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Abstract

Manually annotating complex scene point cloud datasets is both costly and error-

prone. To reduce the reliance on labeled data, a new model called SnapshotNet is

proposed as a self-supervised feature learning approach, which directly works on

the unlabeled point cloud data of a complex 3D scene. The SnapshotNet pipeline

includes three stages. In the snapshot capturing stage, snapshots, which are de-

fined as local collections of points, are sampled from the point cloud scene. A

snapshot could be a view of a local 3D scan directly captured from the real scene,

or a virtual view of such from a large 3D point cloud dataset. Snapshots could also

be sampled at different sampling rates or fields of view (FOVs), thus multi-FOV

snapshots, to capture scale information from the scene. In the feature learning

stage, a new pre-text task called multi-FOV contrasting is proposed to recognize

whether two snapshots are from the same object or not, within the same FOV or

across different FOVs. Snapshots go through two self-supervised learning steps:

the constrstive learning step with both part contrasting and scale contrasting,

followed by a snapshot clustering step to extract higher level semantic features.

Then a weakly-supervised segmentation stage is implemented by first training a

standard SVM classifier on the learned features with a small fraction of labeled

snapshots. Then trained SVM is further used to predict labels for input snapshots

and predicted labels are converted into point-wise label assignments for seman-

tic segmentation of the entire scene using a voting procedure. The experiments

are conducted on the Semantic3D dataset and the results have shown that the

proposed method is capable of learning effective features from snapshots of com-

plex scene data without any labels. Moreover, the proposed weakly-supervised

method has shown advantages when comparing to the state of the art method on

weakly-supervised point cloud semantic segmentation.
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Chapter 1

Introduction

1.1 Background

Studies on 3D point cloud data have been gaining momentum in the field of com-

puter vision. Deep neural networks such as PointNet[1], DGCNN[2] have been

proposed for better performances on point cloud related tasks, with the help of

larger datasets such as the ModelNet[3] and Semantic3D[4]. The collective effort

between deep neural networks and dedicated datasets continues to push the state

of the art performance on the point cloud object classification.

On the other hand, point cloud semantic segmentation is of great interests in the

applications of autonomous driving, robotics and remote sensing[5]. So far most

of the deep learning driven point cloud semantic segmentation methods follow

the supervised workflow, which requires densely labeled datasets, such as the 1.6

million points Oakland Dataset[6], the 215 million points Stanford Large-scale 3D

Indoor Spaces Dataset (S3DIS) dataset[7] and the 4 billion points Semantic3D[4].

However, annotating large scale datasets is at a very high cost both in time and

human labors. This issue is becoming more prominent in applications such as

hazard assessment where drive-by and fly-by LiDAR mapping systems have been

used to collect massive windstorm damage data sets in recent hurricane events

[8–11]. The fact that LiDAR is starting to be integrated into smaller mobile

1
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Figure 1.1: Visualization of some snapshots sampled from the Semantic3D
dataset. The sampling procedure makes no use of labels, therefore a snapshot
may contains points from other classes. The class labels are added manually
for visualization

devices[12], which could lead to a boom in the scale of real life complex point

cloud data.

To alleviate the dependence on the labels of large datasets, unsupervised learning

methods have drawn increasing attention. Among the unsupervised methods, one

form known as “self-supervised learning” has been popular in the studies of image

data understanding. This self-supervised approach has found success in designing

“pretext” tasks, such as jigsaw puzzle reassembly[13], image clustering[14] and

image rotation prediction[15] etc, by training deep learning models for feature ex-

traction without labels being involved. Based on the idea of solving pretext tasks,

we previously developed the model of Contrast-ClusterNet[16], which works on

unlabeled point cloud datasets by part contrasting and object clustering. While

this work has shown comparable performance to its supervised counterparts on

synthetic point cloud objects classification, it inherits the problem of other pretext-

driven models used on image data: pretext tasks must be defined regarding the

prior knowledge embedded in the data. In the context of point cloud understand-

ing, the part contrasting and object clustering tasks assume the input data are

well separated as individual objects. This assumption limits the model’s power on

real life scene data or where 3D data of single objects cannot be easily obtained.

