Kmeans++ is used as the clustering algorithm to cluster the

data based on the embeddings extracted by the ContrastNet. We test the perfor-

mance of different cluster numbers to train the ClusterNet. The same DGCNN is

used as the backbone in the ClusterNet except that the size of the last dense layer

is the cluster number. During the training with pseudo labels, the learning rate

is 0.001, momentum is 0.9, the optimizer is Adam, the learning rate decay rate is

0.7, and the decay step is 200000.

All the experiments for both the ContrastNet and ClusterNet are done on three

point cloud benchmarks: ModelNet40, ShapeNet, and ModelNet10. The data

augmentation including random rotation, shift, and jittering are used during all

the training phases.

4.2 Datasets

ModelNet40: The ModelNet40 contains 12, 311 meshed CAD models covering

40 classes. There are 9, 843 and 2, 468 samples in the training and testing splits,

respectively. In all our experiments, 1024 points are randomly picked for each

model during the training and testing phases. This dataset is used to train and

test our unsupervised learning method. During training, the training split of this

dataset has been used for learning features without using the class labels. During

the testing phase, the testing split of this dataset is used to evaluate the quality

of the learned features.

ModelNet10: The dataset contains 10 categories including 3991 meshed CAD

models for training and 909 models for testing. We randomly sample 2048 points

form the mesh faces and use the (x, y, z) coordinates of sampled points in all

experiments. The testing split of this dataset is only used for testing the quality

of the learned features.

ShapeNet: The ShapeNet part dataset that contains 16 categories including

12, 137 models for training and 2, 874 for testing from ShapeNet dataset. In all our
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experiments, 1024 points are randomly picked for each model during the training

and testing phases. The training split of this dataset is used for unsupervised

training.

4.3 Basic Experiments

4.3.1 Can ContrastNet Accomplish the Part Contrast Task?

The hypothesis of our idea is that the ContrastNet is able to learn semantic fea-

tures by accomplishing the ”part contrast” pretext task, and then the learned

features can be used for other downstream tasks, such as point cloud classifica-

tion. Therefore, we test the performance of ContrastNet in verifying whether two

patches belong to the same object. No human-annotated labels are used during

the training phased of ContrastNet.

The performance of ContrastNet in part contrasting is shown in Table. 4.1. The

average accuracy of part contrast is more than 90% on the two datasets, with cross-

dataset testing. However, for the unsupervised learning methods, we have realized

that the network can easily learn trivial solutions such as capturing edges and

corners and make predictions based on these specific features. To verify whether

the ContrastNet learned useful features, we visualize the testing data by using

TSNE.

Training Testing Accuracy(%)

ShapeNet ShapeNet 94.0
ShapeNet ModelNet40 86.4
ModelNet40 ModelNet40 95.0
ModelNet40 ShapeNet 90.9

Table 4.1: Performance of ContrastNet in part contrasting on ShapeNet and
ModelNet40 datasets.

The TSNE visualization of the learned features is shown in Fig. 4.1. All of the

data covering 10 classes of ModelNet10 is visualized. The figure shows that the
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Figure 4.1: Visualization of object embedding of the ModelNet10 test data
through part contrast training on the ShapeNet dataset. The features are
learned by part contrast learning (left) and then boosted by object clustering
(right).

ContrastNet indeed learned semantic features and the data from the same class

are closer than the data from different classes. Clustering enhances the features

more, which will be discussed more in the impact on classification.

4.3.2 Transfer Learned Features to Classification Task

To quantitatively evaluate the quality of the learned features by using the part

contrasting pretext task, we conduct experiments on three different datasets:

ShapeNet, ModelNet10, and ModelNet40. The features are extracted by the Con-

trastNet that is only trained with the part contrast task on unlabeled data. A

linear classifier SVM is trained based on the features of the training data, and the

testing classification accuracy is reported in the column ”ContrastNet” in Table

4.2.

Following the practice of previous work [16, 18], we conduct cross-dataset train-

ing and testing to verify the generalization ability of features between different

datasets. As shown in Table 4.2, when trained only with a linear classifier SVM

on one dataset, the ContrastNet trained on ShapeNet is able to achieve 84.1%
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and 91.0% on ModelNet40 and ModelNet10 dataset respectively. As a compari-

son, the model trained on ModelNet40 and tested on the same dataset achieved

85.7%. These results validate the effectiveness of the proposed method and that

the learned features by the proposed unsupervised learning method can be trans-

ferred among different datasets.

