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Abstract 

In applications such as surveillance, inspection and traffic monitoring, long-range 

detection and classification of targets (vehicles, humans, etc.) is a highly desired feature 

for a sensing system. A single modality will no longer provide the required performance 

due to the challenges in detection and classification with low resolutions, noisy sensor 

signals, and various environmental factors due to large sensing distances. Multimodal 

sensing and processing, on the other hand, can provide complementary information from 

heterogeneous sensor modalities, such as audio, visual and range sensors. However, 

there is a lack of effective sensing mechanisms and systematic approaches for sensing 

and processing using multimodalities. In this thesis, we described a systematical 

framework for Adaptive and Integrated Multimodal Sensing and Processing (thereafter, 

the AIM-SP framework) that integrates novel multimodal long-range sensors, adaptive 

feature selection and learning-based object detection and classification for achieving the 

goal of adaptive and integrated multimodal sensing and processing. Based on the AIM-SP 

framework, we have made three unique contributions. First, we have designed a novel 

multimodal sensor system called Vision-Aided Automated Vibrometry (VAAV), which is 

capable of automatically obtaining visual, range and acoustic signatures for moving object 

detection at a large distance. Second, multimodal data, acquired from multiple sensing 

sources, are integrated and represented in a Multimodal Temporal Panorama (MTP) for 

easy alignment and fast labeling. Accuracy of target detection can be improved using 

multimodalities. Further, a visual reconstruction method is developed to remove 

occlusions, motion blurs and perspective distortions of moving vehicles. With various 

types of features extracted on aligned multimodal samples, we made our third 

contribution on feature modality selection using two approaches. The first approach uses 

multi-branch sequential-based feature searching (MBSF) and the second one uses 

boosting-based feature learning (BBFL).  

  



v 
 

 

 

 

To my wife Yun and my parents for their love and support 

  



vi 
 

Acknowledgments 

First and foremost I would like to express my sincerest gratitude to my thesis advisor Prof. 

Zhigang Zhu, who has greatly supported and guided me throughout years of my PhD 

research with his patience and knowledge.  This thesis would not have been completed 

without his commitment and diligent efforts. I am also grateful to Prof. Zhu who always 

encourages me to make my work into publications (Appendix E) as well as brought my 

attention to numerous R&D opportunities. I can never forget the support from him which 

helps me build upon strong academic and industrial experience so that I can secure a job 

position quickly, even before I graduate. He is a source of inspiration. What I learned from 

him is far more than I expected and will benefit me in the rest of my life. 

I would also like to thank my other thesis committee members, Prof. Ioannis Stamos, Prof. 

Yingli Tian, and Dr. Ajay Divakaran, for their time commitments, selfless assistance, 

invaluable feedback and great patience at all stages of this PhD process. Thanks to Prof. 

Stamos who taught me the fundamental concepts in computer vision when I was in the 

entry level of my PhD study. With his influence, I started to love to do the research in 

vision-related fields. I am also grateful to Prof. Tian who brought insightful ideas in my 

thesis proposal and helped me work toward right directions. I also appreciate Dr. 

Divakaran for his willingness to use his expertise in signal processing with down-to-the-

detail comments he provided for not only this thesis but also other published work with 

him.   



vii 
 

Moreover, I am also indebted to researchers at Wright Patterson Air Force Research 

Laboratory during my summer internships. My special thanks go to Dr. Clark N. Taylor for 

his thoughtful discussions. I would also like to thank others at AFRL, including Dr. Kevin 

Priddy, Dr. Erik Blasch, and Ms Olga Mendoza-Schrock for their supports. I would also like 

to express my gratitude to Pastor James Chun-min Yeh, other brothers and sisters 

(especially Sister Meng), at Dayton Chinese Christian Church (DCCC), for their love and 

care during my ten-week stay at Dayton, Ohio in 2011. Their kind words and actions will 

never be forgotten. Mostly, I’d like to thank our loving God who is taking a large place in 

my life.   

I would like to thank all friends and colleagues at the City College Vision Computer Lab to 

make a friendly working environment and share their interesting ideas. Thanks go to 

Edgardo Molina, Hao Tang (now a professor at BMCC), Wai Khoo and other newly joined 

PhD students. I also want to thank two visiting scholars during my thesis years, Dr. Yufu 

Qu and Dr. Rui Li for their helpful collaboration and inspiring discussions.   

This work has been supported by the Air Force Office of Scientific Research (AFOSR) under 

Award #FA9550-08-1-0199 and the 2011 Air Force Summer Faculty Fellow Program 

(SFFP), by the National Collegiate Inventors and Innovators Alliance (NCIIA) under an E-

TEAM grant (No. 6629–09), and by a PSC-CUNY Research Award. The work is also partially 

supported by National Science Foundation (NSF) under Award #EFRI-1137172 and Award 

#CNS-0551598, and Army Research Office (ARO) under Award #W911NF-08-1-0531. 



viii 
 

These supports have greatly inspired and facilitated the research reported in my PhD 

thesis. 

I cannot end here without thanking my parents, for their greatest supports and absolute 

confidence in me, without which I would not have survived the PhD process. My final 

words go to Yun, my dear wife, who gave me two lovely kids during my PhD years. That 

gives me a lot of momentum as well as huge amount of pressure, but that is also the major 

reason that I feel life is enjoyable and worth living.    



ix 
 

Table	of	Contents	
1 Introduction ............................................................................................................... 1 

1.1 Goals .................................................................................................................... 3 

1.2 Challenges ............................................................................................................ 4 

1.3 Overview of Our Approach .................................................................................. 8 

1.4 Summary of Contributions ................................................................................. 12 

1.5 Outline of the Dissertation ................................................................................ 14 

2 Related Work: a Literature Review .......................................................................... 16 

2.1 Sensor Modalities .............................................................................................. 18 

2.1.1 Electro-optical (EO) sensors ....................................................................... 20 

2.1.2 Thermal or Infrared (IR) Sensors ................................................................ 21 

2.1.3 Laser Range and Vibration Sensors ............................................................ 21 

2.1.4 Other Sensors and Modalities .................................................................... 22 

2.2 Multimodal Surveillance System ....................................................................... 23 

2.3 Multimodal Data Fusion .................................................................................... 25 

2.3.1 Levels of Integration ................................................................................... 26 

2.3.2 Multimodal Fusion Examples ..................................................................... 28 

2.4 Motivations of our Approaches ......................................................................... 30 

3 Multimodal Sensing and Adaptation ........................................................................ 33 

3.1 LDV for Remote Acoustic Sensing ...................................................................... 36 

3.1.1 Principle of LDV-Based Hearing .................................................................. 36 

3.1.2 Related Work on Acoustic Sensing ............................................................. 38 

3.2 Vision-Aided Automated Vibrometry: System Overview .................................. 39 

3.3 System Calibration: Finding Parameters among the Sensor Components ........ 42 

3.3.1 Calibration of the two PTZ cameras ........................................................... 44 

3.3.2 Calibration of the slave camera and the LDV ............................................. 45 

3.4 Stereo Vision: Feature Matching and Distance Measuring ............................... 46 

3.4.1 Stereo Matching ......................................................................................... 47 

3.4.2 Distance Measuring .................................................................................... 48 

3.5 LDV Focus Step and Distance Relation .............................................................. 49 



x 
 

3.6 Adaptive and Collaborative Sensing .................................................................. 51 

3.6.1 Surface Selection ........................................................................................ 53 

3.6.2 Laser-Camera Alignment ............................................................................ 54 

3.7 Experimental Results ......................................................................................... 56 

3.7.1 Distance Measuring Validation ................................................................... 56 

3.7.2 Surface Selection ........................................................................................ 58 

3.7.3 Auto-Aiming using Laser-Camera Alignment .............................................. 58 

3.7.4 Surface Focusing and Listening .................................................................. 60 

3.8 Concluding Remarks .......................................................................................... 62 

4 Multimodal Data Representation and Processing .................................................... 63 

4.1 Audio Visual Dataset .......................................................................................... 65 

4.2 A Brief Survey of Related Work ......................................................................... 67 

4.3 Multimodal temporal panorama ....................................................................... 68 

4.4 Multimodal Data Alignment for Object Detection ............................................ 73 

4.4.1 Object Detection ........................................................................................ 73 

4.4.2 Data Alignment ........................................................................................... 76 

4.5 Reconstruction Algorithm .................................................................................. 78 

4.6 Audio Enhancement for LDV Signals .................................................................. 81 

4.7 Experimental Results ......................................................................................... 82 

4.7.1 Reconstruction Error Analysis .................................................................... 83 

4.7.2 Classification on Reconstructed Results ..................................................... 85 

4.7.3 Results of Audio Enhancement .................................................................. 87 

4.8 Concluding Remarks .......................................................................................... 88 

5 Multimodal Feature Extraction ................................................................................ 89 

5.1 A Brief Overview of Feature Extraction ............................................................. 89 

5.2 Visual Features Extraction ................................................................................. 91 

5.3 Audio Feature Extraction ................................................................................... 93 

5.4 Multimodal Feature Synchronization ................................................................ 95 

5.5 Sample Results ................................................................................................... 96 



xi 
 

5.6 Concluding Remarks .......................................................................................... 98 

6 Multimodal Feature Selection and Learning ............................................................ 99 

6.1 Related Work ................................................................................................... 100 

6.2 Multi-Branch Feature Searching (MBFS) ......................................................... 102 

6.3 Boosting Based Feature Learning (BBFL) ......................................................... 105 

6.3.1 Algorithm for BBFL ................................................................................... 106 

6.4 Experimental Results ....................................................................................... 109 

6.4.1 Results Using MBFS .................................................................................. 109 

6.4.2 Results on the Best Feature Combination (ARS+HOG+PERC) ................... 113 

6.4.3 Results Using BBFL .................................................................................... 116 

6.4.4 Comparison Between MBFS and BBFL ..................................................... 119 

6.5 Concluding Remarks ........................................................................................ 120 

7 Conclusions and Future Work ................................................................................ 122 

7.1 Key Contributions ............................................................................................ 122 

7.2 Limitations of Our Approaches ........................................................................ 124 

7.3 Future Work ..................................................................................................... 126 

Appendix A:  PTZ and LDV Calibration ............................................................................ 129 

Appendix B: Laser Camera Alignment ............................................................................ 131 

Appendix C: Reconstructed Image Results ..................................................................... 133 

Appendix D: Boosting Algorithms .................................................................................. 137 

D.1 Classic AdaBoost for a Binary Classification Problem .......................................... 137 

D.2 Boost for a K-Class Classification Problem ........................................................... 137 

Appendix E: Candidate’s Publication List ....................................................................... 139 

List of Figures ................................................................................................................. 142 

List of Tables ................................................................................................................... 144 

References ...................................................................................................................... 145 

 



1 
 

Chapter	1	

1 Introduction	

Recently, research and development efforts in moving object detection and classification 

are gradually shifting their emphases from only analyzing visual information to using 

multiple sensing modalities. Remote object signature detection is becoming increasingly 

important in non-cooperative and hostile environments for many applications (Dedeoglu, 

et al, 2008; Li, et al, 2008). These include: (1) remote and wide area surveillance in frontier 

defense, maritime affairs, law enforcement, and so on; (2) perimeter protection for 

important locations and facilities such as forest, oil fields, railways and high voltage 

towers; (3) search and rescue in natural and man-made disasters such as earthquakes, 

flooding, hurricanes and terrorism attacks. In these situations, target signature detection, 

particularly signatures of humans, vehicles and other targets or events, at a large distance, 

is critical in order to watch out for the trespassers or events before taking appropriate 

actions, or make quick decisions to rescue the victims, with minimum risks. Although 

imaging and video technologies (including visible and IR) have had great advancement in 

object signature detection at a large distance, there are still many limitations when they 

are used in non-cooperative and hostile environments due to intentional camouflage and 

natural occlusions. Audio information, another important data source for target 

detection, still cannot match the range and signal qualities provided by video technologies 

for long-range sensing, particularly under a variety of large background noises. For 

obtaining better performance of human tracking in a near mediate range, Beal, et al. 
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(2003) and also Zou and Bhanu (2005) have reported the integrations of visual and 

acoustic sensors. By integration, each modality may compensate for the weaknesses of 

the other. 

Multimodal sensing and processing have become very active research topics. The 

multimodal sensing part deals with multiple sensory modalities thus involves sensor 

coordination, data synchronization, and data integration. On the other hand, the 

multimodal processing part deals with multimodal features thus need data processing, 

feature extraction and classification all for multiple modalities. However, in most research 

works, these two components are handled rather separately; sensor developers mainly 

care about building multimodal sensory systems for specific tasks and processing 

scientists overwhelmingly focus on well prepared multimodal data for their researches. 

There is a connection gap between two groups and a lack of a close-loop evaluation and 

feedback between each other. As a particular example such as long range moving object 

detection using both audio and video, we have to not only design a sensing system to 

multimodal data acquisition, but also develop a method to synchronize and process those 

data collected from multiple sensor sources. And decisions made based on those data or 

features can help us evaluate the necessity of different sensor sources. Therefore, there 

is a strong need of a systematic and underlying framework that connects all steps. For this 

reason, we have developed a unified Adaptive and Integrated Multimodal Sensing and 

Processing (AIM-SP) framework that integrated smart data collection, adaptive feature 

selection and optimal object detection and classification for achieving the objective of 
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adaptive and robust multimodal sensing for situational awareness, in particular, in vehicle 

and human detection.  

In the rest of this chapter, we will give a general description of our goal in multimodal 

sensing and processing, and three main objectives in the framework in Section 1.1.  Then 

Section 1.2 discusses challenges to achieve the goal. Section 1.3 presents an overview or 

our approach. Section 1.4 summarizes our three unique contributions. Section 1.5 shows 

an outline of the structure of the dissertation.  

1.1 Goals		

The ultimate goal of our research is to apply AIM-SP framework to a wide range of 

different tasks (human detection, vehicle detection, bridge monitoring, anomaly 

detection, and etc.) using the same inference framework through optimal feature 

selection and classification ensemble learning. For illustrating the effectiveness of the 

approach, we will particularly focus on multimodal long range moving object (vehicle, 

human) detection and classification throughout the rest of the chapters. The target 

applications could be surveillance, traffic monitoring and inspection. Many sensor 

technologies, such as video, audio, radar, infrared, and ultrasonic could also be used for 

those applications.  However, we will mainly focus on two typical sensor components, 

audio and video, since they are commonly used in surveillance applications to acquire 

different target signatures and provide complementary information to each other. So one 

of our objectives is to align and label samples from audio and video data with separate 

sensors. Then, multimodal information, such as visual appearance, motion, range, and 
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acoustic signatures for the same objects could be extracted. Definitely more information 

can help us make a better decision but there also exists redundant, unimportant or even 

unrelated information for a specific task. For example, if we only want to distinguish 

vehicles of different shapes, visual features may dominate the decision, and audio is 

irrelevant to this task. However, if we want to measure the volumes of the engine sound 

of particular vehicles, such as a truck vs. a minivan, audio information may influence our 

decision more. It is very important to select the most representative data or features 

given a specified task. Although our experiments will focus on specific tasks, we do not 

want to limit our goal only to those. Therefore, the other objective is to show that sensor 

selection, feature learning and decision making, even though all related to particular 

tasks, but a general approach can be developed. In order to achieve the goals, many 

challenges are involved and discussed hereunder.         

1.2 Challenges	

Multimodal adaptive sensing systems with various sensor modalities including visual, 

range and acoustic measurements have found applications in biometrics (Chen, et al, 

2010), activity recognition (Petsatodis, 2009), and large area surveillance (Cristani, et al, 

2007; Dedeoglu, et al, 2008). However, long range moving object detection using 

multimodal sensing systems opens up some challenge researching issues. First, are the 

sensing systems re-configurable and adaptive? Second, are the data collected from the 

multimodal sensors automatically done or easy to process to generate object signatures? 

Third, are all features extracted equally important to make a decision for a specific task?  
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Furthermore, can the system learn from previous results to provide feedback for better 

feature selection and even adaptive sensor control without redesign the whole system, 

when giving a new task?  

For the first issue, the state-of-the-art sensor technology is not ready for adaptive sensing. 

In the past, most surveillance systems use cameras only. Now, in additional to 

conventional visual based sensing systems, there are some systems using other sensors, 

such as sonar, infrared cameras, or laser Doppler vibrometer (LDV) to detect vehicles on 

road (Samadi, et al, 2008; Iwasaki, 2008; Wang, et al., 2011; Qu, et al, 2010). It has been 

shown that the use of multimodal sensors provides better performances in object 

detection and classification. For acoustic signature acquisition, a microphone or 

microphone arrays are used in multimodal sensing systems. Those types of sensors need 

to be placed close to the targets of interest.  Many of them need to be fixed at pre-

determined locations if an object is in motion and needed to be tracked. Parabolic 

microphones, which can capture voice signals at fairly large distance in the direction 

pointed by the microphone, could be used for remote hearing and surveillance. But it is 

very sensitive to noise caused by the wind or the sensor motion, and all the signals on the 

way are captured. In the City College Visual Computing Laboratory, we have found 

another emerging sensing technology for long range audio acquisition that using a laser 

Doppler vibrometer (LDV) (Zhu, 2004). The LDV sensors were initially designed for 

industrial and architectural inspection applications. However, they are found to be able 

to detect acoustic signals at a large distance through the detection of the vibration of the 
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surface of an object near a sounding target. Therefore, they can be used to perform long-

range multimodal surveillance and monitoring by integrating visible and infrared videos.  

This new sensing technology leads to the second issue – multimodal data collection and 

integration. It is a complicated procedure and needs to be considered carefully. Data 

collected from multiple sensory components are always noisy and not aligned in a way 

that can be easily processed during multimodal feature extraction and integration. For 

example, for the same target, the target detection from an audio may not lie on the same 

time frame as that from a video. This is always the case that we sometimes hear the sound 

of a coming vehicle before we actually see it. For vehicles’ visual detection, most methods 

(Gupte, et al., 2002; Hsu et al., 2006) assume that the desired vehicles can be detected by 

image differencing. Then various kinds of vehicle features like shape, texture, etc. are 

extracted easily to make the vehicle classification straightforward. However, several 

environmental variations will significantly affect the accuracy of vehicle classification. This 

will be even more the case for long-range vehicle detection and inspection, where the 

sensors (cameras) can only be set in a remote location. In such a scenario, the standpoints 

of view from the sensors to a road could be constrained due to large distances, and 

occlusions such as trees and other facilities. This will result in the failure of vehicle 

detection and degrade the accuracy of later vehicle classification and recognition. 

Another environmental variation is that the perspective views (ranges, directions) of 

captured vehicles which also vary greatly. When a vehicle is observed along a lane, it will 

have different appearances/resolutions in different video frames over the period of time. 

Also, the video data of the vehicle could be in a low resolution and subject to motion blur. 
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Vehicles’ visual images should be reconstructed from multiple video images to solve those 

issues. The vehicles’ sounds do not face the occlusion and perspective view issues from 

the video, and can also provide complementary information, such as loudness and 

sharpness, for distinguishing different types of vehicles. An LDV can capture the acoustic 

signatures of a moving target, such as humans and vehicles, at a large distance; however, 

its signal strength is affected by the vibration and the reflection of a background surface. 

Thus, audio enhancement should be performed for obtaining better acoustic signatures. 

After multimodal alignment, visual reconstruction and audio enhancement, various types 

of features can be extracted. However, not all features from multimodal sensors are 

equally important to make a decision for a given task. Some can provide complementary 

information, but some will provide redundant or even irrelevant information. Also, the 

fusion of features that are obtained from different modalities usually results into a large 

feature vector. Many feature vector reduction techniques (Wall et al., 2003; Guironnet et 

al., 2005; Chetty & Wagner, 2006) are applied to reduce the data from higher dimensional 

space into lower dimensional space. However, those techniques are mainly based on the 

data themselves. We will explore feature modality selection as an alternative approach 

to reduce the size of features meanwhile improving the performance in multimodal 

feature integration. It refers to choose different types of modalities from which could be 

different sensor sources or heterogeneous features extracted from a single sensor source. 

The question is, from an available multimodal feature set, which modalities should be 

selected to accomplish a specified task? The utility of those modalities could be changed 

for different tasks. As the optimal feature subset changes over time, how confidence the 
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feature modality selected with which the task is accomplished, is an open problem for 

multimodal feature fusion and classification. 

We note that in most multimodal sensing research, sensor modalities, control feedback, 

and target signatures are mostly defined by the designers, and mostly use a model-driven 

approach. On the other hand, in machine learning research, data classification and event 

decision are only based on the pre-defined datasets, which are mostly data-driven. There 

is little work that addresses the adaptive data collection and feature selection based on 

the system performance. Therefore, there is a strong need for interaction between the 

model-driven approach and the data-driven approach in order to solve the last issue – to 

have an adaptive and integrated multimodal sensing-processing control system. 

1.3 Overview	of	Our	Approach	

To respond all challenges described above, we first introduce an Adaptive and Integrated 

Multimodal Sensing and Processing (AIM-SP) framework shown in Figure 1.1. The AIM-SP 

framework provides the flexibility to put particular tasks and sensing data in a unified 

framework in order to provide feedbacks for collecting the most useful signals from a set 

of heterogeneous sensors. The scenes and targets determine what the effective 

multimodal sensors are for data acquisition, where the users and tasks specify what kinds 

of techniques need to be used to achieve the goal. There are two 
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interrelated parts, active multimodal sensing and adaptive multimodal processing. Three 

phases are processed across theses two parts: multimodal sensors integration in the 

sensing part, multimodal target classification in the processing part, and multimodal data 

representation and feature extraction, which builds a connection between the data 

collected from the sensors and the data used for multimodal target classification. There 

is also an evaluation chain corresponding to the three phases, which provides a close-loop 

feedback. Each phase serves some particular objectives. For example, the sensor 

integration phase is used for active target sensing; then data are collected and 

represented for better object detection using multimodalities. Because the 

synchronization at the data representation level, features can be easily aligned and 

correlated to each other for improving classification.  Then feature modality selection can 

 

Figure 1.1 Multimodal sensing and processing framework 
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evaluate those representative features and sensor modalities. The goal of this work is to 

provide a close-loop interaction between sensing and processing, therefore benefiting 

both sensor design engineers and algorithm development scientists. As an example, we 

will target on long range moving object detection and classification, particular, vehicles 

and humans. At each phase, we will also address our novelties and contributions.  