We addressed this limitation posed on scene point cloud by proposing a snapshot-

based method[17], which captures local clusters of points called snapshots from
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the scene as input samples to fulfill the tasks of part contrasting and object clus-

tering. Formally, a snapshot is defined as a collection of points, sampled from a

point cloud scene, without knowing their labels or even assuming they are from

the the same objects. (Figure 1.1). It could be a real view of a local 3D scan

directly captured from the real scene, or a ”virtual” view of such a local 3D scan

from a large 3D point cloud dataset. The effectiveness of this method is evaluated

and approved by conducting classification on the captured snapshots with a single

FOV in [17]. In this paper, we extend the idea to capture multi-FOV snapshots

to further improve the performance of classification.

Besides from the limitation of making assumptions on the training data, another

weakness of the Contrast-ClusterNet is that dense labels are still needed for the

downstream tasks. The full supervision involved in the object classification con-

tradicts the main goal of self-supervision, that to save labeling efforts on training

data. To extend the idea of reducing labeled data usage to the downstream tasks,

we seek solutions from weak supervision.

1.2 Overview of the Work

Based on the two pieces of our previous work, we further propose the Snapshot-

Net, which integrates multi-FOV snapshot generation, contrastive feature learning,

and a weakly-supervised technique for point-wise scene segmentation using a vot-

ing mechanism. First of all, inspired by the observation that, humans are able

to distinguish objects at different scales, we present a new pre-text task for con-

trastive learning, namely multi-FOV contrasting. When capturing a sample, we

take multiple snapshots in different field-of-views (FOVs). Assuming these multi-

FOV snapshots are small enough so they still represent the same object, the task of

scale contrasting is to consider whether two snapshots, within one FOV or across

multiple FOVs, are of the same object or not. Thus the multi-FOV contrasting

includes two parts: part contrasting and scale contrasting. We will compare the
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performance of the scale contrasting against the part contrasting, as well as the

combination of the two - the multi-FOV contrasting.

For the complete model pipeline, the captured snapshots first go through a two-

step self-supervised pipeline using ContrastNet and ClusterNet consecutively for

feature learning. Then a weakly-supervised approach is implemented by training

an SVM classifier on the learned features of a small portion of labeled snapshot

samples (mostly cluster centers) combined with the samples automatically labeled

from the clusters of the samples generated in the pipeline. Finally, the entire 3D

point cloud scene is repeatedly scanned as random snapshots to go through the

feature extractor and classifier. The predicted snapshot-wise label is assigned to

each point of a snapshot, followed by a voting-based mechanism for the final label

for each point.

This work makes the following contributions:

• We propose a new contrastive learning method called multi-FOV contrasting,

by leveraging point cloud samples at different scales. This task devotes

on predicting if two snapshots are of the same object, regardless of their

sampling FOVs.

• We develop a three-stage approach for semantic segmentation: snapshot

generation, self-supervised feature learning, and point-wise segmentation by

integrating multiple weakly-supervised classified results.

• We study the ”purity” of snapshots, and show that the self-supervised learn-

ing with impure snapshots can still effectively obtain highly useful semantic

features for object classification and scene segmentation. This includes cases

when some of the classes do not have well-sampled snapshots.

• By using the learned features and clustering to obtain larger pseudo labels

with a small number of labels (thus weakly-supervised) to train a simple clas-

sifier, we design a simple voting procedure to integrating labels of randomly

sample snapshots, which leads to point-wise point cloud scene segmentation

performance comparable to the state of the art weakly-supervised methods.
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1.3 Outline of the Thesis

The rest of the paper is organized as the following. Chapter 2 discusses related

work on self-supervised learning methods on point cloud, and point cloud semantic

segmentation. Chapter 3 describes the theory and design of the SnapshotNet for

self-supervised feature learning and point cloud semantic segmentation with fewer

labeled data. Chapter 4 details the experimental results, including the designs

and evaluations of data capturing, feature learning, and segmentation. Finally

Chapter 5 concludes the work with discussions of a few ideas for future work.



Chapter 2

Related Work

2.1 Self-supervised Learning

Self-supervised learning aims to predict for output labels that are generated from

the intrinsic information of the data. This topic has been widely studied on the

image data where various of pre-text tasks have been proposed, such as context

prediction[18], jigsaw puzzle reassembly[13], image clustering[14], and image rota-

tion prediction[15] etc, and these methods have demonstrated considerable results

on ordered data such as 2D images or videos.