4.3.3 Can Clustering Boost the Performance?

The part contrast learning indeed forces the ContrastNet to learn semantic fea-

tures. However, the fact that objects belong to the same classes were treated

as different objects in part contrasting (without knowing their labels) may have

a negative impact on the quality of learned features by ContrastNet. Therefore,

clustering is applied to discover the objects with similar appearances and the Clus-

terNet is trained to learn features by using the cluster IDs as object labels. We

hope that the ClusterNet should be able to help the model learn more discrimi-

native features.

The features extracted by the ContrastNet for a dataset are used to group the data

into a number of clusters using the Kmeans++ algorithm. A ClusterNet is trained

from scratch to predict the cluster ID of each data sample. After the training is

finished, the network is tested on the point cloud classification task using the same

SVM on the same three benchmarks as above. The classification results are shown

in column ”ClusterNet” of Table. 4.2, where the number of clusters is selected as

300 (see below further studies for a more detailed discussion).

Training Testing ContrastNet(%) ClusterNet(%)

ShapeNet ModelNet40 84.1 86.8 (+2.7)
ShapeNet ModelNet10 91.0 93.8 (+2.8)
ModelNet40 ModelNet40 85.7 88.6 (+2.9)

Table 4.2: Comparison of 3D object classification results using ContrastNet
and ClusterNet. The classification accuracy of ClusterNet have average 2.8%
improvement on all experiments.
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As shown in Table 4.2, training the ClusterNet to predict the cluster ID of each

data, generated by Kmeans++ based on the features learned by ContrastNet,

can significantly boost the point cloud classification accuracy. The clustering

boosts the classification accuracy on all the three datasets by at least 2.7%. These

improvements validate the effectiveness of using clustering to boost the quality of

the learned features, as shown in Fig. 4.1.

4.4 Further Studies

4.4.1 Study on number of clusters

For the Kmeans++ clustering, the numbers of clusters may also affect the quality

of the features. Therefore, we also conduct experiments to evaluate the impact

of the numbers of clusters on the quality of features. By varying the numbers of

clusters, we have examined the point cloud classification accuracy on the three

benchmark datasets, as shown in Table 4.3.

ShapeNet ShapeNet ModelNet40
Clusters ModelNet40 ModelNet10 ModelNet40

16 86.1% - -
40 - - 87.4%
100 86.2% 93.5% 87.7%
200 86.4% 93.6% 88.2%
300 86.8% 93.8% 88.6%
400 86.5% 93.2% 87.8%

Table 4.3: The relation of number of clusters and the performance on point
cloud classification. The classification performance improved slightly when
larger cluster numbers are used.

As shown in Table. 4.3, when the number of clusters for ShapeNet data is 16 and

number of clusters for ModelNet40 is 40, which are the exactly the same as the

category numbers of these two datasets, the classification accuracy percentages

are 86.1 % and 87.6 %, respectively. However, we might not be able to obtain the

best performance when the number of clusters equals to the number of categories
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of a dataset, and we may not know the number of categories to begin with. There-

fore we conduct other experiments by varying the clusters numbers, from 100 to

400, hoping that finer category information will be captured. It turns out that

clustering the data into 300 clusters can obtain best results for all three datasets,

which are 86.8%, 93.8%, and 88.6% respectively. This means the points cloud

classification performance can be improved when larger cluster numbers are used

but then is saturated when the numbers are larger than certain values. We spec-

ulate that when more clusters are discovered, the fine-grained object group can

be discovered which probably leads to more discriminative features. However, we

would like to note that the selection of the numbers of clusters is not very critical

since the improvement with varying the numbers of clusters is less than 1%.

4.4.2 Study on accuracy of clustering

Pre-training Clusters Clustering Acc. Testing Acc.

ShapeNet 16 83.4% 86.1%
ModelNet40 40 64.2% 87.4%

Table 4.4: The accuracy of the cluster results. Clustering using Kmeans++
can effectively cluster the data and the clustering accuracy pretty depends on
the number of the categories. The testing accuracy are obtained from
ClusterNet using SVM, that has 23.2% improvement on ModelNet40.

To further analysis the quality of learned features, we evaluate the quality of the

clusters by calculating the accuracy of each cluster. Specifically, for each cluster,

we assign the category label of the majority data as the label and evaluate the

accuracy of all the data. We cluster the ShapeNet and ModelNet40 into 16 and 40

clusters respectively, since these numbers equal to the actual numbers of categories

in the two datasets. The results are shown in Table 4.4.

As shown in Table 4.4, the cluster accuracy on ShapeNet is 83.4% which means

that 83.4% of the data are correctly clustered into the same labels using Kmeans++.