In the multimodal sensory integration phase, we design an adaptive multimodal sensing 

system based on a novel concept of Vision-Aided Automated Vibrometry (VAAV), which 

provides visual assistance for the long range remote hearing using an active vibration 

sensor – LDV, in fast and automated target selection via intelligent focus and distance 

measurement. Moving object detection at a large distance is very challenging in 

surveillance and inspection. The VAAV system has unique features for automatic or 

interactive reflective surface detection and laser pointing through the visual assistance 

for better target detection. The main contribution of this work is the collaborative 

operation of a dual-PTZ-camera system and a laser pointing system for the long-range 

acoustic detection. To our knowledge, this is the first piece of work that uses a PTZ stereo 

for automating the long-range laser-based voice detection. Meanwhile, the combination 

is a natural extension of the already widely used PTZ-camera-based video surveillance 

system towards multimodal surveillance with audio, video and range information. 

The multimodal data representation phase builds a connection between the sensors 

integration and the features extraction. For moving vehicle detection and classification, 

data collected from multiple sensors are represented in a Multimodal Temporal 
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Panorama (MTP) that aligns three main modalities: shape, motion and audio, in the same 

time axis so that multimodal features can be extracted synchronously. The MTP facilitates 

the synchronization and integration of the information across the three modalities, both 

for automatic and interactive vehicle and traffic analysis, thus providing more succinct 

and reliable information for tasks like moving vehicle detection and classification using 

visual, motion, and acoustic information. In the MTP representation, we have two 

objectives in mind: providing mechanisms for automatic vehicle detection and a user-

friendly GUI for training data labeling for later vehicle classification. For these purposes, 

while generating the MTP, real-time processing and detection are also implemented. 

With the help of the MTP, we also develop a visual reconstruction algorithm for moving 

vehicles, which can remove occlusion, motion blur and perspective distortions. The 

purpose of reconstruction is to provide an automated and cleaned data for easy labeling 

and improved classification. Meanwhile, the reconstructed results and the corresponding 

original images shot are stored and displayed for comparison and archival. The spectrum 

of the vehicle’s sound is also displayed to enhance the detection of the vehicle using 

acoustic information. Note the time spans of the vehicle in video and audio may not be 

the same since we usually hear the sound of the vehicle before actually see it. Therefore 

the MTP provides a very effective user interface to visualize and analyze the alignment of 

the video and acoustic information of passing-by vehicles, thus facilitating the joint 

detection and classification of vehicles using both visual and audio information. 

After multimodal data alignment and synchronization, the system enters the multimodal 

target classification phase. Multimodal features are extracted. We analyze various types 
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of visual features and audio features, and select those features that could provide optimal 

classification performance for a given task. We first provide a flexible multi-branching 

feature searching technique that is based on sequential forward selection algorithm. It 

selects a number of good features and their branches at different levels of combinations. 

We notice that the feature extraction and selection are task-dependent. Given different 

tasks, the same features may play different roles. In this work, we design two different 

types of classification tasks using the same set of features on the same dataset and 

provide a thorough study on the feature selection and combinations for vehicle 

classification. For robust feature selection, we also propose a boosting-based feature 

learning technique to select a number of same or different feature modalities at each 

weak learner to further improve the classification accuracy.   

We believe that the proposed architecture along with the new techniques will be a 

valuable addition to both industrial and scientific research, and may also open new 

research areas in encouraging the cooperation between sensor engineers and processing 

scientists.  

1.4 Summary	of	Contributions	

Based on the unified Adaptive and Integrated Multimodal Sensing and Processing (AIM-

SP) framework (Fig. 1.1), we have made three unique contributions: 

1. A novel Vision-Aided Automated Vibrometry (VAAV) multimodal sensor system is 

designed that is capable of obtaining visual, ranging and acoustic signatures for 

moving object detection at a large distance. The integrated system greatly 
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increases the performance of the LDV remote hearing and therefore increases its 

feasibility for audio-visual surveillance and long range object inspection and 

detection applications.  

2. A Multimodal Temporal Panorama (MTP) approach is developed for multimodal 

data representation and alignment, which facilitates target detection and data 

labeling. It provides multimodal information including visual appearances, motion 

signatures and acoustic information. In addition, it provides the capability to 

reconstruct vehicles’ visual appearances so that motion blurs, occlusions and 

perspective distortions can be removed. It also provides a very effective user 

interface for training data labeling in both video and audio domains.    

3. A multi-branch feature searching (MBFS) algorithm and a boosting based feature 

learning (BBFL) algorithm are proposed to select the representative feature 

modalities. The effectiveness of multimodal feature selection and combinations 

are thoroughly studied through empirical studies. The performance between 

MBFS and BBFL is also compared based on our own dataset. 

We also provide an audio-visual vehicle (AVV) dataset for long range moving vehicle 

detection and classification. It also contains moving people with different activities. The 

data are collected at two locations, one at a two-way local road and the other at a multi-

lane highway, using the multimodal sensing system we designed. However, we mainly use 

the data of moving vehicles at the local road in support of our feature modality selection 

experiments.   
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1.5 Outline	of	the	Dissertation	

This chapter introduced the problem of multimodal sensing and processing for moving 

object detection and classification, and presented the overall goals of the thesis. It also 

outlined our approach to the problem and summarized our main contributions. The 

remaining chapters are organized as follows.  

• Chapter Error! Reference source not found. describes the state of art in 

multimodal sensing and processing, particularly in surveillance applications.   

• Chapter 3 describes our multimodal sensor design (VAAV) and multimodal sensor 

integration. It first describes the sensory components and their calibration, and 

then introduces a control framework for active control and adaptive sensing.   

• Chapter 4 presents the dataset we built using the VAAV system, then describes 

the MTP-based multimodal data. Reconstruction algorithm based on the MTP is 

also described with error analysis.  

• Chapter 5 describes the feature extraction for each modality and a technique for 

acoustic feature enhancement.  

• Chapter 6 presents the multi-branch feature searching and boosting based feature 

learning techniques for the feature modality selection and multimodal 

classification.  

• Chapter 0 summarizes our work and provides a discussion of the advantages and 

limitations of the work. It also provides some suggested directions for future 

research in this field.  
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Chapter	2	

2 Related	Work:	a	Literature	Review	

Surveillance is important for the security and wellness of societies in both civilian and 

military domains. In the past, surveillance systems typically have single modalities, and 

the majority of them used visual sensors. In the last few years, multimodal surveillance 

systems are attracting more and more attention. Video surveillance is one of the fastest 

growing sectors in transforming from single sensor modalities into multimodalities, for 

example tracking moving object using both color and infrared cameras (Torresan et al., 

2004; Davis et al., 2005; Conaire et al., 2006). However, these systems are still not capable 

of detecting suspicious events that cannot be “seen”, such as screaming, gunshot and etc. 

Therefore, Audio-Visual (AV) systems have been used in some degrees for surveillance 

tasks, for example, recognizing human fighting (Dedeoglu et al., 2008), and understanding 

human activities (Cristani et al., 2007). A few of these systems (e.g. Zhu et al., 2007) have 

applied multimodal sensing techniques to audio and visual surveillance at large distance. 

An automated, multimodal surveillance system, which uses the information from multiple 

sensor modalities, attempts to automatically detect and track objects of interest, and also 

models and analyzes activities of usual and/or unusual behaviors for those interested 

objects. Such a system should consist of a set of adequate sensors, reliable methods in 

the acquisition of the sensing data, and effective integrating algorithms. All parts of the 

system are equally important and need to be integrated to produce reliable output for 
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detection, tracking and recognition. Several multimodal surveillance systems and related 

techniques have been discussed in a recent edited book by Zhu and Huang (2007).      

Using multi-sensory data or multi-information is not limited to multimodal surveillance 

systems; it is a topic of great interest in other multimodal systems, such as biometrics, 

multimedia, multimodal medical imaging, and remote sensing. Here, we will only briefly 

discuss the relations between multi-biometrics, multimedia systems and multimodal 

systems, which are closely related to multimodal surveillance. Sometimes multi-

biometrics, multimodal and multimedia systems are used interchangeably, for example, 

in Atrey et al. (2006). However, they have some important differences. Multi-biometric 

systems are those which utilize, or are capable of utilizing, more than one physiological 

or behavioral characteristics of humans (such as ear, iris, face, gesture, and voice) for 

enrollment, verification or identification (Sanderson and Paliwal, 2004, Zou and Bhanu, 

2005; Thieme, 2007). Multimodal systems interpret and regenerate (by fusing) 

information presented from different inputs (sensory data) to make a decision. These 

sensor data could be in the forms of not only human signatures (biometrics), but other 

information such as vehicle signatures, scene description and other context information 

(Zhu and Huang, 2007). Multimodal systems support users multiple ways of responses 

according to their preference and needs. Multimedia systems, on the other hand, refer to 

a user’s adaptation of a system’s perceptual capability, and are more concerned about 

issues of human computer interaction (HCI). An example is presented in Atrey et al. 

(2006). In other words, multimedia systems focus more on control and integration of 

output information. A lot of recent work on multimedia content analysis can be found in 



18 
 

a book c edited by Divakaran (2009). In term of interaction, multimodal systems provide 

the ability that allows users receive multimodal input and are able to respond by using 

those modalities. In this survey, we will focus more on multimodal systems for 

surveillance applications, mostly using vehicles’ signatures.  

The rest of review is mainly divided into three parts: sensing modalities, multimodal 

surveillance systems, and multimodal data fusion methods. The sensing part will briefly 

describe several commonly used sensor modalities and their capabilities for the 

surveillance. These are mainly discussed in Section 2.1. Section 2.2 describes the three 

processing steps: low-level feature extraction, intermediate-level data processing, and 

high-level classification and recognition in two commonly used modalities: video and 

audio. With these two kinds of surveillance systems, we will give some details of low-level 

feature extraction and intermediate-level data processing, followed by a discussion of the 

need of multimodalities. Section 2.3 focuses on the multimodal data fusion. Section 2.4 

presents motivations behind our approach and summarizes its relation to prior work.  

2.1 Sensor	Modalities	

Sensors are important since they are the front ends of a surveillance system. The 

performance improvement using multimodal sensing has direct impact on the detection 

accuracy and false alarm rate of each sensor, operating in a complex and cluttered 

environment. Therefore, understanding the sensing characteristics of each sensor 

modality is a critical step. Since our major interest is surveillance at a large distance and 

in a wide area, those sensor modalities applicable to long-range scenarios will receive 
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more attention here. Figure 2.1 shows a few examples of commonly used sensors in 

market. Table 2.1 lists a few important parameters of various sensor modalities for use in 

long-range, large-area surveillance: measured entities (light, sound, etc.), sensing 

principles, field of view (FOV), image resolution/ or measurement accuracy, sampling 

rate, sensing range (distance), sensor size and cost. We evaluated the parameters of those 

sensors presented here, and assigned their capabilities from low, medium to high by 

relative comparison.  

 

 

Figure 2.1 Various sensor modalities: a few examples 

 

 

  

 



20 
 

 

2.1.1 Electro-optical	(EO)	sensors	

Electro-optical (EO) sensors may be the most commonly used sensors for surveillance 

applications. For the application of tracking a moving target at a distance, a PTZ sensor, 

particularly with high zoom ability, is used to provide the control sufficient to focus on 

interesting targets. However, one PTZ camera may fail in the tracking task when the 

tracked object moves too fast, or is occluded. Therefore the use of multiple visual sensors 

to track moving objects of interest is commonly used in a wide-area surveillance 

application. Typically, a panoramic (omnidirectional) sensor is used as a master sensor 

along with one or more PTZ sensors as slaves to track multiple objects (Cui et al., 1998; 

Scotti et al., 2005; Yao et al., 2006).  As an assumption of some systems, all the 

participating sensors are precisely geo-calibrated in order to accurately localize objects. 

The requirement of pre-calibration is not a big issue if all the sensors are stationary or 

only undertake pan/tilt/zoom operations; but this will be a challenging problem if some 

Table 2.1 Comparison of sensors and their important parameters 

Sensor Regular 
EO 

Omni 
camera PTZ Thermal/IR LDV Mic-array Lidar Radar Sonar 

Measure light Full 
view ROI Temperature  Vibration/ 

acoustic Sound  Range  Objects 
and ranges 

Objects 
and 

ranges 

Principles Light to 
electricity 

Imaging 
+ optics 

Imaging + 
locomotion 

Thermal 
radiation 

Doppler 
interference 

Sound 
waves TOF: laser TOF:audio 

microwave 
TOF: 
sound 

FOV Normal 
array 360o Controllable  Normal 

array 
Point to 

area 
Omni-

directional 
Point to 

area 
Point to 

area 
Point to 

area 
Resolution/ 
Accuracy 

Medium 
to high 

Low to 
medium 

Medium to 
high 

Low to 
medium 

High 
accuracy medium High res 

&accuracy Medium  Low 

Sampling 
Rate 60 Hz 60 Hz 60 Hz 60 Hz 11, 22.5, 45 

KHz >16 KHz >33 KHz >192 KHz 41-96 
KHz 

Range 

Medium 
(100m) to 

far 
(1Km) 

Small to 
medium 

Medium 
(100m) to 
far (1Km) 

Medium 
(100m) to 
far (1Km) 

Medium 
(100m) to 
far (1Km) 

Small  
Medium 

(100m) to 
far (1Km) 

Medium 
(100m) to 
far (1Km) 

Medium 
(100m) 
to far 

(1Km) 

Size Medium 
to small 

Medium 
to small 

Medium to 
small 

Medium to 
large 

Medium to 
large small Medium 

to large large Small to 
large 

Cost low medium Medium to 
low 

Medium to 
high high low high high medium 
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of the sensors are mounted on moving platforms, either aerial or ground (Xiao et al., 

2008). One of the major factors affecting the quality of the image data collected from EO 

sensors is the illumination of the environment. And most optical sensors are limited to 

well-lit conditions only, whether the lighting is provided by the Sun during the day or by 

artificial and planned lighting of dark areas during night and/or day. 

2.1.2 Thermal	or	Infrared	(IR)	Sensors	

Thermal or infrared (IR) imaging uses the heat radiation or the infrared spectrum that is 

independent of the ambient light in the area to be imaged. It is useful for night-time and 

hidden-area surveillance. Infrared imaging technology has been used by the military and 

civilian systems for surveillance.  Now it has become a mature main-stream technology. 

There is a large body of literature on using infrared sensors in surveillance applications. 

Crebolder et al. (2003) presented a technical report describing the general role of infrared 

sensors in large military reconnaissance systems. In surveillance and biometrics 

applications, thermal sensors have been employed to fuse thermal data with optical data 

in order to detect and classify features on human faces (Heo et al., 2004; Kong et al., 

2005), etc.. 

2.1.3 Laser	Range	and	Vibration	Sensors	

Recently, laser sensing technologies have created a lot of opportunities in surveillance 

systems. There are two types of laser sensors that have mostly applied in surveillance 

application, the laser rangefinders and the laser Doppler vibrometers (LDVs). Both of 

them follow the principle of sending a laser beam towards the object and measuring the 
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reflected beam. Many laser range sensors actually have an imaging camera in addition to 

the laser itself, which is basically used to acquire a color image for texturing the object 

under surveillance or observation, therefore they are multimodal (bimodal) in nature (Liu 

et al., 2006; Liu and Stamos, 2007). There are a lot of works on 3D reconstruction of scenes 

(e.g., Stamos and Allen, 2000) and obstacle detection for robotics; we can also find quite 

some works on target detection and recognition using laser range finders (Mohottala, et 

al., 2009). Another type of laser sensor - a Laser Doppler Vibrometer (LDV) - is a long-

range, non-contact acoustic measurement device to detect the speed of the target’s 

vibration based on Doppler frequency shift. In fact, laser vibrometry has attracted 

attention for its use in many other applications, such as bridge and building inspection 

(e.g., Khan, et al., 2000), vehicle classification (Nedgård, 2005; Masagutov, et al., 2007), 

medical and screening applications (Lai, et al., 2008), and search and rescue scenarios. 

Therefore research in improving and utilizing this novel sensor will be beneficial to not 

only surveillance applications but also many other applications.  The LDV sensors could 

either be point sensors (Zhu et al, 2007; Masagutov, et al, 2007;  Lai et al, 2008) or array 

sensors (Nedgård, 2005). 

2.1.4 Other	Sensors	and	Modalities	

Radar (Radio detection and ranging) can detect and range a target from a distance. For 

surveillance applications, radar range sensors are used in aid of other EO and/or IR 

sensors. The systems work by using radar range sensors to build up a ground truth map 

of the area to be monitored and set up range markers around a known central point. By 
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overlaying the range map with an EO and/or IR image and calibrating using rigorous on-

site models, security zones are accurately set up within a meter. Sonar (sound navigation 

and ranging) is an acoustic type sensing technology that propagates sound ranging from 

low (infrasonic) to extremely high (ultrasonic) to detect objects, particularly vessels in 

underwater. Other sensors like ultrasound devices can also detect objects without 

physical contact. They work on principles that are similar to radar and sonar which 

evaluate attributes of a target by interpreting the echoes from radio or sound wave 

respectively. Another type of acoustic sensors frequently used in surveillance applications 

consists of microphone arrays. They are usually used to obtain the audio signals of the 

speakers. An interested work using microphones to track the speaker’s position in 

videoconferencing and surveillance applications is presented by Zotkin et al. (2007). 

However, microphones are limited in a large distance and non-contact environment for 

surveillance applications.  

2.2 Multimodal	Surveillance	System	

In this section, we mainly emphasize two surveillance systems, video surveillance system 

and audio surveillance system. Computer vision techniques for visual surveillance tasks 

can be divided into three steps: 1) Low level processing, dealing with the extracting of 

salient simple features from a single image, such as edges, corners, homogenous regions, 

and curve fragments; 2) Intermediate level processing, dealing with the extraction of 

semantically relevant characteristics from one or more images, such as group features 

(structures), depth, and motion information; 3) High level processing, dealing with the 
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interpretation of the extracted information into object classes and activities. Most visual 

surveillance problems start with object detection and aim at segmenting regions 

corresponding to specific colors or shapes such as human skins or faces or whole bodies, 

or moving objects such as walking/running humans and moving vehicles from the static 

background. Interesting object features are then calculated to track the objects if either 

the sensor or the objects move. Vision-based surveillance algorithms have been 

extensively investigated (e.g., Foresti et al., 2005; Tian et al., 2008b). The underlying 

algorithms consist of methods ranging from simple background extraction algorithms to 

more complex methods such as optical flow methods (Shin et al., 2005).  

Audio-based surveillance algorithms are always used to detect and recognize specific 

audio events. Those algorithms typically start with a supervised model or a training phase 

in which various features are extracted to obtain the signatures of different types of 

events. Then income sound signals are matched to the trained acoustic signatures to 

detect events (Clavel et al., 2005; Harma et al., 2005). However, supervised models 

learned for sound classes would only be able to detect suspicious activities known in 

advance. A hybrid solution is proposed by Radhakrishnan et al. (2005) that consists of two 

parts. The first part performs unsupervised audio analysis and that the second part 

performs analysis using an audio classification framework obtained from off-line training. 

Therefore it is capable of detecting new kinds of suspicious audio events (Radhakrishnan 

and Divakaran, 2006).  
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Video surveillance systems using only EO sensors offer a number of advantages over many 

other sensor modalities, particular in wide area detection. However, they have 

limitations: they can only obtain one type of characteristics, i.e., the appearance or the 

shape of an object. Thus, the addition of other types of sensor modalities can introduce 

an increase in the value of systems. Thermal/Infrared sensors may be one of the choices 

to acquire the temperature information of the target comparing to the surrounding. 

Similarly, audio only surveillance systems are good at detecting and recognizing 

suspicious events based on the acoustic signals, but they cannot track objects in the 

absence or the discontinuity of the sound. As a solution, visual sensors can be employed 

to detect and track objects, and then special events can be recognized using audio 

information.  The integration of EO/IR and audiovisual data are further described in the 

next section. 

2.3 Multimodal	Data	Fusion	

Multimodal data fusion is the process of combing data from multiple sources in order to 

provide a better acceptable degree of robustness or more reasonable accuracy than using 

only one individual source. There are several advantages using multimodal data fusion. 

First, different information can be obtained from different sensor modalities. Second, 

reliability of the results can be improved by using redundant information. Third, errors 

rate can be reduced with complementary information. Data fusion can be performed at 

different processing levels either before or after the object classification (Figure 2.2). The 

fusion takes place before the classification stage is called early integration. The class 
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carries out fusion in the decision level is referred as late integration. There are also some 

methods fusing within the classification process, which can be called intermediate 

integration. Sometimes these integration levels also referred to in the literature as: 

premapping fusion, midst-mapping fusion, and postmapping fusion (Sanderson and 

Paliwal, 2004) (Figure 2.2). 

 

2.3.1 Levels	of	Integration	

There are three integration levels: early integration, intermediate integration and late 

integration. Early integration can happen at the sensor data level and/or the feature level. 

In the sensor data level (Hall and Llinas, 2001), the data from different sensors is 

combined. Two methods, weighted summation and mosaic construction, are commonly 

utilized to accomplish data fusion at sensor data level. In the weighted summation 

approach, the data is first normalized, and then combined to map to a common interval. 

When doing this, the assumption is that the data from multiple sources have been 

transformed into the same types of data and are aligned. Mosaic construction as a specific 

 

Figure 2.2 Multimodal Data Fusion (adapted from Sanderson and Paliwal, 2004) 
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vision technique is utilized to create one large image out of multiple images provided by 

several vision sensors. For doing this, these images need to be aligned either by a pre-

calibration step or online image matching step. Feature level fusion is the combination of 

the features obtained from different sensor modalities. Joint feature vectors can be 

obtained by weighted summation after normalization, or by concatenating the feature 

vector from one modality to the feature vector from another different modality. 

However, the concatenation approach usually has high dimensionality, which can affect 

reliable training of a classification system (the “curse of dimensionality”) (Theodoridis and 

Koutroumbas, 2008).    

Intermediate integration is processed during the procedure of mapping the feature space 

into the decision space. It usually employs a single classifier that is responsible for both 

the data fusion and event classification. The architecture of the classifier should include 

the low-level intermodal elements and exploits the temporal dynamics contained in 

different stream so that the dimensionality problem and requirement of matching rates 

can be avoided. HMM-based methods are commonly used to compute the state 

probabilities of the stream components and to calculate the state-occupancy path which 

reflects the internal dynamics of the HMMs. In earlier work, single or two-stream HMMs 

(Potamianos and Graf, 1998) are carried out for the fusion and classification of bimodal 

speech via integrating the speaker’s audio and lip motion information in a single state 

machine. Synchronized progression of both modalities has to be assumed. Currently, 

multi-stream and extended HMMs (Bengio, 2003; Potamianos et al., 2003; Aleksic et al., 

2002, Chu & Huang, 2007) are commonly used for intermediate fusion in audiovisual 
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speech recognition.  Multi-stream HMMs allows easy modeling of the reliability of the 

audio and visual stream and various levels of asynchronicity between them.  