With the advancement in LiDAR technology, the cost for obtaining large scale

point cloud data has enormously decreased. The booming in 3D point cloud data

has turned the challenge from data collection to manual annotation, which is much

more difficult and laborious compared to 2D data. To alleviate the use of labeled

data, a number of self-supervised models have been proposed lately[16, 19–23]. In

previous work of our lab, Zhang and Zhu proposed the Contrast-ClusterNet[16]

with pre-text tasks of first predicting whether two segments are from the same

object, leading to the ContrastNet for obtaining self-learned features, which are

then used for separating the objects into different clusters using KMeans++, for

training another network called ClusterNet to obtain better self-learned features.

The work[16] has shown the capability of learning features in an self-supervised

6
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manner, and then using the features, an SVM classifier can be trained using labeled

data for point cloud objects classification. However, this process still requires to

know a set of 3D points belong to a single object (even though the label is not

needed). In training the SVMs, the same amount of labeled data as in supervised

models is used, therefore decreasing the benefits of leaving out annotations in

self-supervised learning.

2.2 Semantic Segmentation of Point Cloud

With the recent works shifting focus to adapting deep learning on LiDAR point

cloud data, a series of deep learning based point cloud semantic segmentation

methods have been proposed. As summarized by Guo et al.[24], there are sev-

eral mainstream semantic segmentation methods on point cloud data, such as the

discretization-based, projection-based, and point-based methods.

The discretization-based approach is greatly inspired by the success of deep learn-

ing on 2D grid data, where the 2D data is in a regular representation, in contrast

to the unordered 3D point cloud. A number of works have been proposed using

the voxel-based models[4, 25–27], which voxelize the point cloud data to 3D grids

to enable direct 3D covolutional feature extraction. Despite that this method has

made significant progress on point cloud segmentation, it is very sensitive to the

voxel resolution and often has strict requirements on memory and computational

power.

The projection-based method, on the other hand, has shown advantages on com-

putation efficiency. As a representation of this approach, 2D multi-views models

are designed to project a 3D point cloud to 2D views from multiple directions,

so that traditional convolutional networks can be applied for semantic segmen-

tation tasks[28–30]. However, the downside of this approach is that geometrical

information is often lost during the dimension reduction.
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PointNet[1] is the first deep net proposed to directly work with point cloud data

without the pre-processing step of transforming the raw point cloud into voxels

or 2D multi-views representations. To help catching local geometrical context,

the PointNet++[31] is developed by proposing a hierarchical network based on

the PointNet. The idea of exploiting local structures of the 3D data is further

explored by developing dynamic graph CNN (DGCNN)[2], which uses graphs the

geometrical relations of the point cloud and operate convolutions on such graphs.

The above segmentation methods mostly rely on densely labeled data, and such

datasets are proven to be costly on time and human labors. There are few

works focusing on weakly-supervised scene point cloud semantic segmentation:

the segmentation-aided classification[32] is a non-parametric method, using con-

ditional random field (CRF) to process the output of a pointwise classifier. The

pseudo-labeling approach[33] trains a PointNet[1] with a handful of labeled points

and gradually assigns pseudo-labels that are generated from the trained PointNet

model to all unlabeled points, and model is also iteratively updated with more

reliable pseduo-lables. Xu and Lee[34] proposed an incomplete supervision model

with three additional training losses to constrain the model. Among them, two

pieces of work [32, 33] that also worked on the outdoor datasets as ours are the

baselines that our proposed SnapshotNet will be compared with.



Chapter 3

Method

3.1 An Overview

Self-supervised learning often requires prior knowledge about the input data to

ensure the intrinsic information of the data, from which the labels are derived, is

consistent across all samples. This is also the case of the Contrast-ClusterNet[16],

which will be used as the base model of our proposed work. As will be summarized

below, it has two major modules called ContrastNet and ClusterNet. Each module

is centered on a deep learning neural network DGCNN [2] capable of extracting

features from the point cloud inputs. First the ContrastNet takes inputs of paired

point cloud segments, which are obtained by randomly cutting the point cloud

object into two halves. The job of the ContrastNet is to consider whether two

segments of a pair are from the same object or not, essentially doing the task of

binary classification. The trained ContrastNet is capable of extracting features at

high-level due to the nature of the pretext task of part-contrasting. The second

module, the ClusterNet, is to obtain more representative and fine-grained features.