The clustering accuracy on ModelNet40 is 64.2%, which is much lower than that of

ShapNet, probably because ModelNet has more categories than ShapeNet. How-

ever, even with the low clustering accuracy, the testing accuracy obtained after
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Figure 4.2: Visualizing clustering result after applying Kmeans++ on the
unlabeled data. The first column is the discovered centrioid of each cluster
and the other five columns are the top five closest data to the centroid.

ClusterNet using SVM on ModelNet40 dataset is 87.4%, a 23.2% ”improvement”

over the training data ”accuracy”, which means ClusterNet can significantly opti-

mize the quality of the features with a clustering.

The clustering can cluster point cloud objects into groups that the objects from

the same groups have smaller distances in the feature space while objects from

different groups have larger distances in the feature space. The quality of the

cluster indicates the discriminative ability of the learned features. Therefore, we

randomly select 6 clusters and show the cluster center and the top 5 objects that

closest to the cluster center.
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The quality of clustering is visually illustrated in Fig. 4.2. Each row represents

the objects from the same cluster discovered by the Kmeans++ based on the

unsupervised learning features. As shown in Fig. 4.2, the object from the same

cluster have very high similar appearance and geometry.

Figure 4.3: Relation of the point cloud object classification accuracy and the
training data amount on ClusterNet for classification. The performance of
object classification increases along with more annotated training data is used.

4.4.3 Data Amount Ablation Study

We have realized that even with unsupervised feature extraction, we have to know

data labels for training a classifier for the classification task. In a real-world sce-

nario, the data annotation is very expensive and sometimes demands special skills.

Even a few training examples may take a lot of effort to collect and annotate.

Therefore, in this section, we evaluate the impact of the amount of labeled data

for SVM training after the ClusterNet feature extraction. We vary the amount of

labeled training data for SVM and observe the point cloud classification perfor-

mance. The performance is shown in Fig. 4.3.
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We can see that even if only 5% of the labeled training data are available, the test

accuracy is still more than 55%. When 20% of the training data are available, the

test classification accuracy is already close to 78%. This demonstrates that when

annotated data are extremely limited (a few data per class), the unsupervised

learned model can still perform well.

4.4.4 Can ContrastNet Classifiy Part Segments?

Training Testing Acc-Part (%) Acc-Full (%)

ShapeNet ModelNet40 76.9 84.1
ModelNet40 ModelNet40 80.0 85.7

Table 4.5: The accuracy of the part segments classification. The testing
accuracy is obtained from the ContrastNet using the SVM. The average
accuracy with cross-dataset is more than 80%, which means ContrastNet can
effectively learn high-quality features on part segments from a full object.
Nevertheless, when all the data are used for the training and testing, the
performance is much higher that networks that were trained only using only
part segments.

We have known that ContrastNet can learn useful features from the full objects.

However, in real-life a sensor can only observe part of the object based on a

certain perspective view. Fig. 1.1 shows that different segment parts from one

object might be totally different from each other. To verify if ContrastNet can

classify part segments, we trained two ContrastNet models using part segments

of ModelNet40 and ShapeNet datasets, respectively, and tested the classification

of part segments of the objects on ModelNet40. Note that the features were

extracted by each ContrastNet model on part segments instead of full objects.

Each part segment contains 512 points. A linear SVM is trained based on the

features extracted from ContrastNet and we conducted cross-dataset training to

evaluate the results. The results are shown in Table 4.5.

The reasults in Table 4.5 shows that the average accuracy (in column ”Acc-Part”)

of part segments classification are more than 80.0% with the cross-dataset, which

means even we only feed part of object to ContrastNet model, it still can learning

high-quality features for classification task. The results validate the practical
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significance of the context contrast task. Nevertheless, we would like to note that

when all the data are used for the training and testing (in column ”Acc-Full”,

listed again here from column ”ContrastNet” of Table 4.2 ), the performance is

5% higher that networks that were trained only using only part segments.

4.5 Comparison with the State of the Art

In this section, we compare our approach with both the supervised models [1, 1, 2]

and other unsupervised learning models [13–18, 37] on point cloud classification

benchmarks ModelNet10 and ModelNet40. In all comparison, we use the Cluster-

Net.

Following the common practice [16, 18], all the unsupervised models are trained

on the ShapeNet data with the same procedure. The methods in [13, 14] are

hand-crafted features and methods in [15–18, 37] are deep learning based meth-

ods. On the ModelNet10 dataset, our methods outperforms SPH [13], LFD [14],

TLNetwork [15], VConv-DAE [37], and 3DGAN [16], and only 0.6% lower than

FoldingNet [18] which is the latest work for unsupervised feature learning. On

the MoldelNet40 datasets, our method outperforms all the methods except Fold-

ingNet (1.6% lower). We would like to note that our ClusterNet has a much

simpler structure and is easier in training.