As stated earlier, late integration carries out fusion in the decision level. The final decision 

can be determined through the majority voting, logical operations, or combination of all 

classifiers. In majority voting (Radova and Psutka, 1997), the majority of the classifiers 

make the final decision. In logical AND fusion, the final decision is made only if all 

classifiers reach the same decision whereas the decision can be made as soon as one of 

the classifiers is reached in logical OR fusion. A multi-classifier combination method 

combines all classifiers and makes a list of ranks. Not all decisions the classifiers have to 

be made, it is possible to have the level of score on each decision. Then all scores are 

combined utilizing weights using either weighted summation or weighted production. The 

weights are determined based on the discriminating ability of the classifier and the quality 

of the feature extraction.  In a postclassifier opinion fusion approach (Sanderson and 

Paliwal, 2004), the likelihoods corresponding to each of NC classes of interest, obtained 

utilizing each of the NE available classifiers, are considered as features in the NC´NE 

dimensional space, where the classification of the resulting features is performed. 

2.3.2 Multimodal	Fusion	Examples	

Research in the fusion of visible and infrared imagery has received considerable attention 

in the past; however, fusion in video modalities (i.e., using continuous image sequences) 

for automatic surveillance is recent. In Torresane et al. (2004), the fusion of thermal 

infrared with visible spectral video, in the context of surveillance and security, is done by 
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building object correspondence. Davis and Sharma (2005) present a new contour-based 

background-subtraction technique using thermal and visible imagery for persistent object 

detection in urban settings. Recently Shah et al. (2010) have presented the fusion of 

infrared (IR) and visible surveillance images using the combination of wavelets and 

curvelets. There are also several pieces of work in thermal-visible video fusion for moving 

target tracking (Conaire et al.; 2006; Leykin et al., 2007; Krotoski and Trivedi, 2008; Zhao 

and Cheung, 2009). 

Audio surveillance systems are not good at tracking moving objects due to the 

discontinuity of the sound. They are more or less used with the aid of video for the event 

detection and the object (human) recognition. Recent works on audio and video data 

fusion have been applied to speech processing (Hershey et al., 2004) and recognition (Chu 

and Huang, 2007). In surveillance applications, audio-visual integration has also been 

studied. In Cristani et al. (2006), the audio-visual foreground extraction for event 

characterization is presented. Both audio and visual information are analyzed by a 

standard background-foreground modeling. Online association and integration of audio 

and video information is performed. Thus the synchrony of foreground is assumed. In Vu 

et al. (2006), the audio-video surveillance for the automatic surveillance and public 

transportation is presented. Late integration strategy is then performed on audio and 

video events based on spatio-temporal reasoning. Similar work on late integration of 

audio and video on people fighting using decision (AND) based method is presented by 

Dedeoglu et al. (2008). Recently, Codec et al. (2010) proposed an autonomous vehicle 

classification and detection system based on audio-visual co-training using low-cost 
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consumer sensors that avoided the use of complicated calibration and expensive 

microphone arrays. Fusion is made during online learning by training two heterogeneous 

classifiers on a small amount of labeled data to co-train them on a continuous stream of 

unlabeled data to yield highly adaptive classifiers. 

2.4 Motivations	of	our	Approaches	

For the multimodal sensing system design, we select a pair of PTZ camera and a LDV. The 

pair of PTZ camera can detect and track targets at a large distance, and further obtain the 

target distance. In general, human (or vehicle) detection mostly depends on visual 

information, whereas the audio modality is used as complementary information to 

discover and explain interesting activities in a scene. In some scenarios, however, audio 

conveys more significant information than video, for example, a human talking behind an 

object, or two people with similar appearance facing back against the camera. In the past, 

microphones or microphone arrays have been employed in audio-visual surveillance 

(Zotkin, et al, 2001; Maganti, et al, 2007; Gatica-Perez, et al, 2007; Codec et al, 2010), but 

they have the limitation of very short ranges. Furthermore, these types of sensors need 

to be fixed at pre-determined locations. If the targets move out of their sensing ranges, 

they will not be able to obtain any signals. A parabolic microphone can capture voice 

signals at a fairly large distance; however, when it points to the direction of the target, all 

the signals on the way are captured. A LDV is a non-contact acoustic sensor can detect 

voice signals at a large distance through the detection of vibration of a surface object near 

a sounding target. Therefore, they can be used to perform long-range multimodal 
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surveillance and monitoring by integrating visible and infrared video. In this thesis, we will 

show how those sensory components are integrated and calibrated for active control and 

adaptive sensing. 

Data collected from multiple sensory components are always noisy and not aligned in a 

way that can be easily processed before performing feature level integration. They need 

to be associated and well represented to indicate the same objects. Then various features 

can be extracted for object classification. However, several environmental variations will 

significantly affect the accuracy of object classification. This will be even more the case 

for long-range object detection and inspection, where the sensors can only be set in a 

remote location. In vehicle detection and classification for applications such as traffic 

management and check-point vehicle inspection, the standpoints of and views from the 

sensors to a road could be constrained due to large distances for safety or installation 

reasons, and there could also be occlusions such as by tress and other facilities. We thus 

provide an effectively technique to solve these issues for a better classification 

performance. Furthermore, in feature level integration, large feature vectors may be 

created from multiple modalities. But not all features are equally important to make a 

good decision. The issue of what to fuse has been addressed at two different levels: 

feature modality selection and feature vector reduction. Many feature vector reduction 

techniques have been applied. Commonly used are principle components analysis (PCA), 

vector decomposition (SVD) and linear discriminant analysis (LDA). Since most previous 

work only focused feature vector reduction but few discussed feature modality selection, 

we will mainly focus on the feature modality selection. This also emphasizes the AIM-SP 
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framework that we proposed to learn representative feature modalities for adaptive 

multimodal sensors.   

More importantly, we would like to provide a mechanism to tailor a multimodal sensor 

fusion system to a wide range of various tasks (human detection, vehicle detection, bridge 

monitoring, etc) using the same inference framework through optimal feature selection 

and ensemble classification learning. Many object detection problems can be formulated 

as classification problems. For example, for human detection in surveillance and search-

rescue applications, the problem of human detection can be formulated as a two-class 

classification problem: human or no human. We would like to provide a systematic 

analysis of what features are selected, what scales are the best for a given tasks, and how 

heterogeneous, multimodal data are used in integrating those data, and how the 

selections of classifiers and features can be used for improving real-time sensing (smart 

data collection) and further for providing insights in new sensor designs.  
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Chapter	3	

3 Multimodal	Sensing	and	Adaptation	

Remote object signature detection is becoming increasingly important in non-cooperative 

and hostile environments for many applications, such as wide-area surveillance, 

perimeter protection and search and rescue (Dedeoglu, et al, 2008; Li, et al, 2008). 

Although imaging and video technologies (including visible and IR) have had great 

advancement in object signature detection at a large distance, there are still many 

limitations in non-cooperative and hostile environments because of intentional 

camouflage and natural occlusions. Audio information, another important data source for 

target detection, can provide complementary information. For obtaining better 

performance of human tracking in a near to mediate range, Beal, and et al. (2003) and 

also Zou and Bhanu (2005) have reported the integrations of visual and acoustic sensors. 

By integration, each modality may compensate for the weaknesses of the other one. But 

in these systems, the acoustic sensors (microphones) need to be placed near the subjects 

in monitoring, therefore cannot be used for long-range surveillance. A parabolic 

microphone, which can capture voice signals at a fairly large distance in the direction 

pointed by the microphone, could be used for remote hearing and surveillance. But it is 

very sensitive to noise caused by the surroundings (i.e. wind) or the sensor motion, and 

all the signals on the way are captured. Therefore there is a great necessity to find a new 

type of acoustic sensor for long-range voice detection.  
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Laser Doppler Vibrometers (LDV) such as those manufactured by Polytec (2009) and 

Ometron (2009) can effectively detect vibration within two hundred meters with 

sensitivity in the order of 1μm/s. Larger distances could be achieved with the 

improvements of sensor technologies and the increase of the laser power while using a 

different wavelength (e.g. infrared instead of visible). In our previous work (Li, et al., 2006; 

Zhu, et al., 2007), we have presented very promising results in detecting and enhancing 

voice signals of people from large distances using a Polytec LDV. However, the user had 

to manually adjust the LDV sensor head in order to aim the laser beam at a surface that 

well reflects the laser beam, which was a tedious and difficult task. In addition, it was very 

hard for the user to see the laser spot at a distance above 20 meters, and so it was 

extremely difficult for the human operator to aim the laser beam of the LDV on a target 

in a distance larger than 100 meters. Of course human eyes cannot see infrared laser 

beams so it would be a serious problem if the LDV uses infrared. Also, it takes quite some 

time to focus the laser beam even if the laser beam is pointed to the surface. Therefore, 

reflection surface selection and automatic laser aiming and focusing are greatly needed 

in order to improve the performance and the efficiency of the LDV for long-range hearing.  

Here, we present a novel multimodal sensing system, which integrates the LDV with a pair 

of pan-tilt-zoom (PTZ) cameras to aid the LDV in finding a reflective surface and focusing 

its laser beam automatically, and consequently the system captures both video and audio 

signals synchronously for target detection using multimodal information: in addition to 

video and audio, this sensing system can also obtain range information using the LDV-PTZ 

triangulation as well as stereo vision using the two cameras. The range information will 
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further add values to object signature detection in addition to the audio and video 

information, and improve the robustness and the detection rate of the sensor. The main 

contribution of this work is the collaborative operation of a dual-PTZ-camera system and 

a laser pointing system for long-range acoustic detection. To our knowledge, this is the 

first work that uses a PTZ stereo for automating the long-range laser-based voice 

detection. Meanwhile, the combination is a natural extension of the already widely used 

PTZ-camera-based video surveillance system towards multimodal surveillance with audio, 

video and range information. In order to acquire the audio and visual data synchronously 

and correctly, sensory components need to be calibrated and integrated properly. This 

step is important to ensure the reliability and usefulness of the obtained multimodal data, 

but this is not well studied before performing multimodal data integration. In this chapter, 

we will first present the components of the multimodal sensor platform, and then 

describe the calibration procedure. Finally we will present the active sensing and adaptive 

control using the multimodal sensor systems.  

The rest of this chapter is organized as follows: Section Error! Reference source not 

found. presents some background and related work. Section 3.2 describes an overview of 

our vision-aided automated vibrometry system. Section 3.3 discusses the calibration 

issues among the multimodal sensory components. Section 3.4 shows the algorithms for 

feature matching and distance measuring using the system. Section 3.6 describes the 

adaptive and collaborative sensing approach. Experimental results and conclusions are 

provided in Section 3.7 and Section Error! Reference source not found., respectively.  
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3.1 LDV	for	Remote	Acoustic	Sensing	

3.1.1 Principle	of	LDV-Based	Hearing	

The laser Doppler vibrometer (LDV) works according to the principle of laser 

interferometry. Measurement is made at the point where the laser beam strikes the 

structure under vibration. In the Heterodyning interferometer (Figure 3.1), a coherent 

laser beam is divided into object and reference beams by a beam splitter BS1. The object 

beam strikes a point on the moving (vibrating) object and light reflected from that point 

travels back to beam splitter BS2 and mixes (interferes) with the reference beam at beam 

splitter BS3. If the object is moving (vibrating), this mixing process produces an intensity 

fluctuation in the light as 

                                    (3.1) 

where  is light intensity;  is the amplitude of the emitted wave; is modulation 

frequency of the reference beams; is the wavelength of the emitted wave;  is the 

object's velocity and  is observation time. A detector converts this signal to a voltage 
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Figure 3.1 Principle of the Laser Doppler Vibrometer (LDV) 
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fluctuation. And from the fluctuating of light patterns, the velocity of object can be 

decoded by a digital quadrate demodulation method (Scruby & Drain, 1990). An 

interesting finding of our study is that most objects vibrate while wave energy (including 

that of voice waves) is applied on them. Although the vibration caused by the voice energy 

is very small compared with other vibration, it can be detected by the LDV, and be 

extracted with advanced signal filtering. The relation of voice frequency f, velocity v and 

magnitude m of the vibration is 

                 𝑣 = 2𝜋𝑓𝑚                          (3.2) 

As seen from the above principle of the LDV, There are three requirements to be 

considered in order to use the LDV to measure the vibration of a target caused by sounds:  

(1) An appropriate surface close to the sounding target with detectable vibration and 

good reflection index; 

(2) The focus of the LDV laser beam on the refection surface, otherwise very weak 

reflection signals are obtained due to the scattering of coherent light and path 

length differences; 

(3) A necessary signal enhancement process to filter out the background noise and 

the inherent noise of the LDV.  

In close-range and lab environments, it is not a serious problem for a human operator to 

find an appropriate reflective surface, focus the laser beam and acquire the vibration 

signals. But at a large distance (from 20 meters to hundred meters), the manual process 
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becomes extremely difficult because it is very hard for a human operator to aim the laser 

beam to a good reflective surface. Also, it takes quite some time to focus the laser beam 

even if the laser beam is pointed to the surface. Therefore, there are great unmet needs 

in facilitating the process of surface detection, laser aiming, laser focusing, and signal 

acquisition of the emerging LDV sensor, preferably through system automation. 

3.1.2 Related	Work	on	Acoustic	Sensing	

Acoustic sensing and event detection can be used for audio-based surveillance, including 

intrusion detection (Zieger, et al., 2009), abnormal situations detection in public areas 

such as banks, subways, airports, and elevators (Clavel, et al., 2005; Radhakrishnan, et al., 

2005). It can also be used as a complementary source of information for video surveillance 

and tracking (Cristani, et al., 2007; Dedeoglu, et al., 2008). In additional to microphones, 

a Laser Doppler Vibrometer (LDV), as another type of acoustic sensors, is a novel type of 

measurement device to detect a target’s vibration in a non-contact way, in applications 

such as bridge inspection (Khan, et al., 1999), biometrics (Lai, et al., 2008), and 

underwater communication (Blackmon & Antonelli, 2006). It has also been used to obtain 

the acoustic signals of a target (e.g., a human or a vehicle) in a large distance by detecting 

the vibration of a reflecting surface caused by the sound of the target next to it (Zhu, et 

al., 2005; Li, et al., 2006; Zhu, et al., 2007; Wang, et al, 2011a). The LDVs have been used 

in the inspection industry and other important applications concerning environment, 

safety and preparedness that meet basic human needs. In bridge and building inspection, 

the non-contact vibration measurements for monitoring structural defects eliminate the 
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need to install sensors as a part of the infrastructure (e.g., Khan, et al., 1999). In security 

and perimeter applications, an LDV can be used for voice detection without having the 

intruders in the line of the sight (Zhu, et al., 2005). In medical applications, an LDV can be 

used for non-contact pulse and respiration measurements (Lai, et al., 2008). In search and 

rescue scenarios where reaching humans can be very dangerous, an LDV can be applied 

to detect survivors which are even out of visual sight. Blackmon and Antonelli (2006) have 

tested and shown a sensing system to detect and receive underwater communication 

signals by probing the water surface from the air, using an LDV and a surface normal 

tracking device.  

However, in most of the current applications, such systems are manually operated. In 

close-range and lab environments this is not a very serious problem. But in field 

applications, such as bridge/building inspection, area protection or search and rescue 

applications, the manual process takes a very long time to find an appropriate reflective 

surface, focus the laser beam and get a vibration signal; more so if the surface is at a 

distance of 100 meters or more. A vision-aided LDV system can improve the performance 

and the efficiency of the LDV for automatic remote hearing. In this work, we improved 

the flexibility and usability of the vision-aided automated vibrometry system from our 

previous design with a single PTZ camera (Qu, et al., 2010) to the current design with a 

pair of PTZ cameras and by providing adaptive and collaborative sensing.  

3.2 Vision-Aided	Automated	Vibrometry:	System	Overview	
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The system consists of a single point LDV sensor system, a mirror mounted on a pan-tilt 

unit (PTU), and a pair of pan-tilt-zoom (PTZ) cameras, one of which is mounted on the top 

of the PTU (Figure 3.2).  The sensor head of the LDV uses a helium-neon laser with a 

wavelength of 632.8 nm and is equipped with a super long-range lens. It converts velocity 

of the target into interferometry signals and magnitude signals, and send them to the 

controller of the LDV that are controlled by the computer via an RS-232 port. The 

controller processes signals received from the sensor head of the LDV, and then output 

either voltage or magnitude signals to the computer using an S/P-DIF output. The Polytec 

LDV sensor OFV-505 and the controller OFV-5000 that we use in our experiments can be 

configured to detect vibrations under several different velocity ranges: 1 mm/s/V, 2 

mm/s/V, 10 mm/s/V, and 50 mm/s/V, where V stands for velocity. For voice vibration of 

a basic frequency range from 300 to 3000 Hz, we usually use the 1mm/s/V velocity range. 

The best resolution is 0.02 μm/s under the range of 1mm/s/V according to the 

manufacture’s specification with retro-reflective tape treatment. Without the retro-

 

Figure 3.2 The multimodal sensory platform 
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reflective treatment, the LDV still has sensitivity on the order of 1.0 μm/s. This indicates 

that the LDV can detect vibration (due to voice waves) at a magnitude in nanometers 

without retro-reflective treatment; this can even get down to picometer with retro-

reflective treatment. 

The LDV sensor head weights about 3.4 kg; this is the major reason that a mirror mounted 

on the PTU is used in our system to reflect the laser beam to freely and quickly point it to 

various directions in a large field of view. The laser beam point to the mirror at the center 

of the panning tilting of the PTU. The vision component consists of a pair of Canon VC-

C50i (26x) PTZ cameras with one mounted on the top of the PTU, which is called the 

master PTZ since it is the main camera to track the laser beam, and another one mounted 

on the top of the LDV, which is called the slave PTZ. Each PTZ camera (Canon VC-C50i) has 

a 720×480 focal plane array and an auto-iris zoom lens that can change from 3.5mm to 

91mm (26× optical power zoom). The pan angle of the PTZ is ±100° with rotation speed 

1° to 90° per second and the tilt angle of it is from -30º to +90º with rotation speed 1° to 

70° per second. The PTU is the model PTU-D46-70 of Directed Perception, Inc. It has a pan 

range from -159° to +159º and a tilt range from -47° to +31°. Its rotation resolution is 

0.013° and max rotation speed is 300°/s. The reason to use zoom cameras is to detect 

targets and to assist the laser pointing and focusing at various distances. However, at a 

long distance, the laser spot is usually hard to be seen by the cameras, either zoomed or 

with wide views, if the laser is unfocused or not pointed on the right surface. Therefore, 

the master PTZ camera is used to rotate synchronously with the reflected laser beam from 

the mirror in order to track the laser spot. Although the laser point may not be observed 
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from the master PTZ, we always control the pan and tilt angles of the master PTZ camera 

so that its optical axis is in parallel to the reflected laser beam, and therefore the laser 

spot is always close to the center of the image. Then, the master PTZ camera and the slave 

PTZ form a stereo vision system to obtain the distance to focus the laser spot as well as 

guide the laser to the right surface for acoustic signal collection. The baseline between of 

the two PTZ cameras is about 0.6 meters for enabling long-range distance measurements. 

In order to obtain the distance from the target surface to the LDV, the calibration among 

the two PTZ cameras and the LDV is the first important step, which will be elaborated in 

next section before the discussion of our method for distance measurement. 

3.3 System	 Calibration:	 Finding	 Parameters	 among	 the	 Sensor	

Components	

There are two stereo vision components in our system: stereo vision between the two 

PTZ cameras, and stereo triangulation between the slave PTZ camera and the mirrored 

LDV laser projection. The first component is used to obtain the range of a point in a 

reflective surface by matching its image projection (x, y) in the master camera to the 

corresponding image point (x’, y’) in the salve camera. The second component is mainly 

used to obtain the pan (a) and tilt (b) rotation angles of the PTU so that the LDV points to 

the image point (x, y) in the master image. Before determining the distance, several 

coordinate systems corresponding to the multi-sensory platform (in Figure 3.2) is 

illustrated in Figure 3.3 (left): the master PTZ camera coordinate system (Sc), the slave PTZ 

camera coordinate system (Sc’), the LDV coordinate system (SL), and the PTU coordinate 

system (Su). 
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We assume the mirror coordinate system is the same as the PTU coordinate system since 

the laser will point to the mirror at the origin of the PTU system. The mirror normal 

direction is along the Zu axis and initially points to the outgoing laser beam along Zl. In 

order to always actually track the reflected laser beam visible or invisible (by having the 

optical axis of the master PTZ parallel to the reflected laser beam), the master PTZ not 

only rotates the same base angles with the PTU, a and b, which are the pan and tilt angles 

of the PTU around the Xu and Zu axes, but also undergo additional pan and tilt rotations 

(a’ and b’) around the Yc and Xc axes. We will explain in details how to determine these 

angles later.  

The stereo matching is performed after the full calibration of the stereo component of 

the two PTZ cameras, and that between the slave PTZ camera and the “mirrored” LDV. 

Given a selected point on a reflective surface in the image of the master camera, we first 

find its corresponding point in the image of the slave camera, meanwhile calculating the 

pan and tilt angles of the PTU and the master and slave PTZ camera so that the laser spot 

is right under the center of the image of the master PTZ camera; the offset to the center 

                

Figure 3.3 Coordinate systems of the multimodal platform 
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is a function of the distance of the surface to the sensor system. The farther the surface 

is, the closer is the laser spot to the center. The distance from the target point to the 

optical center of the LDV is estimated via the stereo PTZ and then used to focus the laser 

beam to the surface. 

3.3.1 Calibration	of	the	two	PTZ	cameras	

The calibration between the two PTZ cameras is carried out by estimating both the 

intrinsic and extrinsic parameters of each camera on every possible zoom factor when the 

camera is in focus, using the same world reference system. We use the calibration toolbox 

by Bouguet (2008) to find a camera’s parameters under different zoom factors. We have 

found that the estimated extrinsic parameters do not change much with the changes of 

zooms. However, the focal lengths of the cameras increase nonlinearly with the changes 

of different zooms therefore we have calibrated the camera under every possible zoom. 

Also note that the focal lengths of two PTZ cameras may not be same under the same 

zoom factor. In order to achieve similar fields of view (FOVs) and to ease the stereo 

matching between two images, the correct zoom of the slave PTZ camera corresponding 

to the actual focal length of the master PTZ camera should be selected.  After the 

calibration, we obtain the effective focal lengths and image centers of the two cameras 

under every zoom factor k, and the transformation between the two cameras, 

represented by R and T: 

  P!! = RP" + T       (3.3) 
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where Pc and Pc’ are the representations of a 3D point in the master and slave PTZ 

coordinate systems (Sc and Sc’), respectively. 