Before starting training the ClusterNet, features of the raw point cloud objects are

extracted by the trained ContrastNet, and these features are subsequently clus-

tered into a much larger number of groups (than the number of object categories)

9
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using Kmeans++; in [16], experimental studies were also performed for the opti-

mal numbers of clusters. Each object is then assigned with their cluster ID as a

pseudo-label for the training of the ClusterNet.

Although there are no labels being involved in this two-step feature learning pro-

cess, the nature of self-supervised learning requires some prior assumptions re-

garding the pretext tasks that drive the self-supervision. In this example, such

assumption is that each training sample must be an individual point cloud object

to enable part contrasting. This assumption can be easily made on datasets such

as ModelNet[3] and ShapeNet[35], where each sample is a synthetic CAD model

of a single 3D object. However, this soon becomes a limitation on real-life point

cloud datasets, such as the Okaland[6] and Semantic3D[4] data, where an entire

point cloud is a complex scene rather than invidual single objects.

Figure 3.1: The SnapshotNet pipeline: (a) Snapshot capturing from the raw
point cloud scenes; (b) Feature learning by conducting contrasting tasks,
snapshot clustering and cluster classification; (c) Semantic segmentation by
classifying and voting on snapshots.

To address this issue, we thus propose the SnapshotNet for the self-supervised

feature learning and weakly-supervised semantic segmentation on complex scene

point cloud. As illustrated in Figure 3.1, our method consists of three modules: (a)
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snapshot capturing, (b) feature learning, and (c) segmentation. The snapshot cap-

turing procedure, as an analogy to taking snapshots with a 3D camera, captures

small areas of the entire point cloud to train the model. Then the feature learn-

ing module uses the Contrast-ClusterNet[16] as the backbone for self-supervised

feature learning. Finally, in the segmentation module, a classifier is trained on

few labeled data and the pseudo-labeled data for snapshot classification. A voting

mechanism is followed to convert snapshot-wise predictions to point-wise predic-

tions, achieving the goal of semantic segmentation. Each part of the pipeline will

be described in details in the following subsections.

3.2 Snapshot Capturing

Given a real-life point cloud dataset, the snapshot capturing stage applies random

sampling with k-Nearest Neighbors (kNN) to obtain small collections of points

as snapshots (Figure 1.1). During each sampling, an anchor point is randomly

selected from the point cloud at first, and kNN gives a collection of k points

nearest to the anchor point, where k defines the snapshot sampling area. This

kNN strategy is a simulation of a virtual snapshot of a local 3D view, followed by

point selection based on their 3D proximity to better ensure the sameness of an

object. Each collection is therefore called a ‘snapshot’ of the local neighborhood

in the bigger point cloud pool. Here, thus sampled snapshots have the same size

and share the same sampling rate with the scene, meaning that each snapshot

captures approximately the same amount of area in the whole scene. In other

words, the snapshots have one single field of view (FOV), so they are also notated

as the single-FOV snapshots (Figure 3.2).
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Figure 3.2: Single-FOV snapshots sampling: an illustration.

3.2.1 Purity of snapshots

Since the selection of an anchor point happens randomly in the point cloud, it is

possible to have the anchor sitting close to the border between different semantic

classes. This introduces a certain degree of noises to the snapshot by including

some points from other minority classes. Compared to the object based contrasting

pretext task, which in this paper is notated as ObjectNet for easy comparison

with the SnapshotNet, our method further relaxes the constraint that 3D points

of a sample must come from the same object. The SnapshotNet fundamentally

sees each snapshot as a collection of points that represents a small region of the

bigger complex scene, where such a collection of points has a high probability of

belonging to the same class. In our experiment section, we will show how the noises

in snapshots will affect the performance of feature learning for later evaluation.

To quantify the noise level of sampled snapshots, we present a metric to eval-

uate our snapshot sampling quality, namely purity. When sampling from the

Semantic3D[4], we utilize the provided labels of the dataset to approximate the

semantic label of each snapshot for the sake of snapshot classification evaluation.