Models ModelNet40 (%) ModelNet10 (%)

SPH [13] 68.2 79.8
LFD [14] 75.5 79.9
T-L Network [15] 74.4 -
VConv-DAE [37] 75.5 80.5
3D-GAN [16] 83.3 91.0
Latent-GAN [17] 85.7 95.3
FoldingNet [18] 88.4 94.4
ClusterNet (Ours) 86.8 93.8

Table 4.6: The comparison on classification accuracy between our
ClusterNet and other unsupervised methods on point cloud classificaton
dataset ModelNet40 and ModelNet10.
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In addition to compare with the unsupervised feature learning methods, we also

compare the performance with the recent supervised methods including PointNet

[1], PointNet++ [3], and DGCNN [2]. All the parameters of these methods are

trained with human-annotated labels, while our results are obtained by training

linear SVM based on the features extracted by ContrastNet. The performance

comparison is shown in Table. 4.7.

Models ModelNet40 (%)

POINTNET [1] 89.2
POINTNET++ [3] 90.7
POINTCNN [18] 92.2
DGCNN [2] 92.2
ClusterNet (Ours - unsupervised) 88.6

Table 4.7: The comparison on classification accuracy between our
unsupervised ClusterNet and the supervised methods on point cloud
classificaton on ModelNet40.

As shown in Table. 4.7, the supervised methods have better performance because

all the parameters are tuned by the hand-annotated labels. With the unsuper-

vised learned features and a linear SVM, the performance of our model (using

unsupervised DGCNN) is only 3.6% lower than the supervised DGCNN. These

results demonstrate the effectiveness of our unsupervised learning methods.
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Conclusions and Discussions

We have proposed a straightforward and effective method for learning features

for point cloud data from unlabeled data. The experiment results demonstrated

that proposed pretext tasks (part contrasting and object clustering) are able to

provide essential semantic information of the point cloud data for the network to

learn semantic features. Using the dynamic graph CNN (DGCNN, designed for

supervised classification/segmentation tasks) as the backbone, our two consecutive

unsupervised networks - ContrastNet and ClusterNet - can extract features that

capture semantic features of object parts and object categories, respectively. Our

proposed methods have been evaluated on three public point cloud benchmarks

and obtained comparable performance with other state-of-the-art self-supervised

learning methods.

There are number of future directions based on the current research.

5.1 Using Larger Datasets

The unsupervised feature learning methods are of great importance to many com-

puter vision tasks since semantic features can be obtained by learning from unla-

beled datastets. Past research has shown that the performance of convolutional

28
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neural networks can be boosted up when larger datasets are used [38]. Gener-

ally, the performance increase logarithmically with the increase of the amount of

training data. Therefore, the quality of the learned features by our framework can

be further boosted if more training data are used. In our current work, only the

partial ShapeNet dataset with only 16 classes of objects is used for training. We

have noticed that there are datasets, such as the full ShapeNet dataset with 55

classes of data objects, and many paper use all of them for unsupervised training

[18]. Therefore, the full ShapeNet dataset can be used for training. In addition to

ShapeNet, any large-scale point cloud dataset can be used to train our methods.

5.2 Using Perspective Data

Another improvement is to use more practically meaningful data to train the

network. The ContrastNet is trained to verify whether two segments are from

one object. The network is designed to ignore the low-level features while only

focusing the high-level semantic features. The idea is inspired by the facts that

even though the same object looks like very different when observed from different

views, but they share some kinds of higher level semantic features. The current

implementation of cutting an object into two pieces is too artificial. A more

reasonable and practical approach would be to use the perspective views of the 3D

point cloud data to train the network. The perspective data can be automatically

generated by rendering the point cloud points from various different views.

5.3 Automating Data Labeling

There are two networks in our framework: ContrastNet and ClucsterNet. The

ContrastNet learned to verify whether two 3D point cloud segments belong to the

same object while the ClusterNet learns to cluster the point cloud objects. The

number of clusters can be pre-defined. Given smaller cluster numbers, the Cluster-

Net are trained to automatically cluster data into super clusters, while with larger
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cluster numbers, the ClusterNet can discover fine-grain clusters automatically in

the data. Therefore, the ClusterNet may be used to automatically discover the

clusters in a given dataset. One possible application is to cluster unlabeled data

and the other possible application is to automatically label the data, probably

with some automatic evaluation and then human cleansing at the end.
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