3.3.2 Calibration	of	the	slave	camera	and	the	LDV	

Since the intrinsic parameters of the slave PTZ camera have been obtained previously, we 

only need to estimate the extrinsic parameters characterizing the relation between the 

LDV coordinate system (SL) and the slave PTZ camera coordinate system (SC’), defined as:  

P# = R!!P!! + T!!        (3.4) 

where PL and PC’ represent the coordinates of a 3D point in SL and SC’, respectively. The 

RC’ and TC’ are the rotation matrix and translation vector between SL and SC’. The relation 

between the points in the LDV and the PTU systems is defined as: 

P# = R$P$ + T$      (3.5) 

where RU and TU are the rotation matrix and translation vector between SL and the PTU 

coordinate system. According to the principle of mirroring, the relation between the 

mirrored LDV coordinate system (SML, not shown in Fig. 3.3) and the PTU is defined as: 

P%# = R$R#&P$ + T$     (3.6) 

where PML are the 3D point representations in the SML. The RLR is the rotation matrix that 

converts a right hand coordinate system to a left hand coordinate system, defined as: 

R#& = +
1 0 0
0 1 0
0 0 −1

/     (3.7) 
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From Eq. 3.5 and 3.6, the relation between the LDV coordinate system (SL) and the 

mirrored LDV coordinate system (SML, not shown in Fig. 3) is defined as: 

P# = R$R#&R$' (P%# − T$) + T$        (3.8) 

where PL and PML are the 3D point representations in the SL and the SML, respectively, and 

RU and TU are the rotation matrix and translation vector between SL and the PTU 

coordinate system.  

 Then the extrinsic parameters are estimated by combining Eq. (3.4) and Eq. (3.8), as 

R!!P!! = R$R#&R$' (P%# − T$) + (T$ −  T!!)     (3.9) 

For the calibration between the LDV and the slave PTZ, the LDV laser beam is projected 

at pre-selected points in a checkerboard placed at various locations/orientations. Because 

both the variables PML - TU and TU -TC’ are not independent in Eq. (3.9), the distance 

between the fore lens of the LDV and the laser point on the mirror is estimated initially. 

Also, to avoid the complexity of the nonlinear equation we assume the initial rotation 

matrix is identify matrix which can be manually adjusted by pointing both cameras parallel 

to the same direction.  Then this initial distance and initial rotation matrix can be refined 

iteratively. Giving n 3D points, 3n linear equations that include n+14 unknowns are 

constructed using Eq. (3.9). Therefore, at least 7 points are needed. More details can be 

found in Appendix A.   

3.4 Stereo	Vision:	Feature	Matching	and	Distance	Measuring		
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3.4.1 Stereo	Matching	

After calibration, distance of a point can be estimated when the corresponding point in 

the slave image of a selected point in the master image is obtained. In the master camera, 

a target point can be selected either manually or automatically. We assume that both left 

and right images can be rectified given the intrinsic matrices for both cameras and the 

rotation matrix and translation vector. So, given any point (x,y,1) T in original (right) image, 

the new pixel location (x’,y’,1) T in rectified right image is R’r (x,y,1)T. To simplify the task 

radial distortion parameters are ignored. The rectified matrices for both cameras 

(virtually) make both camera images plane the same plane. Thus, the stereo matching 

problem turns into a simple horizontal searching problem since all epipolar lines are 

parallel. For example, in Figure 3.4, the right image is captured by the master PTZ camera 

and the left image by the slave PTZ camera. The same target points are shown in white 

circles. The numbers above the white circles show the pan and tilt angles of the PTU in 

order to point the laser beam to the target point. The epipolar line is shown in green line 

cross both images. Note that due to the calibration error, the corresponding point may 

not be exactly on the epipolar line. To solve the problem, a small search window is used 

to match the region around the selected point with a small range in the vertical direction 

as well. Since we are only interested in the selected point on a particular reflective 

surface, this step is very fast. 
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3.4.2 Distance	Measuring	

Once two corresponding points lying on the same horizontal epipolar line are identified, 

the distance can be calculated based on the triangulation using the baseline (B) of two 

rectified cameras. The relation between B and the range (D) of the target surface 

represented in the master camera system is defined as: 

  (
)
= [𝑥* 	− 𝑥+] 6

,
-"#
		 ,
-"$
7
.

     (3.10) 

where xr and xl are the x coordinates of the selected point in the right and left image, Fxr 

and Fxl are the focal lengths of the two PTZ cameras. Ideally, both PTZ cameras should 

have the same focal length after adjusting their zoom factors.    

 The calibration result of the slave camera and the LDV is mainly used to determine the 

pan (a) and tilt (b) angels of the PTU in order to direct the laser beam to the selected 

point.  The conventional triangulation method (Trucco & Verri, 1998) is used to match the 

ray from the optical center of the PTZ to the ray of the reflected laser beam. Then the 

 

Figure 3.4 Stereo matching of the corresponding target point. 
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corresponding pan and tilt angels are estimated. Fig. 3.4 shows an example of the 

calculated pan and tilt angels (on the right image) corresponding to the point (in white 

circle) in the left image. Then, giving the pan and tilt rotations of the PTU and knowing 

the corresponding 3D point in the slave camera system as 

𝑃/! = 𝑅′[𝑃/!0 , 𝑃/!1 , 𝐷].       (3.11) 

where R’ is the pan and tilt rotation of the slave PTZ. Initially it equals identity matrix if 

the slave PTZ camera is in its initial pose when it was calibrated. The estimated LDV 

distance DL = ||PML|| can be then defined based on Eq. (3.9) that will be used for focusing 

the laser beam to the target point. 

3.5 LDV	Focus	Step	and	Distance	Relation	

The calibration between the LDV and one of the PTZ cameras allows us to obtain the 

distance from the target to the lens of the LDV so that we can find the focus steps for the 

LDV quickly. The method for automatic fast focusing based on the distance measurement 

can be found in (Qu et al., 2011). Here for completion, we will briefly layout the relation 

between the distance and LDV focus step in order to achieve automatic fast focusing.  

According to Gaussian lens equation, the relationship between the distance from the 

target (i.e. the reflective surface) to the lens D, and the distance from the lens to the 

image d is defined as: 

𝟏
𝑫
+ 𝟏

𝒅
= 𝟏

𝒇𝑳
     (3.12) 
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Where fL is the effective focal length of the lens of the LDV. A super-long range lens OFV-

SLR (fL = 200 mm) is used in the LDV, and the possible stand-off distance D of the target is 

from 1.8 meters to over 300 meters. While the focal length  is constant when the 

target distance D changes, the image distance of the LDV has to change for obtaining a 

focused image of the laser point. In the LDV, this is achieved by changing the focus step S 

(from 0 to 3300 digital steps).The relation of the image distance and the target distance 

can be calculated by Eq. 3.12. Due to the lack of the intrinsic parameters of the LDV, 

particularly the relation between the image distance and the focus steps (0 – 3300), we 

calibrate the relation experimentally. We measure the distances between fore lens of the 

LDV and reflective surfaces (targets) at various distances (from 2.13 to 200 meters), 

meanwhile acquiring the focus step values (from 893 to 2962) when using the built-in 

automatic focus function of the LDV to achieve laser beam focusing. Those corresponding 

values between the distances and the focus steps for the Polytec OFV-505 LDV are shown 

as red circles in Figure 3.5. The fitted curve is shown in black line on top of the measured 

data in red circles. Given the data we have measured, the fitted curve applies from 1.54 

meters to 300 meters for the distance, and from 0 to about 3000 for the steps. This is 

consistent with the manufacture’s specification 

Lf
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Theoretical, given the distance of the reflective surface, the corresponding LDV focus step 

(within the range from 0 to 3300 for the LD we used) can be calculated. However, there 

is problem of the step-distance measurement is not fine enough for accurate focusing. 

Therefore, an automatic multi-scale focusing algorithm based on the measured distance 

and LDV signal return level is further applied; Details of the algorithm can be found in our 

previous paper (Qu, et al., 2010).  

3.6 Adaptive	and	Collaborative	Sensing		

The overall goal of this system is to acquire meaningful audio signatures with the 

assistance of video cameras by pointing and focusing the laser beam to a good surface. 

However, a target location either manually or automatically selected may not return 

signals with a sufficient signal-to-noise ratio (SNR). Then a reselection of new target points 

 

Figure 3.5 Focus-step and distance relation (The fitted curve is shown in black line on top of the 
measured data in red circles) 
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is required. Figure 3.6 shows the basic idea of adaptive sensing of adaptively adjust the 

laser beam based on the feedback of its returned signal levels. 

 

The stereo matching here is used for obtained the target distance to the system platform, 

and then we can automatically focus the laser point to the selected target. This involves 

the following procedures. 

 First, a point on a surface close to a designated target is selected either manually or 

automatically.  

Second, the target range and the distance from the point to the optical center of the 

LDV are measured. 

Third, the laser spot is moved to the new location, and the master PTZ camera is 

rotated synchronously to put the laser spot in the center of images.  

 

Figure 3.6 Flow chart of adaptive sensing for laser pointing and tracking for audio and video 
signature acquisition 
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Fourth, the laser beam of the LDV is automatically and rapidly focused based on 

estimated distance and the signal levels, as we did in (Qu, et al., 2010).  

If the selected target point does not have sufficient good returning signals for voice 

detection, we need to reselect new target points. If the target point is good enough, we 

can use it to record the audio signature as well as video signatures. In this procedure, 

there are two key issues need to be emphasized. First, what is a good surface and how to 

select a surface? Second, how to align the laser beam with the optical center of the 

camera accurately? 

3.6.1 Surface	Selection	

The selection of reflection surfaces for LDV signals is important since it is a major factor 

that determines the quality of acquired vibration signals. There are two basic 

requirements for a good surface: vibration to the voice energy and reflectivity to the 

helium-neon laser. We have found that almost all natural objects vibrate more or less with 

normal sound waves. Therefore, the key technique in finding a good reflection surface is 

to measure its reflectivity. Based on the principle of the LDV sensor, the relatively poor 

performance of the LDV on a rough surface at a large distance is mainly due to the fact 

that only a small fraction of the scattered light (approximately one speckle) can be used 

because of the coherence consideration. A stationary, highly reflective surface usually 

reflects the laser beam of the LDV very well. Unfortunately, the body of a human subject 

does not have such good reflectivity to obtain LDV signals unless (1) it is treated with 

retro-reflective materials; and (2) it can keep still relative to the LDV. Also, it is hard to 
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have a robust signal acquisition on a moving object. Therefore, background objects 

nearby to the interested target are selected and compared in order to detect useful 

acoustic signals. Typically, a large and smooth background region that has a color most 

close to red is selected for the LDV pointing location.  

3.6.2 Laser-Camera	Alignment	

 

The next issue is to how to automatically aim and track the laser spot, especially for long 

range detection. The laser spot may not be observable at a long range particularly if it is 

not focused or it does not point on the surface accurately. We solve this problem by 

keeping the reflected laser beam always in parallel to the optical axis of the maser PTZ 

camera so that the laser spot is right under and very close to the center of the master 

image. Figure 3.7 shows a typical example of a laser spot (in red spot) that is right below 

the image center (in yellow circle) in few pixels. Both images in Figure 3.7 show the same 

cropped size (240x160) around the image center (yellow circle) with focused laser spot 

close to it (red-white dot). The laser point on a white board (indoor) is about 6 meters in 

the left image. We make the ray from the optical center of the master PTZ camera parallel 

to the reflected laser beam by rotating the PTZ camera with the PTU synchronously (since 

the PTZ is mounted on the PTU), then with additional PTZ camera rotations. 

       

Figure 3.7 Two examples of laser point tracking. 
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The main issue now is how to obtain the additional pan (a’) and tilt (b’) angles of the PTZ 

camera given the pan (a) and tilt (b) angles of the PTU. Figure 3.8 shows the relationship 

between the outgoing laser beam from the LDV (𝐵𝐴?????⃗ ) and the reflected laser ray (𝐴𝐷?????⃗ ), 

with the mirror normal (𝐴𝐶?????⃗ ). By projecting the reflected ray and the mirror normal on the 

YZ plane (in both the PTU and the LDV coordinate systems in Figure 3.3), as 𝐴𝐸?????⃗  and  𝐴𝐹?????⃗  

respectively, we see that the angle ÐBAF is a and the angle ÐFAC is b. Now the camera 

optical axis is parallel to the mirror normal AC. Two additional angles are defined in the 

figure, the pan angle a’ as the angle ÐFAE, and the tilt angle b’ as the angle ÐEAD. If the 

master PTZ camera (mounted on top of the PTU) is tilted back by - b, then its optical axis 

will be parallel to AF. Therefore, by further panning the PTZ by the angle a’ and tilting the 

PTZ by the angle b’, its optical axis will be in parallel with the reflected laser ray AD.  

Define a helping line GC parallel to AD, we can easily solve the additional pan (a’) and tilt 

(b’) based on triangulation. The detailed derivation can be found at Appendix B. As a 

result, the pan angle (a’) is 

 

Figure 3.8 Geometric model of laser beam from the LDV (BA) and its reflected laser ray (AD) after 
the pan (a) and tilt (b). 
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a′ = tan!"( #$%a
&'( )b

)       (3.13) 

and the tilt angle (b’) 

b* = sin!"(sin 2b ∗ cosa)      (3.14) 

3.7 Experimental	Results		

In this section, we provide some results on distance measuring, surface selection, auto-

aiming using laser-camera alignment, and surface focusing and listening using our 

multimodal sensory system. 

3.7.1 Distance	Measuring	Validation	

This experiment is used to verify the accuracy of the calibration among sensory 

components. Therefore, the test is performed under controlled environments, inside a 

lab room (with distances up to 10 meters) and in the corridor of a building (with distances 

up to 35 meters). Note that the camera’s focal lengths do not increase linearly with the 

change of the zoom levels. In order to perform accurate distance measurement on a large 

distance, we calibrated the focal lengths under different zoom factors. Figure 3.9 shows 

the focal lengths (in both x-, y- directions) of the main PTZ camera and the slave PTZ 

camera.  



57 
 

 

Next we verified the correctness of calibration parameters, especially with changes of the 

focal lengths of each camera.  We used the same feature point on a check board pattern 

at various distances.  At each zoom level, the distance from the check board to the 

platform was manually obtained as the ground truth, and then we used the calibrated 

parameters to estimate the distance at that zoom level. Figure 3.10 shows the comparison 

of the true and estimated distances under various zoom factors, which has an average 

relative error of 6%. The accuracy is sufficient for performing the adaptive focus of the 

LDV sensor. 

 

        

Figure 3.9 Calibrated focal lengths of the master PTZ camera and the slave PTZ camera under 
different zooms. 

 

 

        

Figure 3.10 The comparison of true distances and estimated distances under various zoom factors 
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3.7.2 Surface	Selection	

In this experiment (Figure 3.11), several interested target points are automatically 

selected in the segmented regions close the human target in an image of the master PTZ. 

Figure 3.11 shows the image captured at a corridor, the cropped (320x240) original image 

(under zoom factor 48) with a target (in red rectangle) is shown on left. On right, 

interested target points close to the human target in the segmented regions are selected 

and labeled (as L1-L9). The distance of the camera is about 31 meters. Note that a static 

target object such as human or vehicle can be easily detected using histograms of 

oriented gradients (HOG) (Dalal & Triggs, 2005) in the image. If a target is moving, then 

frame difference can be used to separate the target from the background surfaces. Then 

conventional color segmentation can be performed. The region centroid points close to 

the center of the target can be selected to point the laser.  

 

3.7.3 Auto-Aiming	using	Laser-Camera	Alignment	

When an interested surface point is select, the master camera is centered to that point; 

then the laser-camera alignment technique automatically aim the laser spot close to or 

             

Figure 3.11 Surface selection in a segmented image of a 31 meters corridor. 
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right below the image center in focus using the calculated distance via stereo vision of the 

two PTZ cameras. Here we test our system in two environments, one is indoor (Figure 

3.12) and another is outdoor (Figure 3.13). 

 

The indoor experiment is performed at the corridor about 30 meters. A metal box on a 

chair is placed on a fixed location at about 9 meters. We manually selected three surfaces 

points, the points on the metal box, metal door handler and extinguisher metal box. The 

laser spots can be clearly observed in the images that are close to the image centers with 

pixel errors of 2.3, 5.2, and 5.5 (from left to right in Figure 3.12).  In Figure 3.12, the yellow 

circles in the cropped images show the image center of the original image. The calculated 

distances are 8.9, 10.6, and 26.6 meters with corresponding true distances at 9.0, 11.0, 

and 28 meters 

 

         

Figure 3.12 Indoor auto aiming using laser-camera alignment. 

 

    

Figure 3.13 Outdoor auto aiming using laser-camera alignment 
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The outdoor experiment is performed near a highway when the sensor platform has a 

standoff distance of about 60 meters from the highway. In Figure 3.13, three sample 

surface targets to the side of the highway close to the sensor platform are selected, a 

metal box under a tree (45.4 meters), a poster with a tape (45.5 meters), and a right turn 

sign (53.3 meters). All images are zoomed so that both the image centers (in yellow 

circles) and the laser spots (in red) right below are visible.  The average pixel difference 

between the laser spot to the image center for the three examples is 6 pixels.   

3.7.4 Surface	Focusing	and	Listening	

The experimental results related to the distance measuring, surface selection and laser 

pointing for those labeled points (in Figure 3.11) are presented in Table 3.1. The estimated 

camera distance (D) are listed in column 3 with the “ground truth” data (D*) at column 6. 

The LDV distance (DL) in column 4, the distance from the target point to the optical center 

of the LDV, is calculated based on the pan and tilt angles of the PTU. Base on that, the 

focus step (in the range of 0 to 3300) in column 5 is determined and the laser beam is 

focused in about 1 second for each point. For comparison, the focus step using the full 

range searching takes 15 second, and is presented in column 8. The signal returning levels 

(0 to 512) in column 6 can be used to determine what the best point is among the 

candidates for audio acquisition. As a result, the metal box (L7) has the strongest signal 

return level so that it is selected for the voice detection. Note that all selected surfaces 

do not have retro-reflective tape treatment.  
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The experiment results of the focus positions and signal levels of the outdoor surface 

targets (in Figure 3.13) are shown in Table 3.2.  According to the signal return levels at the 

last column, the surface of the metal box under a tree should be selected as the best 

listening target. In addition, the poster with tape is also a good listening surface with 

moderate signal level. Therefore it can be used as a substitute for the first one with some 

signal enhancing treatments, such as amplifying, noise removal, and filtering.  

Unfortunately the right turn sign does not provide sufficient signal returns. 

 

Table 3.1 Surface selection, laser pointing and focusing 

L# Surface 
Measurements Ground Truth 

D (m) DL(m) Step Level D* (m) Step Level 

L1 Floor 26.56 27.14 2642 10 27.74 2581 11 

L2 Chalkboard 28.30 28.88 2750 31 27.74 2764 22 

L3 Wall 27.67 28.25 2732 12 30.63 2734 12 

L4 Wall 28.62 29.20 2734 11 30.63 2734 12 

L5 Wall 29.67 30.26 2786 12 30.63 2845 14 

L6 Mirror 27.90 28.56 2758 12 30.63 2757 12 

L7 Metal box 29.67 30.26 2745 118 30.32 2839 121 

L8 Side wall 21.10 21.60 2391 9 23.16 2410 10 

L9 Wall 30.85 31.43 2410 11 30.63 2757 11 

 

 Table 3.2 Focus positions and signal levels of three outdoor surfaces 

No Target Distance Focus Position Signal Level 

001 Box under a tree 45.4m 2890 285 

002 Poster with tape 45.5m 2890 116 

003 Right turn Sign 53.3m 2904 14 
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3.8 Concluding	Remarks	

In this chapter, we present a dual-PTZ camera based stereo vision system for improving 

the automation and time efficiency of LDV long-range remote hearing. The close-loop 

adaptive sensing using the multimodal platform allows us to determine good surface 

points and to quickly focus the laser beam based on target detection, surface point 

selection, distance measurements, and LDV signal return feedback. The integrated system 

greatly increases the performance of the LDV remote hearing and therefore its feasibility 

for audio-visual surveillance and long-range other inspection and detection applications. 

Experimental results show the capability and feasibility of our sensing system for long 

range audio-video-range data acquisition. 
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Chapter	4	

4 Multimodal	Data	Representation	and	Processing	

The calibrated system allows us to acquire both audio and video data synchronously, as 

well as the range information and the system configurations (such as zoom, pan and tilt 

parameters). However, it is still a challenging task to automatically extract, label and 

integrate multimodal data for the recognition and classification moving targets (e.g., 

humans, vehicles). In this chapter we will mainly focus on moving vehicles in uncontrolled 

traffic scenes for vehicle classification, check-point inspection and traffic analysis. The 

same principle could be used for other moving targets. In this work, we first represent 

both visual and audio data in a multimodal temporal panorama (MTP) (Wang, et al., 

2011b), which shows detection, motion, and acoustic information simultaneously. The 

MTP provides a very effective user interface to visualize and analyze the alignment of the 

video and acoustic information of passing-by vehicles, thus facilitating the joint detection 

and classification of vehicles using both visual and audio information. It provides:  

1) multi-modal information including visual presentation from a panoramic view image, 

motion presentation from an epipolar plane image, and acoustic information from an 

audio wave scroll;  

2) real time detection, reconstruction of the vehicles’ visual appearances, synchronized 

with their acoustic signatures; and  
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(3) a very effective user interface for training data labeling in both video and audio 

domains.  

In addition, a robust vehicle reconstruction algorithm is developed using both panoramic 

view images and epipolar plane images (Wang & Zhu, 2012a). The reconstructions are 

useful since the vehicles may be occluded by other stationary objects, such as bushes, 

trees, parked vehicles or others. Motion blur can also be removed after reconstruction. 

In addition, all vehicles have the same side views that can improve the recognition and 

classification performance while keeping the classifier simple.  

There are a number of advantages of this work. Since the generation of the MTP is done 

in real time, the reconstruction takes place immediately after a vehicle is detected. 

Second, audio information is used to remove some false detecting targets before 

reconstruction. Third, a multimodal dataset of different types of vehicles are generated 

automatically. Last, the classification of the reconstructed vehicle images has significant 

performance improvement over that of the corresponding original vehicle images.    

The rest of this chapter is organized as follows. Section 4.1 describes our audio visual 

vehicle (AVV) dataset for moving vehicles. Section 4.2 presents a brief survey related to 

the MTP approach. Section 0 shows the MTP generation procedure. Section 4.4 describes 

the multimodal data alignment using the MTP. Section 4.5 describes the visual image 

reconstruction algorithm. Section 4.6 presents a physics-based LDV signal enhancement 

algorithm. Experimental results and conclusions are presented in Section 4.7 and Section 

Error! Reference source not found., respectively.  
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4.1 Audio	Visual	Dataset	

Using the designed multimodal system, we collected and built our own dataset of long-

range moving vehicle classification. We will use those data to demonstrate the multimode 

sensing and processing framework throughout the rest of the thesis. There are two 

locations that the data were collected, one is at a local road and the other at a highway. 