A label is assigned to a snapshot by voting from all points that are associated with

that sample. The class label that most points agree on is chosen as the semantic
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label for the snapshot, the voting procedure can be parameterized as:

Cx = argmax
i

K∑
j=1

I(yj = i), (3.1)

where x is the snapshot sample, yj is the point-wise label for x (j=1,...,K), K

represents the number of points in the snapshot x, and I is an indicator function

for the class of each point. Thus the purity is given by

P (x) =

∑k
j=1 I(yj = Cx)

k
(3.2)

The statistics of the voted semantic labels and the purity for each sample will be

further discussed in Section 4.1 using real examples.

3.2.2 Multi-FOV snapshots

Inspired by zooming with a camera while taking a photo, it soon came to us that

a different field of view(FOV) of a snapshot image leads to different information

content. Given the same sensor size, a larger FOV might contain more objects

at low details, while a smaller FOV focuses on smaller views with greater details.

We adopt this observation into our design of the point cloud snapshots, to include

multiple FOVs for each snapshot.
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Figure 3.3: Multi-FOV snapshots sampling. Three snapshots of different
FOVs are pre-sampled from the scene and each one has a different size. Then
the samples are downsampled to meet the same input size of the network,
leading to different resolutions.

Just as the sensor size poses limitation on imaging when zooming in or out, the

neural network has similar constrains when dealing with samples with different

FOVs. The number of points in each snapshot is kept as the same, and this leaves

only the sampling rate to be altered. Therefore, we keep the original sampling

rate of the point cloud as the base, and accordingly decrease the sampling rate by

grouping points at a sparser scale. Specifically, this is achieved by pre-sampling a

larger number of points at the base sampling rate and then randomly drop some

points to meet the input size (i.e., the number of 3D points). Figure 3.3 illustrates

an example of sampling snapshots in three FOVs. When sampling a snapshot at

the base sampling rate, the down-sampling can be well ignored. However, when

capturing a sample with an FOV two times larger than the base FOV, a pre-

sampled snapshot of double amount of the points are first captured using kNN.

This pre-sampled snapshot is then downsampled by a factor of two to agree on

the network input size while at half the base sampling rate.

There are several intuitions behind this multi-FOV design. As described earlier,

the part-contrasting exploits information at the object level by performing binary

classifications on samples that share uniform sampling rate. On the other hand,

the human vision is able to recognize objects at very different scales, which encour-

ages us to further make use of the scale information. The multi-FOV snapshots
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are able to fill in the gap of the missing scale information, giving us an edge

on contrastive learning by contrasting on various scales in addition to the part-

contrasting. Secondly, the multi-FOV snapshots serves as an approach of data

augmentation, to diversify the input data and indirectly making the contrasting

learning more challenging to the network. Furthermore, single sampling rate is in-

adequate when facing a scene point cloud with objects of various scales and with

different sampling resolutions. This is particularly a problem for the terrestrial

scans, where the density of points rapidly changes along the distance to the scan-

ning device. When the network is trained to take the sampling rate into account,

there is the opportunity to explicitly choose an FOV that is more suitable for

sampling a specific object from the scene. For instance, we would want to sample

a snapshot of a small object using a small FOV to maximize the purity, and on

the other hand to keep a large FOV on larger objects. This will be discussed in

more details in Section 3.4.3.

3.3 Self-supervised Learning with Snapshots

After being captured from the scene, each ‘snapshot’ is viewed as a single point-

cloud object and fed into the two-stage ContrastNet-ClusterNet for feature learn-

ing. Both networks are based on the DGCNN[2], therefore they are similar to each

other in structures.

3.3.1 Contrastive feature learning

The contrastive learning includes three approaches: part contrasting, scale con-

trasting, and multi-FOV contrasting. When conducting the part-contrasting dur-

ing the training of a ContrastNet, we follow the random cutting procedure as

described in [16]: two segments from the same snapshot make up a positive pair,

which is labeled as 1, and on the contrary, and a negative pair consists of two

segments from two different snapshots is labeled as 0 (Figure 3.4 (a)). The Con-

trastNet then learns to recognize whether the input pair is positive or negative,
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Figure 3.4: Three approaches of contrastive learning by forming positive
pairs or negative pairs from two samples. The part contrasting takes two
halves of snapshots as a pair. The scale contrasting takes two snapshots across
different field of views as a pair. The Multi-FOV contrasting combines the
previous two approaches by putting together two halves across different scales
as a pair.

and the parameters are optimized by the Adam optimizer on the cross-entropy

loss.

The part-contrasting considers the similarity between different parts of an object in

its single-FOV snapshot, thus learning fine-grained features. The scale-contrasting,

on the other hand, attempt to learn higher-level features for representing similarity

between snapshots of an object across different scales (i.e., with different FOVs).

For instance, the details of an object might get lost in a very small FOV, yet the

model is still required to correctly connect this sample to its large FOV counter-

parts without these details. To implement this method, we similarly make up pairs

from the multi-FOV snapshots: two snapshots in whichever FOVs sampled from

the same anchor point form a positive pair, given a label as 1. Two snapshots from

two different sampling anchors form a negative pair with a label of 0, as shown in

figure 3.4 (b).

The part contrasting and scale contrasting focus on very dissimilar goals, but lead-

ing to different levels of features. However, these two pre-texts are not mutually
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exclusive when governing the self-supervised learning. Our design of the multi-

FOV snapshots provides additional room to join these two tasks when forming the

training sample pairs, and we name this combination as multi-FOV contrasting.

Now a positive pair is not limited to coming from two segments of the same single-

FOV sample, we can also take two cross-FOV segments from the same sample as

a positive pair, and vice versa for a negative pair (Figure 3.4 (c)). This formation

of sample pairs is expected to push the model into learning both fine-grained and

high-level abstract features.

3.3.2 Clustering for feature refinement

Once the ContrastNet is well trained with one of these pre-texts, we continue to

adopt the idea of knowledge transfer for more refined features by learning similar-

ities and differences of samples across different snapshots. Before starting training

the ClusterNet, the learned features from the ContrastNet are used to cluster the

snapshot samples into k groups with KMeans++. These cluster (group) labels

are treated as pseduo-labels for the snapshots to train the ClusterNet. We use

k=300 to cluster the snapshots of all FOVs, into new classes based on the studies

in our previous work [16]. Note that this number is much greater the number of

the existing semantic labels in the Semantic3D dataset (which is eight); however

the large cluster number forces the ClusterNet to learn fine-grained features. The

loss function defined in the work of the ClusterNet[16] is described as:

min
θ,W

1

N

N∑
n=1

l(gW (fθ(xn)), yn) (3.3)

where the gW is the classifier that predicts for the correct pseudo-labels yn given

the features fθ(xn).
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3.4 Semantic Segmentation with Snapshots

The semantic segmentation has three major components, namely feature extrac-

tion, weakly-supervised classification, and point-wise semantic segmentation via

voting ((c) in figure 3.1). The feature extraction step is a straightforward process

that takes snapshots captured from the raw point cloud and extracts the deep

features using the already trained ClusterNet, as described above. We then use a

small fraction of the extracted features along with their labels to train an SVM

classifier. This classifier serves two purposes: one is to evaluate the self-supervised

features learned by the SnapshotNet in the experiments, and the second purpose

is to serve as a base classifier that will further diffuse all snapshot predictions into

point-wise predictions.

3.4.1 Classification with weak supervision and pseudo la-

beling

Following the self-supervised feature learning, a classifier is trained on the ex-

tracted features of labeled training data for classification. Conventionally, the

training process requires as many labeled data as possible for better performance.

However, this approach in its essence is in contradiction with the objective of

self-supervised learning, which aims to reduce the dependency on labeled data.

Therefore, we seek solutions from weak supervision to reduce the reliance on dense

labels for the downstream tasks following our self-supervised feature learning.

Here the weak supervision can be viewed from two perspectives. First is that

when there are only a few labels available, we still wish to achieve comparable

classification performance with the limited labels. furthermore, the labels assigned

to the snapshots are essentially coarse-grained labels because instead of point-wise

labeling, each snapshot is labeled as a whole, regardless of the noises included

during the sampling.
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(a) Clusters vs. Semantic Labels (b) Clusters vs. Pseudo Labels

Figure 3.5: Visualization of the feature embedding of the clustered
snapshots from the Semantic3D. The clusters are colored by the semantic
labels in 6 classes in (A), and by the pseudo labels in 300 classes in (B). It is
shown that samples share the same pseudo labels are likely to have the same
semantic labels as well.