The local road has number of occluded static objects, such as trees, parked vehicles, 

mailbox, and etc. This situation is very common in an urban environment where a lot of 

parked vehicles and trees on the road side. Fortunately, the traffic of the passing vehicles 

in the local road is sparse; thus, the data collected can be labeled for training purpose. On 

the other hand, although there is no occlusion on the road side, the traffic passing vehicles 

in the highway is very dense. Thus, those data will be labeled for testing. The stand-off 

distance of the multimodal sensor platform at the local road is about 25-30 meters. The 

stand-off distances for the highway data collecting vary from 50 to 70 meters. Various 

camera zoom levels are used to obtain images of adequate spatial resolutions. The 

acoustic signals are collected using the mono sound track of a sound card at 22.5 KHz of 

16bit with input directly obtained from the LDV output. The data were collected at 

different days from Monday through Sunday with various weather conditions: sunny, 

cloudy, rainy and windy. The audio listening position was consistent through all days and 

times. The shortest video clip is about 1 minute and the 
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longest one is about 3 hours. Each clip may contain zero, one, or many passing-by 

vehicles. There are about 3000 vehicle samples in total. Therefore, due to the large 

variations in recording durations, traffic volumes, camera setups, and scene locations, it 

is hard to manually label the data and process the raw clips. Figure 4.1 shows some 

challenging scenarios where moving vehicles are captured. The first two images (Figure 

4.1 a and b) are captured at a local road: a white truck with motion blur and occlusions (a 

parked black car, trees, bushes, and a mailbox), and a bus with a large portion occluded. 

The mid two images (Figure 4.1 c and d) were collected at a highway: a very long truck 

only partially in the FOV, and a sedan moving in a high speed and showing obvious motion 

blur. Note there are always some cases two or more vehicles moving closely thus 

overlapped together in the image (Figure 4.1 e and f). Therefore, it is necessary to have 

a)          b)    

c)      d)  

e)       f)  

Figure 4.1 Challenges in vehicle detection and classification with long-range sensors.  
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an efficient and effective data processing and representation technique for visualizing, 

searching and labeling the audio, visual and motion data of moving vehicles.  Meanwhile, 

it is also desirable to remove perspective distortions, occlusions and motions blurs of 

vehicle images, and align them with corresponding acoustic signatures.  This required a 

novel technical approach to vehicle reconstruction, labeling, and cross-sensor 

synchronization, which will be discussed in the next section. 

4.2 A	Brief	Survey	of	Related	Work	

One of the earliest works using panoramic view images (PVIs) was route scene 

representation for robot navigation (Zheng & Tsuji, 1990); more recent works using the 

PVI concept to generate parallel-perspective panoramas for scene understanding can be 

found in (Seitz & Kim, 2003; Zheng, et al., 2006; Flora & Zheng, 2007). A 1D slit scanning 

approach was used to construct route panoramas when a camera is mounted on a moving 

vehicle. In these works, the resulted PVIs do not require inter-frame matching of video.  

The concept of the epipolar plane images (EPIs) was first introduced in (Bolles, et al., 

1987), and it has been used to display features to trace the horizontal motion (Zheng & 

Wang, 2005). In (Flora & Zheng, 2006), they extract spatial-temporal information in the 

video volume and rectify the route panorama using two condensed image slices to record 

traces of horizontal and vertical scenes during the vehicle motion. They track the feature 

traces in the condensed image slices to remove jitter and adjust the local length of route 

panorama. In (Zhu, et al., 2000) both PVIs and EPIs are used for automatic traffic 

monitoring. However, vehicle shapes are not reconstructed therefore it will be hard to 
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classify vehicles based on the PVI images. All these papers only deal with video data, but 

in our work we also capture and process acoustic data using a LDV for better vehicle 

detection and classification. Works using both audio and video for surveillance can be 

found in (Dedeoglu, et al., 2008; Cristani, et al., 2007). In their approaches, the full video 

images are processed, which are sometimes computationally expensive but unnecessary. 

The synchronized labeling of the audio and video data for training classifiers could be very 

tedious. For example, moving vehicle detection does not really have to handle the change 

of the entire background or presence of other stationary objects that are irrelevant to the 

moving vehicles. So it would be ideal if we can only extract the audio and visual 

information of the moving vehicles and synchronize them in the time axis.  Our MTP 

concept provides a way to only preserve the most important data that are both 

synchronized and normalized for extracting and labeling foreground moving objects.	

4.3 Multimodal	temporal	panorama	

During data collection, both visual and audio data are captured simultaneously. 

Multimodal data including visual, motion, and audio information from moving vehicles 

are represented into a multimodal temporal panorama (MTP) as we first described in 

 

Figure 4.2 Temporal panorama generation and initial parameters selection 
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(Wang, et al., 2011b). The MTP consists of three synchronized 2D spatial-temporal 

panoramas (Figure 4.2 left). The first panorama is the panoramic view image (PVI) 

concatenated from the same 1D vertical detection lines across all image frames (Zheng, 

et al., 1990; Zhu, et al., 2000). The least occluded line in the scene, particularly when there 

is a significant amount of occlusions such as trees, parked vehicles or others, is selected 

initially to detect any vehicles crosses the line (the vertical red line in Figure 4.2, right). In 

Figure 4.2, the right part shows a PTZ image overlaid with the least occluded vertical 

detection line (selected manually), and four points on the edges of the road to fit the two 

parallel road edges (two red vertical thick lines). Multiple “horizontal” epipolar lines that 

converge to the same vanishing point (in greed dot) are stored in a multiple-LUT. Only 

one of the epipolar lines is used that cuts through the middle of the vehicle detected in 

the vertical detection line. Using a single line approach ensures a consistent background 

subtraction result since there is little variation in consecutive background lines over time 

in the video sequence. The line can be reselected if the scene is changed or a new location 

is picked. The second panorama is the epipolar plane image (EPI) (Bolles, et al., 1987; Zhu, 

et al., 2000) that has same time axis as the PVI. The EPI is generated from concatenating 

1D horizontal epipolar lines along the direction of a vehicle’s motion. The purpose of this 

epipolar line is to track the motion of a vehicle on the road, after an initial target location 

on the road is selected.  This location connects with the vanishing point of two parallel 

lines on the roadside to form an epipolar line. However, if the road is wide (i.e., a two way 

street, or a multi-lane road), a single fixed epipolar line may not be sufficient to trace the 

motion of a vehicle in various lanes/directions. A multi-look-up table (mLUT) is used to 
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store multiple epipolar lines that correspond with all possible moving paths of a vehicle. 

Once a vehicle is detected from the PVI, the right row index of the mLUT is selected for 

constructing the EPI. For both PVI and EPI, we do not require the whole body of a vehicle 

in the field of view. A partially viewed moving vehicle by the camera is sufficient. Last, a 

1D audio wave scroll can be easily represented along with the PVI and the EPI in the same 

temporal axis. The first use of the audio information is to improve the robustness of 

vehicle detection using the PVI representation. The short time energy of a window of 

signals can distinguish a sounding target with silent background thus removing some false 

target detection from the PVI. 

Figure 4.3 shows a segment of a MTP for a clip of multimodal vehicle collection on a local 

road. The duration of this clip is about 39 seconds. The synopsis is from the 3rd to 5th 

rows and the detection/reconstruction snapshots are on 1st, 2nd and 6th rows. First row 

shows the original frame snapshots that include vehicles. Second row shows the 

reconstructed vehicles. Third row shows the panoramic view image (PVI). Fourth row 

shows the epipolar plane image (EPI). Fifth row shows the audio wave scroll. Sixth row 

shows spectrograms and spectral energy plots of the detected vehicles. Here we want to 

note that due to the interlacing mechanism of the PTZ cameras, the images of moving 

vehicles are quite blurry. Therefore, we use fields as the unit for both PVI and EPI in the 

time direction instead of frames (consisting of even and odd fields). This reduces the 

spatial resolution of images in the vertical direction to half of the full resolution, but later 

in vehicle reconstruction, we will recover the original resolution. 
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Figure 4.4 shows a segment of a MTP of multimodal vehicle collection on a highway. The 

duration of this clip is about 2 minutes. The synopsis is from the 3rd to 5th rows and the 

detection/reconstruction snapshots are on the 1st, 2nd and 6th rows. First row shows the 

original frame snapshots that include vehicles. Second row shows the reconstructed 

vehicles. Third row shows the panoramic view image (PVI). Fourth row shows the epipolar 

plane image (EPI). Fifth row shows the audio wave scroll. Sixth row shows audio energy 

plots of the detected vehicles. This scenario is more complicated than that of a 

 

Figure 4.3 Multimodal temporal panorama on a local road 
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local road where traffic is relatively sparse. In the first image shot, one vehicle is occluded 

by another visually; the sounds of the two moving vehicles next to each other with a very 

small headway are also mixed. For this case an image shot and a period of audio that 

contain these two vehicles are extracted together. Vehicles moving on the other side of 

the highway divider are also partially detected by the PVI. We detect them in the PVI but 

do not extract them for later classification based on the EPI and audio energy information.  

The MTP facilitates the synchronization and integration of the information across the 

three modalities, both for automatic and interactive vehicle and traffic analysis, thus 

 

Figure 4.4 Multimodal temporal panorama on a highway road 
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providing more succinct and reliable information for tasks like moving vehicle detection 

and classification using visual, motion, and audio information. 

4.4 Multimodal	Data	Alignment	for	Object	Detection	

Because our system allows us to collect multimodal data at different locations and 

selecting various detection zones, the visual detection and audio detection of vehicles 

may not be aligned. In other words, depending on the viewing angles of the camera and 

the directions of the moving vehicles, the system may hear the sound before or after it 

actually sees them. Also, noise from the background subtraction and ambient sounds may 

also cause invalid alignment. The three panoramas are first processed independently but 

simultaneously for object detection. Then results are combined and aligned to present 

the same objects in order to improve the detection rate. 

4.4.1 Object	Detection	

During the generation of two spatio-temporal images, adaptive Gaussian mixture models 

(Stauffer & Grimson, 1999; Zivkovic, 2004; Zivkovic & van der Heijden, 2006) for 

background subtraction are applied for both PVI and EPI (Figure 4.5). In Figure 4.5, from 

top to bottom, the image shows the detection results (PDI, MDI, ADI) from the PVI, EPI 

and audio wave scroll after performing background subtraction. Note that only a small 

window of background containing a few lines is trained initially, and then new incoming 

lines are accumulated to update the model. It is much faster than performing the 

subtraction on the whole frames. Also the result is more consistent since there is little 

variation in consecutive background lines over time in the video sequence. Then, 
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morphological operations are applied to produce a panoramic detection image (PDI) and 

a motion detection image (MDI) corresponding to a PVI and its EPI in Figure 4.5, 

respectively. Note that there are still some false targets in both the PDI and MDI (in yellow 

oval shapes) due to other moving objects or background changes even after performing 

noise removal. However, along with audio information in the ADI, only objects with good 

audio signals are marked as vehicles (in red rectangle shapes).  

 

The process is performed online for every new frame, so the detection is done in real 

time. The PVI, which presents visual appearance of moving objects, is used for vehicle 

detection. In order to retrieve a vehicle from original frame shot, the center of the object 

region, which indicates the time frame in the original video, is used. Error! Reference 

source not found. shows original frame shots that have vehicles inside the field of view. 

The top and bottom boundaries of the bounding box of the vehicle can be easily 

determined from the PVI since the PVI has the same vertical coordinates as the original 

images. The determination of the left and right boundaries is not that straightforward. 

 

Figure 4.5 The processing results of the multimodal temporal panorama in Error! Reference source 
not found. 
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So, the EPI is used for acquiring column pixel locations of the vehicle in the horizontal 

direction. The main purpose of the EPI is for estimating moving direction and speed of a 

vehicle. An increasing locus in the EPI indicates a vehicle move from left to right in the 

scene, and a decreasing locus means the opposite direction of a moving vehicle. The slope 

value of the locus indicates the speed of a vehicle. There are two possibilities for the slope 

shape, a straight line or a curved line. The straight line shows a vehicle move at a constant 

speed. It can be represented using a first degree polynomial function. If a vehicle 

accelerates or decelerates when it crosses the checkpoint, a curved line may be shown in 

the EPI. Usually it can be represented using a second degree polynomial. 

 

Using the same procedures for Error! Reference source not found., Figure 4.6 shows the 

processing results for the MTP data in Error! Reference source not found., where yellow 

ovals show the false target detection and the red boxes show the objects detected from 

the validation using both the EPI and the filtered audio wave.  

In order to obtain good acoustic signature of an object, background noise for the scene is 

learned initially. Then a Wiener filter based two step noise reduction technique (Plapous, 

 
Figure 4.6 The processing results of the multimodal temporal panorama in Error! Reference source 

not found. 
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et al., 2006) is applied to filter out noise that has corrupted an acoustic signal. The output 

s’(t) is defined as:  

𝑠*(𝑡) = 𝑔(𝑡) ∗ [𝑠(𝑡) + 𝑛(𝑡)]      (4.1) 

where s(t) is the original signal to be estimated, n(t) is the noise, and g(t) is the Wiener 

filter’s impulse response. In the snapshot layer of the MTP, snapshots of the spectrogram 

and the corresponding spectral energy are displayed for vehicles once they are detected 

in the PVI. This provides the capability to view the acoustic signature of a possible target. 

4.4.2 Data	Alignment	

Next, we present a systematic way to align the multimodal data using the multimodal 

temporal panorama. Let 𝐼+,  denote intensity map of a vehicle whose center body is 

detected at the time i in the appearance panorama D. Let 𝐼+- denote the intensity map 

displayed at the time i in the motion panorama M. We want to select a correct range (j-

m, j+m) in an audio clip that corresponds to the detected vehicle, as:  

argmax
.

"
/
(∑ 𝐼+, +∑𝐼+- + ∑ 𝐴.01

.!1 )    (4.2) 

where j is the center of the audio clip and m is the half-duration of the audio signal of a 

vehicle. N is the normalization factor, and A is the energy of the audio signals. Unlike 

human speech signals, the sound of a vehicle is much consistent during a period of time, 

so usually an audio clip of 5-10 seconds (for 2m) can describe the signature of a vehicle 

sufficiently. There are three main terms in this MTP base on Eq. (1): visual detection-∑ 𝐼+,, 

motion detection-∑𝐼+-, and audio detection-∑ 𝐴.01
.!1 . A constraint that integrates these 
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three terms will be adjusted according to a specified task. For moving vehicle detection 

and classification, the motion of a vehicle has to be detected, together with either strong 

visual detection or strong sound detection. Here the either-or operation is used in case 

the vehicle could be very silent (such as an electric car).  Thus, a constraint Y  in subject 

to the Eq. 4.2 is set as: 

  Y = (∑ 𝐼+- > 𝜏) X(∑ 𝐼+, > 𝜏)	𝑜𝑟	[∑ 𝐴.01
.!1 > 𝜑]^ = 1   (4.3) 

where t, j are thresholds to penalize the visual background noise and the ambient sound. 

Note that the detection results do not rely on restricted thresholds. Indeed, a clean 

background subtraction with a filtered audio signal can guarantee a good detection 

results using very small t, j .   

Error! Reference source not found. to Figure 4.5 show the detected objects in red 

rectangle boxes and their aligned audio clips in black boxes. For the first object (vehicle), 

the detection time of the visual appearance and the audio signals are different; however, 

they can be aligned by finding an audio region that yields the highest total energy with 

respect to the visual detecting region. In addition, false targets in the appearance 

panorama can be removed if there is no motion presented to indicate a moving vehicle. 

In other words, if there is a vehicle detected in all the three panoramas (appearance, 

motion and audio), the result should be 1 in Eq. (4.3); otherwise, the result should be 0. 

Note that the constraint is task dependent; and we assume a moving vehicle could be 

detected at both video and audio. It is definitely possible to hear the sound of a moving 
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vehicle without actually seeing it, then the constraint needs to be redesigned to fit in this 

situation 

4.5 Reconstruction	Algorithm	

Vehicle reconstruction is necessary since the vehicles may be occluded by other 

stationary objects, such as bushes, trees, parked vehicles or others. Motion blur can also 

be removed after reconstruction. In addition, reconstructed vehicles all have the same 

views, which should improve the recognition and classification performance while 

keeping classifiers simple.  

 

The general idea of reconstruction is demonstrated in (Figure 4.7 top left). In Figure 4.7, 

the reconstruction procedure is illustrated on the top left. The top right shows an example 

of detected object from the PVI having even-odd field pair placed sequentially. The 

bottom shows the original zoomed image with motion blur and occlusion (left), un-

rectified image pieces of a sedan with even-odd field aligned (middle) and its 

reconstructed result (right). Each vertical line in the detected region in the PVI indicates 

 
 

   
Figure 4.7 Vehicle image reconstruction procedure 
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a particular time frame It in the original video. The slope m of the vehicle’s locus at the 

corresponding time t in the EPI shows the relative speed vt of a moving vehicle as: 

v# = m =	 23
2#

      (4.4) 

In other words, it is equal to the number of pixels in the motion direction in the original 

image that need to be extracted. The sign of the slope indicates the direction the vehicle 

moves to. So, if the vehicle moves from left to right, the image piece to the left of the 

vertical detection line (here defined as referenced line rl,) is extracted. If the vehicle 

moves from right to left, the image piece to the right of the rl is used. This is because the 

concatenation of PVI is in the left-to-right (or time increasing order). Then the image slice 

St at time t is: 

S# = I#
4, J = {j|j ∈ (rl, rl + v#)}     (4.5)  

where J is the number of columns in the original time frame need to be selected. If the 

number is not an integer, then interpolation between two consecutive frames is applied. 

Although, the camera does not need to be perpendicular to the moving path of the 

vehicle, the segmented image pieces cannot be horizontal aligned smoothly if there is a 

rolling angle of the camera. An affine transformation is used to rectify those image pieces: 

S# ↦ A5S# + b      (4.6) 

where Ag is the rotation matrix has rolling angle g , and b is translation vector.  If the true 

rolling angle is not known in advance, it can still be calculate from the initial image shot 

as: 
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γ = tan!" 67!!87!
67"!87"

      (4.7) 

 

where (Epx, Epy) is the intersection point of the referenced vertical line and selected 

epipolar line; and (Vpx, Vpy) is the vanishing point of any two parallel lines showing the 

roads structure. Then the reconstructed image IR for a vehicle is the integration of all 

image pieces from starting time ts to finishing time tf when the vehicle is observed through 

the reference vertical detection line:  

I9 = ⋃ A5I#
4##

:;#$        (4.8) 

The first image shot of in Error! Reference source not found. shows two vehicles moving 

closely next to each other, so the reconstruction result contains both of them, 

overlapped. The motion slopes of those two are mixed together so only the best fitting 

line is selected to estimate the speed. So we can handle dense traffic, however we assume 

two or more vehicles moving at least at the same direction with a similar speed in order 

to make the reconstruction work.     

The motion blur is mostly caused by the interlacing of the camera. Similarly, by knowing 

the speed of the vehicle, we can accurately align the even and odd fields of the image 

pieces into a single image piece at the frame i, thus significantly reducing the image blur, 

and restoring the original image resolution in the vertical direction. Figure 4.7 bottom 

shows an example before and after motion blur removal. 

The reconstruction is based on the detection panorama and the motion panorama: the 

detection panorama shows the current position of the target pass across the vertical 
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detection line, and the motion panorama shows how many pixels need to be sliced from 

the corresponding original image shot. So it is the combination of image patches sliced 

from the original image at consecutive frames based on the relative speed. It is irrelevant 

to the distance and the camera since this is basically an image alignment problem, 

assuming the slices are of a planar surface of the car. We tested on data at different 

distances and different zoom levels, the shape of vehicles can mostly be reconstructed. 

Although a little shutter effect is still left, most conventional feature descriptors can be 

applied to distinguish the shapes of vehicles on the reconstructed images.   

4.6 Audio	Enhancement	for	LDV	Signals	

Similar to the vehicle image reconstruction, the purpose of audio enhancement is to make 

acoustic signals collected from the LDV having similar characteristics to those from typical 

acoustic sensors (i.e., microphones) and to make the extracted features more distinctive 

for target classification. Generally speaking, most microphones in use have very flat 

frequency responses whereas the frequency responses of LDV vary due to the surface 

vibration. For LDV voice acquisition, particularly the acoustic events occur from a large 

distance to the sensor, finding the right vibration surfaces close to the acoustic sources 

(humans, vehicles, etc.) is very important. Vibration measurements are made at the point 

where the laser beam strikes the target (surface) under the vibration caused by a voice 

source. Usually, the stricken targets have the structure of plates. Such targets include 

walls, doors, metal boxes, traffic signs, building pillars, containers, and so on (Zhu, et al, 

2004).  
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We have analyzed the vibration characteristics of several typical surfaces with different 

materials and structures are explored through both simulations and real-sensor 

experiments (Li, et al., 2010). Based on their responses to the frequencies in the range of 

human voice, the targets are classified into three categories by the number of fluctuations 

(zero, one or two) in their vibration returns in the range of speech (Figure 4.8). Both short 

and long range LDV voice detection experiments with these three kinds of targets verified 

our conclusion that, the acquired signals from the targets in the second and the third 

categories, like glass plates and paper boxes, give better performances and are 

recommended for LDV listening. Furthermore, the characteristic curves of frequency 

responses of these targets, can not only be used to make a better selection of appropriate 

surfaces for LDV voice detection, but also have the potential to be utilized  for both signal 

enhancement and signal interpretation for the signals captured by the LDV off these 

targets. In this research work, we enhance the acoustic signal based on the experimental 

model.  

4.7 Experimental	Results	

 

Figure 4.8 Vibration amplitudes on the top layers of concrete, glass and PVC 
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The reconstructed image of a vehicle not only indicates the detection of a vehicle at a 

time, but also provides a clean and complete visual appearance of the vehicle for data 

labeling, facilitating better vehicle classification. Here, we would like to first analyze the 

accuracy of reconstruction results, and then show the classification performance using 

reconstructed results against non-reconstructed images. Although the physic based 

acoustic signal enhancement is not the main contribution in this thesis, we still show a 

simple example of LDV signal enhancement. 

4.7.1 Reconstruction	Error	Analysis	

To show the accuracy of reconstructed image results, we perform error analysis under 

two cases depending on whether the true sizes of vehicles are known or not. For the first 

case, giving the true length L and the true height H of a vehicle, the relative errors of a 

vehicle in the length eL and in the height eL are: 

e< =
=<!<%=
<

, L* = >&?'
@&
	     (4.9) 

	eA =
|A!A%|
A

, H* = >(?'
@(

     (4.10) 

where L′ and H′ are the length and the height in reconstructed result, respectively. IL 

and IH are the width and the height of the reconstructed vehicle image in pixels. fL is the 

focal length in horizontal direction, and fH is the focal length in vertical direction. Dm is 

the distance of a vehicle at the mth lane. We also perform a theoretical error analysis in 

order to compare with the actual errors calculated with Eq. (4.9) and Eq. (4.10). The 

theoretical relative errors in length e’L and in height e’L are: 



84 
 

ε<* = | C<
<
|, δL = ?'

@&
δI<     (4.11) 

εA* = | CA
A
|, δH = ?'

@(
δIA     (4.12) 

where 𝛿𝐼Dand 𝛿𝐼Eare the measurement errors in the height and length directions of the 

image of a vehicle (in pixels). 

If a vehicle’s size is not known, we manually measure the length L″ and the height H″ 

of the vehicle in the original image corresponding to the reconstructed image at time tm, 

where tm is the time the vehicle half way passes through the detection line. Note that the 

vehicle may be partially occluded at the front or the rear part, or cannot be fully displayed 

in individual image frames. Therefore we combine the image frames at time ts or tf that 

have the vehicle partially displayed so that the correct length and height can be 

measured. Here ts and tf are the starting and finishing time the vehicle is detected. Then, 

the calculation of the relative errors for the unknown vehicle is just a matter of 

substituting L” and H” for L and H in Eqs. (4.9) and (4.10), respectively. 

In our experiment, we had three vehicles with their known sizes provided by the 

manufacturers. They are Nissan Altima, Honda Accord, and Honda Pilot, each passing 

through the check point for 10 times on a two-way road about 24.8 and 26.8 meters to 

the camera. The focal length of the camera is 10.5 mm under 15x zoom. Some of the 

reconstruction results as well as their corresponding frame shots are shown in Figure 4.9. 

The top row shows the original image shots (zoomed and cropped), and the bottom row 

shows the corresponding reconstructed results. The actual relative error and theoretical 

relative error results are shown in Table 4.1.  The theoretical errors are obtained by 
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assuming the measurement errors in the height and length directions of the image of a 

vehicle (𝛿𝐼D and 𝛿𝐼E, in Eqs. 4.11 and 4.12) are both one pixel. The actual reconstruction 

errors are comparable to the corresponding theoretical errors, and the average 

reconstruction error in both length and height is about 4%. More reconstructed image 

results from the dataset are shown in Appendix C. 

 

 

4.7.2 Classification	on	Reconstructed	Results	

For showing the effectiveness of vehicle reconstruction and background removal, we 

apply the HOG feature extraction on three sets of images of the same vehicles: original 

                     

                

Figure 4.9 Sample reconstruction results for three vehicles: Nissan Altima (left), Honda Accord 
(middle), and Honda Pilot (right). 

Table 4.1 Reconstruction error analysis for vehicles of known type 

Type Nissan 
Altima 

Honda 
Accord 

Honda 
Pilot 

Total 
Avg. Err. 

True L(mm) 4661 4811 4849 - 
Act. err. in L 3.87% 5.31% 3.86% 4.34% 

Theo. err. in L   3.87% 5.14% 3.70% 4.24% 
     
True H (mm) 1420 1445 1847 - 
Act. err in H 4.64% 5.37% 1.68% 3.90% 

Theo. err in H 4.46% 5.28% 1.29% 3.70% 
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raw images, reconstructed images without background removal, and reconstructed 

images with background removed. We used 667 samples, 400 are used for training and 

267 for testing. The vehicles are labeled into four categories: sedans, vans, pickup trucks 

and buses. There are many variations in each category. For example, sedans contain 

sports cars and economic 2 door or 4 door cars some with fastback or hatchback; vans 

include mini vans, regular size vans and long size vans, note that SUVs are categorized 

into vans as well; pickup trucks some may have wagons or trailers at rear parts; and buses 

include both school buses and transportation buses. The original images are directly cut 

out from the original video frames that best correspond to the reconstructed results. Note 

that the original images may include partial occlusions, various side views and motion 

blurs. Table 4.2 shows the comparison in three confusion matrices on the same testing 

data, where the rows indicate ground truth and columns are the estimations. The training 

size, testing size and training parameters are all the same for the three sets of data. 

Applying the same classifiers, the reconstruction without background removal improves 

the performance by 15.73%, and reconstruction plus background removal improves the 

performance by more than 18.10%. Therefore, from this point on, the HOG features are 

extracted only from reconstructed images with background removal.  
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4.7.3 Results	of	Audio	Enhancement	

 

Table 4.2 Performance improvement with reconstruction & background removal (S-Sedans, V-
Vans, T-pickup Trucks, B-Buses). 

Original images 
Accuracy: 54.31% 
 S T V B 

S 77 3 26 2 
T 10 7 11 0 
V 49 6 56 2 
B 7 3 3 5 

 

Reconstruction only 
Accuracy: 70.04% 

 S T V B 
S 81 6 20 1 
T 3 23 2 0 
V 25 12 72 4 
B 4 0 3 11 

 

Reconst - background 
Accuracy: 72.41% 

 S T V B 
S 83 3 20 2 
T 4 22 2 0 
V 26 4 80 3 
B 3 1 3 11 

 

   
 

            

 

 

 

Figure 4.10 Spectrograms of original sound (top), filtered sound (middle), and enhanced sound 
(bottom) 

 

 Machine’s 
Engine 

Cars’ 
Engines 

Male 
Speech 

Female 
Speech 

Beeps 
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In Figure 4.10 we show an example of audio speech with and without enhancement. The 

top spectrogram shows the original audio data include speech with a machine’s engine 

sound and two cars’ engine sounds. Usually, a band pass filter or Weiner filter will remove 

low frequency noises shown in middle spectrogram. This assumes the frequency 

responses are flat for signals at all frequency range (true if using microphone). However, 

LDV may respond strongly at one frequency range but weakly at another frequency range 

for a surface. We need apply some enhancement to recover some information at some 

frequency range in order make distinct of two classes, say machine engine with car engine. 

The bottom spectrum shows the enhanced audio data that makes the last columns 

(machine engine and car engines) differently.  

4.8 Concluding	Remarks	

In this paper, we first describe the new audio-visual dataset acquired for moving vehicle 

detection and classification. Noisy multimodal data are represented efficiently in a 

multimodal temporal panorama interface for automatic moving target detection and fast 

vehicle labeling. A visual image reconstruction technique is provided to improve vehicle 

classification. A physics-based audio enhance technique is used to remove background 

noises while keep some low frequency signatures of the vehicles.  
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Chapter	5	

5 Multimodal	Feature	Extraction	

Thanks to the MTP approach, various types for visual features and audio features can be 

applied for the objects. With the reconstructed visual images, both scale and metric 

features as well as view and scale invariant features can be used. The visual features 

include aspect ratio and size (ARS), histograms of oriented gradients (HOGs), shape 

profiles (SP), representing simple global scale features, statistical features, and global 

structure features, respectively. The audio features include short time energy (STE), 

spectral energy, entropy, flux and centroid feature, and Mel-frequency cepstral 

coefficients (MFCCs), which are grouped into three types: temporal features (STEs), 

spectral features (SPECs) and perceptual features (PERCs).  

In this chapter, we start with a brief overview of feature extraction, particularly for visual 

and audio features, in Section 5.1.  Then we describe visual feature extraction in Section 

5.2, and audio feature extraction in Section 5.3.  A brief explanation of how multimodal 

feature combined and synchronized is presented in Section 5.4. Some sample results are 

shown in Section 5.5. Conclusions are provided in Section Error! Reference source not 

found..  

5.1 A	Brief	Overview	of	Feature	Extraction	

An image feature set should represent the most relevant information for object detection 

and classification, meanwhile providing invariance to changes in illumination, differences 
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in viewpoints and shifts and size changes in object contours. Many local image features 

have been proposed, such as points (Mikolajczyk & Schmid, 2002), blobs (Lowe, 2001), 

intensities (Vidal-Naquet & Ullman, 2003), gradients (Ronfar, et al., 2002; Mikolajczyk et 

al., 2004, Dalal & Triggs, 2005), color, texture, or combinations of several or all of these. 

Despite the diversity, they could be roughly divided into two broad categories: (1) sparse 

feature representations based on points, image fragments or parts; and (2) dense feature 

representations using image intensities or gradients. Sparse feature representations are 

based on local features of local image regions that can be selected using key point 

detectors or part detectors. A dense feature representation extracts image features over 

an entire image or detection window, which are collected into a high-dimensional 

descriptor vector that can be used for discriminative image classification. Using image 

features as the basis, video features provide additional temporal information via either 

optical flow or motion tracking techniques. 

The audio features can be categorized into three groups: time-series features, spectral 

features, and perceptual features. The time-series features represent audio samples in 

their raw waveforms, and may be enhanced by some filters, such as zero crossing rates 

or short time energy (Lu, et al, 2002). The spectral features represent spectral moments 

and flatness, such as spectral centroid, spectral roll-off, spectral flux and linear 

coefficients (Rabiner and Juang, 1993). The perceptual features represent the spectral 

variation and sharpness, such as Mel-frequency cepstral coefficients (MFCCs), or delta 

MFCCs (Knox & Mirghafori, 2007). A complete description of some typical and commonly 

used audio features is presented in (Teodoridi & Koutroumbas, 2008). However, there is 
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no direct proof showing that one performs better than others because feature generation 

is very much task and data dependent. Here, we select some common and reliable 

features for testing our feature modality selection algorithm in Chapter 5.  

5.2 Visual	Feature	Extraction		

The visual features are extracted from the reconstructed image results. The objective of 

reconstruction is to make vehicles’ visual images invariant to perspective views and 

distances. Also, the results have occlusions and motion blur removed. Therefore, both 

metric features as well as statistical features can be used more effectively. The first 

feature that can be used is simply the aspect ratio and size (ARS) of the vehicle, as fARS = 

[w, h, w/h], where w is the width and h is the height. It can classify vehicles into various 

sizes. Note that even though moving vehicles can be captured at different distances or 

camera zoom levels, the reconstructed image results are invariant in size since the 

distances are measured via the PTZ stereo and the images can be normalized.  

The other visual feature is the shape profile (SP), which is a curve that indicates the top 

boundary of a vehicle, a strong indicator of the vehicle’s type. To create the SP, we first 

apply the background subtraction on image pieces of the reconstructed vehicle image to 

obtain a clean shape of a vehicle. Only the top half of the images is used since only the 

top boundary contains significant differences among different types of vehicles, and the 

bottom part is harder to segment from the background due to shadows and motion blurs 

of the wheels. Then, the top boundary curves of all the vehicle images are sampled into 

the same number of bins with each bin Bi presents the average of height of the current 
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shape boundary, and to form a feature vector fSP of the same dimension after 

normalization as: 

𝑓FG =	
"

1HI	K
[𝐵",𝐵),… ,𝐵/]      (5.1) 

where N is the number of bins for the SP. Note this normalization loses the size 

information. Note that this normalization loses the size information, but it has been 

captured by the aspect-ratio and size feature. 

Histograms of oriented gradients (HOGs) (Dalal and Triggs, 2005) are a statistical feature 

that preserves some texture and local structure. It counts occurrences of gradient 

orientation in localized dense grid cells uniformly, thus, forming a feature vector of 

histogram H as fHOG = [H1, H2, ..., HM], where M is the number of bins for the HOGs. Since 

it uses local contrast normalization, it is invariant to illumination changes, thus, it is good 

at people detection as well as vehicle detection (Mao, et al., 2010). We also extract HOGs 

for both reconstructed vehicle images with and without background removal for 

comparison of classification performance. By representing multimodal data in multimodal 

temporal panoramas (MTPs), static HOG features can be effectively applied to the 

reconstructed images of vehicles. The number of cells and histograms used depend on 

the sizes (or resolutions) of the reconstructed images. For wide-area surveillance, the 

monitored moving object may be small after reconstruction, so a small number of cells 

could be good enough to characterize the visual signature of the object.  However, if we 

zoom in the camera to get fine details of the object, small number of cells could not 

distinguish various types of objects significantly. For our current experiments, we use 3x6 
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cells which three rows present vehicles top, middle and bottom parts and six columns 

present vehicles front, middle body and read parts.      

5.3 Audio	Feature	Extraction	

In general, audio features can be categorized into three groups: time-series features, 

spectral features and perceptual features. The time-series features represent audio 

samples in their raw waveforms. Short time energy (STE) is used to calculate the energy 

over a time (Lu, et al., 2002). It is usually good at distinguishing a vehicle’s sound with a 

silent background. Since the audio signals of a moving vehicle are much consistent over a 

short time period, overlapped windows in a short period of time clip are used to calculate 

the sound energies of the detected corresponding object (vehicle) in the PVI. Then we 

form the STE feature vector using only their mean and standard deviation as:  fSTE = [µSTE, 

sSTE].  

In the second group, the spectral features (SPEC) represent spectral moments and 

flatness (Rabiner and Juang, 1993). Spectral energy, entropy, flux and centroid are 

composed together into a spectral feature vector fSPEC=[Eng, Ent, Flux, Cent]. The spectral 

energy Eng calculates the energy of the power spectrum defined as: 

𝐸𝑛𝑔 = ∑ |𝐹{𝑥(𝑡)}	|)        (5.2) 

where x(t) is the audio signal and F{} is the Fourier transform. The spectral entropy Ent 

measures the energy changes and defined as 

𝐸𝑛𝑡 = −∑ |𝐹{𝑥(𝑡)}	| M'N	 |O{I(R)}	|
U

      (5.3) 
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The spectral flux Flux measures how quickly the power spectrum of a signal is changing 

and defined as: 

𝐹𝑙𝑢𝑥 = ∑(|𝐹{𝑥(𝑡)}| − |𝐹{𝑥(𝑡 − 1)}|))	    (5.4) 

The spectral centroid Cent indicates the center of the spectrum defined as: 

𝐶𝑒𝑛𝑡 = ∑W|O{I(R)}|
∑ |O{I(R)}|

       (5.5) 

where w is the weighted mean vector of the same dimension as the F. 

In the third group, the perceptual features (PERC) represent the spectral variation and 

sharpness. Mel-frequency cepstral coefficients (MFCCs) (Zheng, et al., 2001) are 

commonly used to perceptually represent the frequency band responses of the human 

auditory system. The mel-frequency cepstrum (MFC) equally spaces the frequency band 

on the mel scale of F{x(t)}, and then transformed using the DCT after log of powers at each 

mel frequency.  Then the coefficients of the results forms the perceptual feature fPERC = 

[µMFCC, sMFCC], where µMFCC, sMFCC are the mean and the standard deviation vectors of all 

coefficients, respectively. 

However, due to the noises from the LDV’s electronic-optical effects and unforeseen 

environmental effects, the “foreground” acoustic signals (such as the sounds of human 

speeches, vehicle engines, etc.) may not stand out clearly from the “background” noises.  

A reliable background modeling technique should be employed that is distinct for 

different surface types but identical for the same type at various distances.  A Gaussian 

Mixture Model (GMM) F is commonly used to model the feature distribution of signals 
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using a weighted summation of a Gaussian distribution N. The likelihood of a feature 

vector x is defined as:  

Φ(x) = ∑ 𝛼X𝑁(𝑥, 𝜇X ,Y
X;" ΣZ)     (5.6) 

where μk and Sk are mean and covariance matrix of kth Gaussian among K Gaussians, and 

αk is a normalizing factor in range between 0 and 1. Due to the variations of the vibration 

properties from surface to surface, the GMM on each selected surface are constructed 

differently. Because the number of Gaussians K is different for each unique model, we 

have to use the right model for the right surface and evaluate the correctness. Also note 

that the GMM can model the feature distribution, however, it cannot present temporal 

dependencies of each component. In order to model the internal dynamic between the 

components distribution in temporal domain, we use a score-based aggregation 

technique for the GMM with more than one component (Wang, et al, 2010b).  

5.4 Multimodal	Feature	Synchronization	

In moving vehicle detection and classification, the proposed multimodal temporal 

panorama (MTP) approach can represent and align data from multimodalities in the same 

temporal domain. It significantly improves the synchronizing process. Then we only need 

to map various types of features that represent the same object. The feature level 

integration has the advantage of sharing the information from various modalities, 

whereas the decision level integration could treat each modality independently.  

First, we define the synchronization process as: given a set of features for the modality 

M1 as FM1 = [f11, …, f1P] Î RP , and another set of features for the modality M2 as FM2 = 
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[f21, …, f2Q] Î RQ , we determine the mapping G(f): f1i  « f2j, where i Î P and j Î Q. With 

the help of MTP alignment and reconstruction, this synchronization process is made 

easier. As a matter of fact, it is just concatenation of different feature modalities into a 

large vector. However, many samples of audio features may be extracted from a period 

of audio clip that corresponds to the same object in the visual image. We simply take the 

average of all of them for representing the audio feature of the same object.   

5.5 Sample	Results	

In our current experiments, we used the data acquired on a local, 2-way road, with 667 

different vehicles in the dataset.  Note that this is from the same source of data of our 

previous work (Wang and Zhu, 2012a), but the number of vehicle samples is almost tripled 

and more multimodal features are extracted and analyzed. (Previously we only used 

HOGs for visual and MFCCs for audio modalities.) Of the 667 vehicle samples, 400 are 

used for training and 267 for testing. All vehicles’ visual images are reconstructed so that 

the vehicle image results are invariant to perspective views, and the occlusions and 

motion blurs are removed. In our experiments, the vehicles are labeled into four 

categories: sedans, vans, pickup trucks and buses. There are more variations in each 

category than the dataset we used in our previous work (Wang and Zhu, 2012a). For 

example, sedans contain both sport cars and economic 2 door or 4 door cars; some with 

fastback or hatchback. Vans include mini vans, regular size vans and long size vans; note 

that SUVs are categorized into vans as well. Pickup trucks some may have wagons or 

trailers at rear parts. Buses include both school buses and transportation buses.  
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The ARS feature includes height, length and length/height ratio of vehicles. For the HOG 

feature, each vehicle image is divided into 6x3 grids and each grid has 9 bins so that the 

result HOG feature vector for a vehicle image has 162 dimensions. The SP feature uses 

normalized 30 bins across the top profile of the vehicle. The STE feature consists of a 

mean and a standard deviation of a vehicle temporal energy. The spectral feature 

contains means of 4 different types of spectral features and their standard deviations. For 

the perceptual features, we use the first 15 coefficients of MFCCs and calculate their 

means and standard deviations into a feature vector of 30 dimensions.  Examples of the 

four types and some sample features are shown in Figure 5.1. The first row shows the 

best original image shots based on the automatic detection. The second row shows the 

reconstruction results (with background). The third row shows the reconstructed images 

with top half background automatically removed. The fourth row shows the shape 

profiles. Base on observation, the four different types of vehicles can be easily 

distinguished by using the shape profiles.  The fifth row shows the histograms of oriented 

gradients in dense grid cells that form the typical HOG feature vector. Audio features in 

term of wave form (each 3 seconds), spectral domain are cepstral domains are shown in 

row 6, 7, and 8 respectively.  
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5.6 Concluding	Remarks	

In this chapter, both metric and statistical visual features are extracted from the 

reconstructed vehicles’ images. The audio features are extracted based on three types: 

temporal features (STEs), spectral features (SPECs) and perceptual features (PERCs). The 

selected features are supposed to be representative for various types of information 

(shapes, sizes, sounds, etc), and we expect they can provide complementarities to each 

other.  
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Figure 5.1 Samples of multimodal data of vehicles in four categories (sedan, van, truck and bus) 
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Chapter	6	

6 Multimodal	Feature	Selection	and	Learning	

Multimodal feature selection and learning is particularly important for multimodal 

sensing where heterogeneous data are unavoidable, and we often cannot determine 

what the most appropriate features are, and how the feature of different modalities 

should be combined. In Chapter 4, we represent multimodal data into multimodal 

temporal panorama (MTP) that facilitates the synchronization and integration of the 

information across various modalities, thus providing more succinct and reliable 

information for tasks like moving vehicle detection. With multimodal sensing data, we are 

interested in various scenarios of multimodal classification, which involves the selection 

of multimodal features that we have discussed in Chapter 5 for given tasks.  The issue of 

what to fuse has been addressed at two different levels: feature modality selection and 

feature vector reduction (Potamianos, et al., 2004). Feature modality selection refers to 

choosing different types of modalities, which could be different sensor sources or 

heterogeneous features extracted from a single sensor source. For example, a moving 

vehicle can be detected via a video camera or a microphone, or both. On the other hand, 

the fusion of features usually creates a large feature vector so that many feature 

reduction techniques are applied to overcome this problem. A lot of work has been done 

on feature vector reduction (Wall et al., 2003; Chetty & Wagner, 2006; Potamianos et al., 

2001). But there is relatively little work on feature modality selection. Therefore, we 

mainly focus on feature modality selection.  
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The rest of chapter is organized as follows. Section 6.1 discusses some related work of 

feature modality selection and feature vector reduction. A multi-branch feature searching 

(MBFS) technique based on sequential forward selection algorithm is described in Section 

6.2, also can be found in (Wang & Zhu, 2012b). Section 0 describes the boosting-based 

feature learning (BBFL) technique. Experimental results on feature selection and learning 

are shown in Section 6.4. Conclusions are provided in Section Error! Reference source not 

found..  

6.1 	Related	Work	

The feature modality selection problem has often been considered as an optimization 

problem satisfying some conditions. For example, a moving vehicle can be easily detected 

and classified from the video analysis than the audio analysis if the vehicle’s appearance 

can be observed clearly. However, if there is a large obstacle occludes most part of the 

vehicle, the audio analysis could be more handy. Oshman (1994), Debouk et al. (2002) 

and Jiang et al. (2003) mainly focus on sensor modality selection. In term of optimal 

feature modality selection, Wu et al. (2004) first find statistically independent modalities 

from raw features, then determine the optimal combination of individual modalities using 

a super-kernel. When all feature components were combined and treated as a one-vector 

representation, it suffers from the curse of dimensionality. On the other hand, the large 

number of modalities reduces the curse of dimensionality, but the inter-modality 

correlation increased. An optimal value of modality is selected to balance between the 
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curse of dimensionality and the inter-modality correlation. A summary of the approaches 

proposed in the above papers can be found in (Atrey et al., 2006).  

The fusion of features that are obtained from different modalities usually result into a 

large feature vector, so that many feature reduction techniques are applied. Commonly 

used are principle component analysis (PCA), and linear discriminant analysis (LDA). PCA 

is used to project higher dimensional data into lower dimensional space while preserving 

as much information as possible. LDV is used for determining the linear combination of 

features, which is not only a reduced set of features but it is also used for classification. 

Wall et al. (2003) provide more details about these feature dimensionality reduction 

methods.  Many researchers have used these methods for feature vector dimension 

reduction for the multimodal fusion, for example: Guironnet et al. (2005) used PCA for 

video classification, Chetty and Wagner (2006) utilized singular vector decomposition 

(SVD) for biometric person authentication, and Potamianos et al. (2001) adopted LDA for 

speech recognition.  

From the available feature set, which modalities should be selected to accomplish a 

specified task? The utility of those modalities could be different given different tasks. As 

the optimal feature subset changes over time, how confidence the feature modality 

selected with which the task is accomplished, is an open problem for multimodal feature 

fusion and classification. Since most work have discussed on feature vector reduction but 

few of them discusses the reliable methods how feature modality selection, we will 

present a multi-branch feature searching technique in Section 6.2 and a boosting base 
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feature learning technique in Section 0, both for feature modality selection. Then in 

Section 6.4, we will provide some experimental results and comparisons. 

6.2 Multi-Branch	Feature	Searching	(MBFS)	

Feature selection is a task dependent problem. Given two different tasks, the 

classification results may be different using the same features or feature combinations. 

We’d like to evaluate a large number of features and select only a few of representative 

features or feature combinations. Such problem can be formulated as: given a feature set 

F = {fi|i=1,…, N}, find a subset SM with M < N, that maximizes an objective function J(S), 

𝑆- = {𝑓+", 𝑓+), … , 𝑓+- 	} = argmax
-,+-

𝐽{𝑓+|𝑖 = 1, . . 𝑁}    (6.1) 

The commonly used selection strategy is sequential forward selection (SFS) (Gheyas & 

Smith, 2010), which starts from the empty set and sequentially adds the feature that 

maximizes J(S) in each step, then the process is repeated testing each remaining feature 

combinations with those previously preserved until all features have been evaluated. The 

problem of the SFS algorithm is that only a single best feature is selected at each round 

so that it has a tendency to become trapped in local maxima. To alleviate this problem, 

we design a multi-branching feature searching (MBFS) technique based on sequential 

forward selection algorithm which selects a number of good features at each round (level) 

that satisfy some maximal J(S) above a threshold w. First, let us define the following 

symbols: 

N:  the number of uni-modal features. 
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K:  the number of levels of feature combinations, k=1: uni-modal, k=2: bi-modal, and 

so forth. 

Mk: the number of selected features and/or feature subsets at the level k. 

SM:  the M_th selected feature subset, where M = M1+M2+…+Mk. 

F’:  an available feature set, a subset of F. 

F*: features in SM. 

w(f): classification accuracy of a feature or feature combination, f  

e:  a small tolerance value. 

In the first level, a classifier is trained for each of the N uni-modal features and its 

classification accuracy is calculated. Then a subset SM1 with the top M1 uni-modal features 

are selected whose classification accuracy drops from the best one is within a small 

percentage e. Then in the second level, each of these M1 features will be paired with the 

other un-selected features in the first round to generate multiple bi-modal features to 

train their classifiers. The same selection rule is used to select the top M2 bi-modal 

features. This process continues to level K and therefore the selected feature subset SM 

include M features or feature combinations, and SM = SM1USM2…U SMK . Last, the feature 

with the best accuracy among all levels of feature combinations in SM is selected. This 

usually will be a multimodal feature, but it could be a unimodal or bimodal feature. 

The algorithm is formulated as the following: 
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1. Start with the empty set S0 = {Æ}, k=1;      

2. Let F’={f’i|i=1,…,N}=F; 

3. Select the next subset of k-modal features SMk in the level k, by combining a feature 

f’i in F’ with every feature F*j in the subset SM(k-1), j=1,…,Mk-1, s.t. w(F*j+f’i ) ³ wmax - 

e and F*j+f’i Ï SM  where wmax is the accuracy of the best classifier in kth level; 

4. Update  SM = SM(k-1) U SMk ; 

5. F’=F’-{f’i}, if F’={Æ}, k=k+1, go to step 2, else go to step 3. 

For both unimodal and multimodal features, the radial based support vector machines 

(SVMs) (Cortes and Vapnik, 1995) are used. For the multi-class problem, one-against-one 

technique is used by fitting all binary sub-classifiers and finding the correct class using a 

voting mechanism. To evaluate the classifier for a given feature or feature set, confusion 

matrix C is generated and its error e=1-trace(Diag(C)/sum(C)) is calculated to indicate 

what percentage the true labels and expected labels are off the diagonal. As a result, only 

the best feature modality or the combination of feature modalities is selected. 
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6.3 Boosting	Based	Feature	Learning	(BBFL)	

Boosting is a rather general approach for improving the performance of any weak 

classifiers. Here a weaker classifier is defined as any classifier that can achieve 

classification accuracy above 50%. Classification performance is boosted by combining 

many weak classifiers to produce a strong classifier.  In the boosting literature, feature 

fusion is achieved by using the available features to create a new combination of these 

features. One example is the method of Kegl and Busa-Fekete (2009) which learns 

products of decision trees. Alternatively, Danielsson, et al. (2011) suggest the addition, to 

the boosted classifier, of logical (and, or) combinations of previously selected weak 

learners. Saberian and Vasconcelos (2012) derive more sophisticated combinations of 

weak learners for boosting feature selection and extraction. The resulting boosting 

algorithms grow a predictor by selecting among a pair of pre-defined operations, which 

could be sums and products or “ands” and “ors”, among others. However, their work 

cannot be applied to feature modality selection directly.  

The basic idea of our boosting-based feature learning (BBFL) is to not only learn the weak 

classifiers given input training samples, but also learn the weak classifiers with the 

selected feature modalities. Then the “winner-takes-all” approach selects the best 

classifier of the corresponding feature modalities. Our method uses the exhaustive search 

that learns weak classifiers for all feature modalities and their combinations. In our 

experiments, we use decision trees as the weak classifiers.  
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The original AdaBoost works for binary classification problems. For multiclass problems, 

a meta-classifier is designed for general n-class problem. Two straightforward 

combination schemes are the one-again-all classifier and the one-against-one (or 

pairwise) classifier (Tax & Duin, 2002). With the one-against-all classifier, n classifiers are 

trained, each of which is able to distinguish one class from all of the others. At the end, 

the testing vector is assigned the class corresponding to that of the machine producing 

the largest positive score. The one-against-one classifier uses ([)([!")
)

  binary classifiers to 

separate each class from each other class. A voting scheme is then used at the end to 

determine the correct classification. The algorithm for classic AdaBoost for binary 

problems is shown in Appendix D.1. We will show our algorithm on general binary 

classification problems which can be easily extended for multiclass problems using the 

one-against-one technique due to its efficiency. The general algorithm for multiclass 

problems is shown in Appendix D.2. Extensive experiments on multiclass moving vehicle 

data show that it is consistently able to select more accurate feature modalities than the 

classical sequential feature selection method. In order to show the significance of various 

feature modalities, we’d also like to show a study on individual uni-modal features and 

their importance for a specified task. 

6.3.1 Algorithm	for	BBFL	

First, let us define the notation: 

𝑥+  is the ith training sample 

𝑦+  is class label of the ith training sample 



107 
 

M is the total number of training samples 

ℎR
.(𝑥+) is the label predicted by the tth weak classifier ht(.) for the datum xi using jth 

feature subset   

wt is the weight distribution of samples at the tth weak learner. 

J’ is total number of uni-modal features 

𝐹\ is the set of all possible uni-modal features and their linear combinations, where  

J is the total number of feature subsets.  

T is the number of weak learners 

𝑟R
.  is the overall error rate for the t-th weak classifier using j-th feature subset 

𝛼R
.  is the important factor the t-th weak classifier using j-th feature subset 

𝐻(𝑥) is the final ensemble classifier. 

Let 𝑆 = (𝑥+ , 𝑦+)+;"-  be the set of M training data, s.t. 𝑥+ ∈ 𝑅,  and 𝑦+ = {−1,+1} is the 

corresponding class label. Let h(.) be a weak classifier which projects an input vector x 

into {-1, +1} considering only binary classifiers, so that ℎR
.(𝑥+) is the label predicted by the 

t-th weak classifier ht(.) for the datum xi using j-th feature subset. This can be applied to 

any real-valued weak classifiers. In fact, one-against-one multiclass problem is considered 

as a combination of all binary classifiers. Given J’ uni-modal features, 𝐹\ is the set of all 

possible uni-modal features and their linear combinations, where J is the total number of 

feature subsets. The same weak classifiers h(.) are trained on all possible linear 

combinations of multimodal features at each learning step. A valid weak classifier should 

have an overall training error rate r larger than 0 (meaning more than 50% correctness), 
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therefore the total number (J) of useful feature subset may be different at each iteration. 

In each step, only the best classifier who has the largest import factor is selected to boost 

the ensemble classifier. As a result, the best feature set is obtained.  

The algorithm for exhaustive BBFL can be described as the follows. 

Input: S, T, FJ 

Initialize: 

  t=0; 𝑤R+ = 1/𝑀  

For t=1 to T: 

(1) For all 𝑓.𝜖𝐹\, 𝑗 = 1,… , 𝐽 

a. Train a weak classifier ℎR
.(. ) 

b. Compute: 𝑟R
. = ∑ 𝑤R+𝑦+ℎR

.(𝑥+)+ 	/	∑ 𝑤R++  

c. Compute: 𝛼R
. = log	 "!])

*

])
*   

(2) Select the best weak classifier ℎR
.∗ who has the largest 𝛼R

.∗ 

(3) Re-weight samples: 𝑤R0"+ = 𝑤R+ exp X−𝛼R
.∗𝑦+ℎR

.∗(𝑥+)^ /	𝑍R , where 𝑍R  is the 

normalization factor so that ∑ 𝑤R0"+ = 1+  

Output: 

  An ensemble classifier using the best feature subset 

    𝐻.∗(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥.∗ ∑ 𝛼R
.∗ℎR

.∗(𝑥+)_
R;"       

Note that this algorithm is very similar to the classic Adaboost but with an additional 

feature modality selection at each learning step using the same weak classifier. The weak 

learning for feature modalities or their combination can be learned independently, and 
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then the one with best classification accuracy is selected at each step. A MBFS technique 

can also be employed for a more systematic feature modality selection for every weak 

learner. However, no matter what weak classifiers or learning techniques used at each 

learning step, the same number of samples has to be re-weighted and re-evaluated again. 

Therefore, the BBFL can provide a robust feature modality selection but with increase of 

the time complexity.  

6.4 Experimental	Results	

We will show our experimental results in two parts. One set of results uses the MBFS 

technique and another one uses the BBFL technique. We use the same dataset in Chapter 

4 of 667 vehicles samples, 400 are used for training and 267 for testing. All vehicles’ visual 

images are reconstructed so that the image results are invariant to perspective views, and 

the occlusions and motion blurs are removed. The vehicles are labeled into four 

categories: sedans, vans, pickup trucks and buses. There are various variations in each 

category. For example, sedans contain sport cars and economic 2 door or 4 door cars 

(some with fastback or hatchback); vans include mini vans, regular size vans and long size 

vans (note that SUVs are also categorized into vans as well); pickup trucks some may have 

wagons or trailers at rear parts; and buses include both school buses and transportation 

buses. 

6.4.1 Results	Using	MBFS	

Figure 6.1 shows the classification results of all the individuals and combinations of 

multimodal features, including single modalities, bi-modalities, and multimodalities (>=3). 
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The four vehicle types are labeled as: S-sedan, V-van, T-truck, B-bus. In the training 

confusion matrices, the ground truth labels are on the rows, and expected labels on the 

columns. The yellow shading boxes indicate the “good” features that are selected at each 

level of combinations, and the bold blue lines show their derived branches. Confusion 

matrices of four meaning single-modal features and the best multimodal features on the 

same training data are presented in the figure. 

 

At the bottom level, none of the unimodal features achieve a testing accuracy of over 

75%. However, we can observe specific strengths of different features by looking into 

 

Figure 6.1 Comparison of classification results using multimodal features (ARS, HOG, SP, PERC, SPEC, STE 
and their combinations). 

 

 Tp S T V B 
S 160 1 16 0 
T 2 41 8 0 
V 17 2 131 0 
B 0 0 0 22 
 

HOG 
Train: 82.50% 
Test:  72.41% 

ARS 
Train: 69.75 % 
Test:  55.43% 

SP 
Train: 79.75% 
Test:  71.53% 

PERC 
Train: 73.00% 
Test:  59.55% 

SPEC 
Train: 53.75 % 

< 55% 

STE 
Train: 53.50% 

< 55% 

ARS+HOG 
Train: 81.50% 
Test:  77.53% 

ARS+SP 
Train:  83.00% 
Test:  73.03 % 

HOG+SP 
Train:  84.50% 
Test:  72.66% 

ARS+PERC 
Train: 75.00% 
Test:  58.43% 

HOG+PERC 
Train: 83.00% 
Test:  73.03% 

SP+PERC 
Train: 73.50 % 
Test:  59.55% 

ARS+HOG+PERC 
Train: 88.50% 
Test: 74.53% 

ARS+SP+PERC 
Train: 87.25% 
Test:  75.66% 

HOG+SP+PERC 
Train: 82.75% 
Test:  71.16% 

ARS+HOG+SP+PERC 
Train: 85.75% 
Test:  73.78% 

Visual Features: 
ARS: Aspect Ratio + Size 
HOG: Histograms of 
Oriented Gradients 
SP: Shape Profile 
   

Audio Features: 
PERC: Perceptual feature 
(mean+std MFCCs) 
SPEC: Spectral feature 
(spectral energy, entropy, 
flux, centroid) 
STE: Short time energy 

 S T V B Tot 
Train 177 52 150 22 400 
Test 108 28 113 18 267 
Total 285 79 263 40 667 

 

Tp S T V B 
S 148 2 27 0 
T 22 2 27 0 
V 36 0 111 3 
B 0 0 4 18 
 

Tp S T V B 
S 149 6 29 2 
T 5 36 9 1 
V 22 3 124 1 
B 0 0 1 21 
 

Tp S T V B 
S 136 6 33 2 
T 4 37 8 2 
V 19 4 126 1 
B 0 0 2 20 
 

Tp S T V B 
S 150 0 27 0 
T 17 4 30 0 
V 27 2 120 1 
B 1 3 0 18 
 

ARS+HOG+SP 
Train: 85.50% 
Test:  74.16% 

S: Sedans 
V: Vans 
T:Pickup Trucks 
B: Buses 
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their confusion matrices. The ARS feature is the simplest visual feature, therefore it 

obtains the worst individual performance, but it can help to distinguish vehicles with 

different sizes and aspect ratios, for example sedans from trucks and buses. Since HOG 

feature counts the interior structure of vehicles (e.g., windows), its overall performance 

is the best, but for individual class labels it is not the best (e.g. SP outperforms it in Truck, 

and PERC in Sedan). The shape profile features analyze the global shape of vehicles and 

are therefore seems to be the best at distinguishing trucks and other types (particularly 

vans, since their top rear parts are usually quite different). The PERC feature individually 

has slightly better performance than the simple ARS feature; from their confusion 

matrices we can see that it does much better in separating vans from sedans, probably 

because their sound is more distinct than their aspect ratios and sizes. We will further see 

how this will make a difference in multimodal integration. The SPEC and STE are not good 

in combining with other modalities since their training accuracies are less than 55%. 

Because each modality has its own advantages and disadvantages, the combination 

among them becomes important to provide complementary information, which we will 

see next.  

In bi-modal classification, we experimented on both visual only and visual and audio 

cases. In visual feature combinations, HOG and SP are applied on size-normalized images, 

but their combination includes both interior and exterior information of vehicles, thus 

providing some classification improvement. ARS feature preserves the size information of 

vehicle, and therefore providing complementary information to HOG or SP; when 

combined with either HOG or SP, we also see improvement in testing accuracies, 
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particularly in ARS+SP. The PERC feature adds acoustic signatures of vehicles in addition 

to their visual information, thus providing significant improvement over the audio–only 

results. The testing accuracy using PERC with HOG is slightly better than using HOG itself, 

indicating features from two different sources (audio and visual) are better than the single 

source, even though individually, visuals do better than audio.  

In the multimodal level, combining 3 or more than 3 features improve the classification. 

For example, the combination of ARS, HOG and SP (all visual features) increases the 

accuracy since each of them inherits distinct signature of vehicles. When combining visual 

features with audio features, the results are also improved. Based on the results, the 

accuracies with three modalities, between two different visual-audio combinations 

(ARS+HOG+PERC and ARS+SP+PERC) are very close; the former is slightly better in training 

and the latter in testing However, SP feature has only 30 dimensions whereas HOG uses 

162 dimensions. Therefore, if the reconstructed images are accurate, the SP can be used 

to replace HOG while combining with other features to reduce computational costs for 

the vehicle classification task. In fact, the total feature size of ARS+SP+PERC is 63, which 

is even smaller than the size of the HOG feature vector (162). Between the visual-audio 

combinations (ARS+HOG+PERC and ARS+SP+PERC) and the visual-only combinations 

(ARS+HOG+SP), heterogeneous multimodal combinations seem to win, by 3% with the 

testing set used in this experiment. 

At the very top in Figure 6.1, the combination of all useful features has testing accuracy 

(73.78%), which may not be the best in performance. Therefore, in selecting best 
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combination of feature modalities, only the one with highest training accuracy is finally 

chosen. In this experiment, ARS+HOG+PERC is selected with training accuracy 88.50%. 

Note that its testing accuracy is the second best of the available options. 

Here we show an example on how the best multimodal combination wins with the 

training data. Looking into the training confusion matrices in Figure 8, we have found that 

buses are misclassified for every one of the four features: ARS (4 misclassification), HOG 

(1 misclassification), SP (2 misclassification), and PERC (4 misclassification). However, the 

combination of these four features has 0 misclassifications. This is possible that each 

feature type has wrong classification on different samples, but by combining all or part of 

the feature types, those wrong classification results could be corrected. For example, ARS 

may misclassify samples 2, 3, 4, HOG may misclassify samples 7, 8, 9, and PERC may 

misclassify samples 10, 11, 12. When combined together there could be no 

misclassification. 

Because the classes the task we used is designed based on visual appearance, the visual 

feature gave much better results than audio features. Nevertheless, adding audio 

features to visual feature would provide some improvement, say HOG+SPEC had 2.0% 

and 0.25% improvement than HOG (the best single modality) itself on both the training 

set and the testing set, respectively. The best combination, ASR+HOG+PERC, 

outperformed the best single modality HOG by 6% and 2.12% on the training set and the 

testing set, respectively. 

6.4.2 Results	on	the	Best	Feature	Combination	(ARS+HOG+PERC)	
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Based on our experiment results (Figure 6.1), we select the best combination of feature 

modalities ARS+HOG+PERC based on the training accuracy. Its training and testing 

confusion matrices and accuracies are show in Table 6.1. Because we use one-against-all 

for the multi-class classification, we will show the receiver operating characteristic (ROC) 

curves on each type of vehicles separately in Figure 6.2. In a ROC curve, the true positive 

rate (sensitivity) is plotted against the false positive rate (1-specificity) for different cut-

off points. The sensitivity is the probability that a test result will be positive when the 

corresponding vehicle type is present; whereas the specificity is the probability that a test 

result will be negative when the corresponding vehicle type is not present. So, each cut-

off point on the ROC curve represents a sensitivity/specificity pair corresponding to a 

particular decision threshold which is the estimated probability of a sample calculated 

from the SVM cost function in order to make a possible decision. A test with perfect 

discrimination (no overlap in the two distributions) has a ROC curve that passes through 

the upper left corner (100% sensitivity, 100% specificity). Therefore, the closer the ROC 

Table 6.1 Training and testing accuracies of ARS+HOG+PERC 

Training: 88.50% 
 S T V B 

S 160 1 16 0 
T 2 41 8 0 
V 17 2 131 0 
B 0 0 0 22 

 

 Testing: 74.53% 
 S T V B 

S 85 5 17 1 
T 2 24 2 0 
V 23 9 80 1 
B 4 1 3 10 
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curve is to the upper left corner, the higher the overall accuracy of the test. The area 

Sedans 

  
Pickup Trucks 

  
Vans 

  
Buses 

  
Figure 6.2 ROC curves. All zoomed in on top left corner in the same scale. 
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under the ROC curve (AUC) is used to measure the training and testing accuracies of one 

type against the rest. The Bus class has AUC 1.0 (100%) and all 22 buses are classified 

correctly in the training, meaning this feature combination can significantly distinguish 

buses with other types.  However, the testing AUC is the lowest for the busses, comparing 

to the others. That may because the number of samples for buses is much smaller 

compare to the others. The AUCs for classes with large samples such as sedans and vans 

also indicated the classifiers are good to separate those types against the rest.  

6.4.3 Results	Using	BBFL	

 

In the boosting framework, we use decision trees as the weak classifiers. We applied up 

to 50 weak learners. Figure 6.3 shows the training and testing errors over the number of 

weak learners. Only the first 20 weak learners are show here. Table 6.2 shows the feature 

modalities selected at each learning step related to Figure 6.3. The 2nd column shows the 

accumulated training errors from previous classifiers. The 3rd column shows the testing 

 

Figure 6.3 Training and testing errors up to 20 weak learners 
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errors. The advantages of boosting is that it can select multiple feature modality sets and 

continuously learn a new feature modality set without stopping at a local maximal one. 

The last three columns show the 3 best selected of feature modality sets. Note that the 

training accuracy keeps improving as the number of weak learners increases. However, 

the best testing error in this experiment (in Figure 6.3) stays at 0.2247. This is because the 

decision nodes selected depend only on the re-weight samples in training.  The accuracy 

of those testing samples only depends on the number of possible feature modalities 

selected. For example, in this experiment in Table 6.2, the first three weak learners select 

the same feature combination: ARS+HOG. Since they only use visual signatures, the 

testing errors are the worst. No. 4 to No. 6 weak learners select the same feature 

combination: ARS+HOG+PERC. They include some acoustic signatures, so the testing 

errors decrease some. Then No. 8 and No. 9 weak learners select the combination of the 

most representative uni-modal feature modalities: ARS, HOG, PERC and SPEC, and those 

could provide the most complementary information to each other. And using No. 9 weak 

learners gives the best testing accuracy among all 20 weak learners (in Figure 6.3). Note 

that when different feature combinations are selected later, such as using No. 12 to No. 

18 weak learners, the testing errors actually increase. Until No. 19 and No, 20 weak 

learners are used, the testing errors decrease again closing to the error using No. 9 weak 

learner. The training and testing errors as well as the confusion matrices using No. 9 weak 

learners are show in Error! Reference source not found.. Note that the number of feature 

modalities selected at the 2nd best (as well as the 3rd best) is larger than the top best in 

training at most weak learning steps. Therefore, it is important to select feature 
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combinations with less number of modalities in order to reduce the amount time in 

testing.  

 

	

Table 6.2 The first 20 iterations of boosting-based feature modality learning 

T Train Test Top Best 2nd Best 3rd Best 
1 0.3409 0.4627 ARS+HOG ARS+HOG+STE ARS+HOG+PERC 
2 0.2581 0.3470 ARS+HOG ARS+HOG+STE ARS+HOG+SPEC 
3 0.2005 0.3246 ARS+HOG ARS+HOG+STE ARS+HOG+PERC 
4 0.1679 0.2575 ARS+HOG+PERC ARS+HOG+STE+PERC ARS+HOG+PERC+SPEC 
5 0.1378 0.2425 ARS+HOG+PERC ARS+HOG+STE+PERC ARS+HOG+PERC+SPEC 
6 0.1228 0.2512 ARS+HOG+PERC ARS+HOG+STE+PERC ARS+HOG+PERC+SPEC 
7 0.1103 0.2497 ARS+HOG+SPEC ARS+HOG+STE+SEPC ARS+HOG+PERC+SPEC 
8 0.0952 0.2359 ARS+HOG+PERC 

+SPEC 
ARS+HOG+STE+PERC 

+SPEC 
ARS+HOG+PERC 

9 0.0800 0.2247 ARS+HOG+PERC 
+SPEC 

ARS+HOG+STE+PERC 
+SPEC 

> Err 

10 0.0827 0.2388 ARS+HOG+PERC 
+SPEC 

ARS+HOG+STE+PERC 
+SPEC 

> Err 

11 0.0677 0.2463 ARS+HOG+PERC 
+SPEC 

ARS+HOG+STE+PERC 
+SPEC 

> Err 

12 0.0702 0.2500 ARS+HOG+SPEC ARS+HOG+STE+SEPC ARS+HOG+PERC 
13 0.0627 0.2388 ARS+HOG+PERC ARS+HOG+STE+PERC > Err 
14 0.0526 0.2649 ARS+HOG+SPEC ARS+HOG+STE+SEPC > Err 
15 0.0426 0.2537 ARS+HOG+PERC ARS+HOG+SPEC ARS+HOG+STE+PERC 
16 0.0401 0.2500 ARS+HOG+STE 

+SEPC 
ARS+HOG+SPEC > Err 

17 0.0301 0.2575 HOG+PERC+SPEC ARS+HOG+PERC+SPEC ARS+HOG+STE+PERC 
+SPEC 

18 0.0251 0.2463 ARS+HOG+SPEC ARS+HOG+STE+SEPC > Err 
19 0.0175 0.2351 ARS+HOG+PERC 

+SPEC 
ARS+HOG+STE+PERC 

+SPEC 
> Err 

20 0.0201 0.2276 ARS+HOG+PERC 
+SPEC 

ARS+HOG+STE+PERC 
+SPEC 

> Err 

 

 

 Table 6.3 The best testing results of the boosting based feature learning using 9 weak learners. 

Training: 92.00% 
 S T V B 

S 165 1 11 0 
T 3 45 3 0 
V 11 3 136 0 
B 0 0 0 22 

 

 Testing: 77.53% 
 S T V B 

S 86 1 21 0 
T 2 20 6 0 
V 16 5 91 1 
B 3 0 5 10 

 

 

 



119 
 

6.4.4 Comparison	Between	MBFS	and	BBFL	

The main difference between the MBFS and BBFL algorithms is that the MBFS only selects 

one best combination of feature modalities whereas BBFL selects many feature modality 

sets. The MBFS starts with selecting the best feature modality from all uni-modal features 

then combine it with those not selected in the next step. These procedures are repeated 

until combinations of all feature modalities are evaluated. The worst computation is when 

all feature modalities or their combinations have similar classification accuracies and fall 

into the decision boundary, so that all are selected at each level (or each round). So the 

time complexity for MBFS is 𝐶F`- ∑ X𝑛𝑘^	
[
X;"  , where ∑ X𝑛𝑘^	

[
X;" is the total number of all 

possible combinations of n uni-modal feature modalities, and 𝐶F`- is the time to evaluate 

a feature modality using the SVM. This assumes that all feature modalities have same 

number of vector dimensions. This is always not true. For example, ARS has only 3 

dimensions, whereas HOG has 162 dimensions in the previous results, so the time to train 

using ARS feature is much faster than that using HOG feature for the SVM. The BBFL 

evaluates the same number of re-weighted samples using a number of weak learners. So 

if the MBFS technique is employed at each weak learning step, the time complexity for 

the BBFL will be 𝑇𝐶,_ ∑ X𝑛𝑘^	
[
X;" , where T is the number of weak learners and 𝐶,_  is the 

time to evaluate a feature modality using the decision tree weak classifier. Even though 

the classification time using decision trees is much faster than using SVM on individual 

feature modalities, the large number (T) of the weak learners will make the computation 

expensive using the BBFL in feature modality selection. In our experiments as shown 
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above, the time to select the best combination of feature modalities using the MBFS is 

about 0.61 seconds, whereas the time to learn all feature modality sets of 50 weak 

learners using the BBFL is about 4.76 seconds, which is 7 to 8 times slower. The computer 

that we used has Intel CPU 3.06GHz with installed 4GB memory. So, if the training criteria 

are not met, larger number of weak learners could be used in order to obtain robust 

results, then the computational time increases.  

For the classification performance, the selected best classifier with the MBFS technique 

achieves a training accuracy of 88.50% and a testing accuracy of 74.53%. The selected 

feature combination is ARS+HOG+PERC. The best performance with the BBFL technique 

achieves a training accuracy of 92.00% and a testing accuracy of 77.53%.  The testing 

accuracy is 3% higher than that of the MBFS, but this is achieved with the ensemble of 9 

weak learners. Notably, among the 9 weak learners, the most important modalities are 

ARS+HOG+PERC, which is consistent with the results using the MBFS technique. 

6.5 Concluding	Remarks	

In this chapter, various multimodal features are systematically integrated and studied for 

vehicle classification. Results show that using multimodal features can have significant 

improvement in classification performance over that using single modality. We also make 

a number of important observations on the strengths and weakness of various features 

and their combinations. In addition, for some types of features the combination is 

computationally faster than a complicated feature, with similar classification 

performance. Two techniques are proposed for feature modality selection. The MBFS 
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selects the best combination of feature modalities, whereas the BBFL selects many 

combinations. The BBFL is more robust in using ensemble of many weak learners, 

however it is computational expensive than the MBFS. In the end, we would like to point 

out that those algorithms are based on our reconstructed visual data and filtered audio 

data. In other words, high quality detection often over-weights the choice of algorithms, 

since more distinctive and stable features can be selected. So, if we have a large high-

quality dataset, the choice of classification algorithms might not really matter so much in 

terms of classification performance. Therefore, feature modality selection becomes very 

important in terms of selecting sensor sources and data to be collected. 
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Chapter	7	

7 Conclusions	and	Future	Work	

This thesis presents a framework for multimodal sensing and process for moving object 

detection and classification. We used the dataset contains moving vehicles as the 

particular example throughout the thesis. The proposed approaches build upon novel 

ideas in sensor designs, image and video processing, signal processing and machine 

learning to provide general methods for feature modality selection and object 

classification. The main contribution of our work is the unified Adaptive and Integrated 

Multimodal Sensing and Processing (AIM-SP) framework to integrate sensing, feature 

selection and classification. A number of papers related to this thesis have been published 

in journals and conferences (Qu, et al., 2010; Li, et al., 2010; Wang., et al, 2010b; Wang., 

et al., 2011a; Wang, et al., 2011b; Wang, et al., 2012a; Wang, et al., 2012b), and more are 

under review and preparation; for a complete list, please see Appendix E.  

We will summarize our key contributions in Section 7.1, discuss some limitations in 

Section7.2 and propose some future research directions in Section 7.3. 

7.1 Key	Contributions	

Within this framework, three unique contributions are made: 

A novel Vision-Aided Automated Vibrometry (VAAV) multimodal sensor system. 

This system is built upon a novel sensor technology, LDV, and is capable of obtaining 
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visual, range and acoustic signatures for moving object detection at a large distance. 

The system consists of a dual-PTZ camera based stereo vision system for improving 

the automation and time efficiency of LDV long-range remote hearing. The closed-

loop adaptive sensing using the multimodal platform allows determination of good 

surface points and quickly focusing the laser beam based on the target dtection, 

surface point selection, distance measurements, and LDV signal returning feedbacks. 

The integrated system greatly increases the performance of the LDV remote hearing 

and therefore its feasibility for audio-visual surveillance and long-range other 

inspection and detection applications.  

A multimodal temporal panorama (MTP) approach for moving object detection and 

extraction. The MTP integrates visual appearance, motion information and acoustic 

signals of moving vehicles for multimodal data representation and alignment. The 

technique of using a vertical detection line and a horizontal epipolar line can detect a 

moving vehicle efficiently in real time. The MTP also helps in data labeling effectively, 

especially with a large amount of data. In addition, it provides the capability to 

reconstruct vehicles’ visual appearances so that motion blurs, occlusions and 

perspective distortions can be removed. It also provides a very effective user interface 

for training data labeling in both video and audio domains. The concept of MTP is not 

limited to visual and audio information, but is also applicable when other modalities 

are available that can be presented in same time axis. 



124 
 

Feature modality selection using a multi-branch feature searching (MBFS) technique 

and a boosting based feature learning (BBFL) technique.  Multimodal features can 

have significant improvement in classification over that using single modality. The 

MBFS selects the best combination of feature modalities with high time efficiency, 

whereas the BBFL selects many combinations with high robustness. Base on the 

experimental results, a number of important observations on the strengths and 

weakness of various features and their combinations are made as well. 

In addition, a new audio visual vehicle (AVV) dataset is created for moving object 

detection, classification, and potentially identification. 

7.2 Limitations	of	Our	Approaches		

Our multimodal sensing system targets on moving object detection and classification. It 

assumes the target can be detected from at least one modality, either visual, audio or 

motion. However, the current fusion system assumes that all modalities are available, so 

it remains a future research if one of the modalities is missing. For example, an electric 

car which does not make engine sound can only be detected if it can be observed in video.  

The moving object also needs to have a speed to be extractable using the MTP approach, 

for example, vehicles or people riding bikes. It can also detect a pedestrian, but it is not 

good at reconstructing it. Figure 7.1 shows examples of two walking people are 

reconstructed based on our MTP technique. Because the walking speed of a person is very 

slow, the number of pixels extracted from the original image shots is limited. The 
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integration of multiple slices will cause some body parts missing in the reconstructed 

results. 

 

If multiple moving objects overlap with each other, the detection and reconstruction also 

have problems. For example, in Figure 7.2, two people were riding bikes while being 

overlapped by a moving vehicle. If the reconstruction is based on the speed of those 

people, the vehicle shape cannot be fully recovered. So, determining which speeds of any 

two objects to be used from the motion slopes that are mixed together in the EPI is a 

tricky problem. 

 

Assume all objects are correctly reconstructed and features can be extracted. Then, 

feature modality selection provides an advantage to select the most representative 

                                 

Figure 7.1 Pedestrian reconstruction 

   

     

Figure 7.2 Reconstruction results of people on bikes and a moving 

 

 

 



126 
 

features for a specific task. It also can give a feedback of what kind of sensors are 

important to continue collecting data for the task. However, when multiple sensors are 

employed and many features are extracted, the training will take time to learn all possible 

feature combinations. Especially in BBFL, all possible feature combinations need to learn 

again for every time a new weak learner is used. The time complexity is dramatically 

increased when a large number of weak learners are used.  

7.3 Future	Work	

This section provides some discussion on future research in multimodal sensing and 

processing for moving object detection and recognition.  

To solve the illumination problem of the PTZ cameras, an IR sensor can be included in the 

sensing system to capture the data at a poor lighting condition. This provides additional 

object signatures that can improve the object detection. However, when to use the IR 

sensor for object detection should be carefully considered. The additional sensor 

modality can increase the latency in data capturing and synchronization. More feature 

modalities can be extracted to improve the object detection and classification but the 

time complexity in feature learning and selection also increases.  

There is always a case when not all feature modalities are available during either training 

or testing. The cross modal learning can provide the ability to learn using the available set 

of feature modalities and test on the other types. However, in the modeling of the cross-

modal learning, representation and integration are two key problems. So, which 
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modalities or sub-modalities are to be represented, and how they can be integrated are 

the most interest.   

The data we collected can also be used for vehicle recognition and anomaly detection. 

Some same vehicles were appeared at different time and days during data collection. It 

would be interested to monitor the behaviors of vehicles and recognize the same one 

over days. For example, Figure 7.3 shows possibly a same moving vehicle passed through 

the monitoring area at different time and days. The original images (at top row) show the 

vehicles moving at different directions and locations. It is hard to match them and identify 

them as the same vehicle. However, after reconstruction, their shapes, even the people 

inside the vehicles, are very similar that can indicate a possibility of the same one.  

 

The multimodal sensing framework is not limited to moving vehicle detection only, but 

also can be applied for general applications, such as surveillance, check point inspection, 

searching and rescue. The general idea behind it is: given multiple sensor sources we want 

   

     

Figure 7.3 Same vehicle at different time and days by comparing the reconstruction results. 
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to select the most important sensor modalities from multimodal data analysis and feature 

modality learning. More criteria should be studied and evaluated in the future work.    
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Appendix	A:		PTZ	and	LDV	Calibration	

Assume the intrinsic parameters of the PTZ are already calibrated and known from the 

calibration of the two PTZ cameras. Then we only focus on solving the extrinsic 

parameters between the PTZ and the LDV. 

According to equation 3.4 and 3.7, we have 

�
P< = Ra%Pa% + Ta% 																											
P< = RbR<9Rbc (Pd< − Tb) + Tb	

                                             (A.1) 

Then,  

Ra%Pa% = RbR<9Rbc (Pd< − Tb) + (Tb −  Ta%)   (A.2) 

Note that RU contains three rotations matrices: an initial rotation matrix RU0, a pan 

rotation matrix RUa, and a tilt rotation matrix RUβ. Assume the initial rotation RU0 is unit 

matrix, we have 

Ra%Pa% = RZ(Pd< − Tb) + (Tb −  Ta%)     (A.3) 

where RZ = RbaRbeRbec Rbfc  

Let,               

 Ra* = +
𝑟𝑐"" 𝑟𝑐") 𝑟𝑐"g
𝑟𝑐)" 𝑟𝑐)) 𝑟𝑐)g
𝑟𝑐g" 𝑟𝑐g) 𝑟𝑐gg

/,  RZ = +
𝑟𝑘"" 𝑟𝑘") 𝑟𝑘"g
𝑟𝑘)" 𝑟𝑘)) 𝑟𝑘)g
𝑟𝑘g" 𝑟𝑘g) 𝑟𝑘gg

/   (A.4) 

Note that in the mirrored coordinate system PML, a point P always has the form of [0,0,tl] 

since it is on the Z axis. Thus, Eq. A.3 can be expanded using A.4 as: 
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+
𝑟𝑐"" 𝑟𝑐") 𝑟𝑐"g
𝑟𝑐)" 𝑟𝑐)) 𝑟𝑐)g
𝑟𝑐g" 𝑟𝑐g) 𝑟𝑐gg

/+
𝑋h
𝑌h
𝑍h
/ − +

𝑟𝑘"" 𝑟𝑘") 𝑟𝑘"g
𝑟𝑘)" 𝑟𝑘)) 𝑟𝑘)g
𝑟𝑘g" 𝑟𝑘g) 𝑟𝑘gg

/�
0 − 𝑇iI
0 − 𝑇ij
𝑡 − 𝑇ik

� − �
𝑇iI − 𝑇hI
𝑇ij − 𝑇hj
𝑇ik − 𝑇hk

� = 0  

(A.5) 

In Eq. A.5, the variables 𝑡 − 𝑇ikand 𝑇ik − 𝑇hk are dependent. Thus, the equation is non-

linear. In order to solve this problem, assume 𝑇ik = 𝑑 as a constant, the variables 𝑡 −

𝑇ik and 𝑇ik − 𝑇hk  will become independent, then the equation turns into linear. 

Consequently, Eq. A.5 can be written a homogenous equation that includes n+14 

unknowns. Each calibrating point can built 3 equations. So we need at least 7 unique 

points to solve the Eq. A.5. However, this approach is very sensitive to noise of the 

captured data. Therefore, the platform needs to be calibrated using multiple steps. First, 

make the initial matrix in RC a unit matrix, both TCy and TUy equal to 0 thus solves TCx, TCz 

and TUx. Second, still make the initial matrix in RC a unit matrix, solve TCy and TUy after 

obtain TCx, TCz and TUx. Third, refine the initial matrix in RC after obtain the translation 

vectors TC and TU. Finally, refine TU according to the calibration relation between distances 

and focus steps of the LDV.  
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Appendix	B:	Laser	Camera	Alignment	

Recall the geometric modal in Figure 3.8, 𝑩𝑨??????⃗  is the laser beam from the LDV, and 𝑨𝑫??????⃗  is 

the reflected laser ray from the mirror which has its normal along AC after pan a and tilt 

β. AE is the project of the AD on the plane ABE. We need to solve ÐEAF =a’ and ÐDAE = 

b’.  

 

Here is the detailed derivation; 

Step 1.  Draw GC || AD, GH ^ BE, since GF is the project of GC and AE is the project of 

AD, thus, GF || AE. Let CF = m. The problem is turned to solve ÐFGH = a’ and 

ÐCGF = b’.  

Step 2.   tan(a’) = tan(ÐFGH) = FH / GH 

sin(b’) = sin(ÐCGF) = CF / GC = m / GC 

              We need to solve GC, FH and GH 

 

Figure 3.8. Geometric model of laser beam from the LDV (𝑩𝑨######⃗ ) and its reflected laser ray (𝑨𝑫######⃗ ) after the 
pan (a) and tilt (b).  
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Step 3.   GC = AG = 	 "
)
∗ la
&'(f ∗	&'( e

= "
)
∗ m
(:%e

∗ "
&'(f ∗	&'( e

 

                                = m
)∗(:%e ∗&'(f∗&'( e

=	 m
(:%)e∗&'(f

  

Step4.  

 FH = BF − BH = AF ∗ tanα − BG ∗ sinα 

= m ∗ tanα ∗ cotβ − (AB − AG) ∗ sinα 

                            = 	m ∗ tanα ∗ cotβ − X m
&'(f∗#$%e

− m
&'(f∗(:%)e

^ ∗ sinα 

Step 5.   

GH = BG ∗ cosα = (AB − AG) ∗ cosα 

=	 �
m

cosα ∗ tanβ −
m

cosα ∗ sin2β� ∗ cosα	 

As a result, 

	α′ = 	 tan!"(
tanα
cos2β) 

β′ =	 sin!"(cosα ∗ sin2β) 
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Appendix	C:	Reconstructed	Image	Results	

Here we show more reconstructed image results selected from the dataset of 667 sample 

vehicles. The image resolution captured from the PTZ is 720x480. The data are capture at 

two locations, one at a local road about 25-30 meters, one at a highway about 50-70 

meters. The data collected at local road use two camera zoom levels, simply speaking, 

zoom in and zoom out views.  

Figure C.1 shows the 2 door sports car collect using a zoom out view. The reconstructed 

image size of the first one is 182x59 in pixels. The reconstructed image size of the second 

one is 180x59 in pixels 

 

Figure C.2 shows some special 4 door sedans. The first row shows a regular black 4 door 

sedan. The reconstructed image size is 180x57. The second row shows a special 4 door 

sedan with a station wagon at rear part. The reconstructed image size is 221x61. The third 

row shows the car with long board in the truck. The reconstructed image size for that one 

is 210x53. The last row shows the car with a cart at tail. The reconstructed image size for 

     

                  

Figure C.1 2-Door sports cars. Original image shots on top, reconstruction resutls on bottom 
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that one is 338x65. Therefore, the variations of different kinds of sedans may cause the 

misclassification into other types of vehicles, say, vans or pickup trucks, etc. 

  

Similar to sedan-type vehicles, some van-type vehicles in Figure C.3 also have a lot of 

variations. The class vans include mini-vans, SUVs, jeeps, regular vans, and long vans. 

Other types of vehicles such as pickup truck and buses are shown in Figure C.4.  

       

 

 

             

          

            

                         

Figure C.2. Different 4-door sedans. Original image shots on left, reconstruction resutls on right 
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Figure C.3. Different van-type vehicles. Original image shots on left, reconstruction resutls on right 

           

                     

Figure C.4. Examples of a pickup and a transportation bus. Original image shots on left, 
reconstruction resutls on right 
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Note that our reconstruction technique can also be applied to a dense traffic where many 

vehicles move closely.  Figure C.5 shows two sample scenarios where two vehicles are 

moving closely. Note that we assume multiple vehicles move at similar speed and same 

direction in order to reconstruct good results.  But it would be still challenging to separate 

them if no additional information is acquired. 

 

 

 	

    

                   

Figure C.5 Date collected at a highway where vehicles move closely. Original image shots on left, 
reconstruction resutls on right 
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Appendix	D:	Boosting	Algorithms	

D.1	Classic	AdaBoost	for	a	Binary	Classification	Problem	

Adaboost was first introduced by Freund and Schapire (1997). In a two-class classification 

setting, we have training samples {{xi, yi}, i=1,…m} with xi belongs to a feature domain and 

yi Î{-1,+1}. The procedure of the algorithm is:  

1. Initialize the weight wi=1/m. 

2. Repeat for t=1,2,…,T: 

a. Fit the classifier h(xi) Î{-1,+1} using weights wi on the training data. 

b. Compute the et = Prob(ht(xi)¹yi), at=ln(1/et-1). 

c. Update the weights:  

wi ¬ wi exp(-at yi ht(xi))/zt 

where zt is normalization factor. 

3. Output the final classifier: 

H(x) = Stat ht(x) 

D.2	Boost	for	a	K-Class	Classification	Problem	

Given a training samples {{xi, yi}, i=1,…m}, where xi belongs to a feature domain and yi  is 

the label of instance i. Let Uk={u1,…uk} be the unit base vectors of a K-dimension space RK. 

The labels can be represented by one of the base vectors, i.e., yi=un if the instance i is the 

class n. The procedure of the algorithm is:  
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1. Initialize the weight wij (i=1,…,m and j=1,…,K): 

𝑤+. =  0		1		
𝑦+ = 𝑢.

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

2. For t=1,…,T: 

a. Normalize wij. 

b. Train ht(x) by minimizing loss function: 

𝐿 = ∑ ∑ 𝑤+.𝑒𝑥𝑝([𝑢. − 𝑦+]ℎ(𝑥+))X
.

1
+;"   

c. Update the weight matrix wij: 

𝑤+. ← 	𝑤+.𝑒𝑥𝑝([𝑢. − 𝑦+]ℎ(𝑥+))  

3. Final classifier: 

𝐻(𝑥) = ∑ ℎR(𝑥)_
R;"   
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Journals & Book Chapters: 

1. T. Wang, and Z. Zhu, Vision-Aided Automated Vibrometry for Remote Audio-Visual-
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press. (Invited) 
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2010. 
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