Second, a pseudo labeling technique is proposed to acquire larger training data

population to feed the classifier. This technique is incorporated into the KMeans++

clustering in the feature learning module, hence named cluster-based pseudo label-

ing. Figure 3.5 visualizes the 300 clusters of training samples using KMeans++ in

the feature space against their pseudo labels. Due to the large number of clusters,

each one of them facilitates only a few to a few hundreds of samples. This large

collection of clusters breaks all samples into smaller groups by their similarities in

the feature space, where each group hosts way less but highly alike samples. This

can be seen from Figure 3.5, when visualizing the clusters against their semantic

labels. This property can be well used by just giving one label to each cluster

and assign this label as the pseudo labels of some of the most related samples

to that labeled sample in the cluster center. The selection of the nearby samples

can be designed to work geometrically or statistically. In this work, a threshold

is introduced to constrain the measurement of the normalized distance between

each point to their cluster center. A strict threshold filters out samples far from

the center to gain more accurate pseudo labeling.
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3.4.2 Semantic segmentation by voting

Associated with our first assumption that, statistically a snapshot is able to rep-

resent a small piece of an object, we can assume that all points included in a

snapshot are highly likely to belong to the same class predicted by the classifier

for this snapshot. The predicted class label is assigned all points in the snapshot.

Thus the point-wise segmentation problem is converted into an object classification

problem. Statistically, if the snapshot capturing happens randomly, all snapshots

are able to cover the whole scene after certain number of iterations. Therefore by

repeating the capture-predict-assign procedure, all points in a scene eventually get

a predicted label.

The model keeps count of the points with at least one prediction to track the

progress of segmentation, and a cut off threshold is set to stop the snapshot cap-

turing. When 99.95% of the points are assigned with a prediction, the model stops

taking new samples and moves to the next step of voting. Due to the randomness

of the snapshot capturing, it is expected to have multiple snapshots covering the

same points from the scene, which potentially assigns multiple labels to one point.

To reach for a final agreement on the label, a voting procedure is designed to

select the dominant label with most counts to be the final decision for each point.

It is also possible that some points obtained equal numbers of different labels by

the time the snapshot capturing stops. For points with such labeling conditions

and particularly near the boundary of different semantic classes, it is likely two

labels have the most counts at the same time and the voting would turn into a

50% chance dice rolling. To solve this problem, before the final voting we search

through the whole point cloud and collect one more label by voting through kNN

(k=5) for those with even number of votes.
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3.4.3 Multi-FOV snapshots for speed and accuracy

So far the Multi-FOV snapshots have been participating in the network train-

ing. Yet another important role of the multi-FOV design is to enable faster seg-

mentation and more precise snapshot sampling leveraging our adaptive sampling

technique. The adaptive sampling works to choose one of the pre-listed FOVs

according to the size of objects being sampled. This process is completed in three

steps: variance estimation, FOV inquiry, and snapshot down-sampling.

Variance estimation refers to the procedure of measuring how spread out the

associated points are in a snapshot sample: we take the mean from each of the X,

Y, Z coordinates as an imaginary center point for one pre-sampled snapshot and

compute the sampling variance from the center point. Note that we use the largest

FOV from the list to pre-sample a snapshot and keep the corresponding variance,

with the intention to adequately differentiate the variances by maximizing the

sampled area. Next is to inquire the most appropriate FOV for each pre-sampled

snapshot based on the variance and the sampling history. During the segmentation

progress, variances from all pre-sampled snapshots are kept to periodically update

a KMeans for clustering, where k equals to the number of the pre-listed FOVs.

Before the KMeans is sufficiently trained, the model selects the smallest FOV for

the next step of down-sampling. The reason for this is that the KMeans at this

stage does not own enough history records to make a meaningful decision on which

FOV to utilize, so the model proceeds with the most conservative option (a small

FOV) to ensure a less risky and noisy down-sampling. Once the KMeans is well

optimized, the model starts to inquire for cluster ID by sending in the pre-sample

variance, and each cluster ID represents one of the FOVs that will be used for final

sampling. In the end, the down-sampling follows the same principle of multi-FOV

snapshots sampling, where a larger snapshot is first obtained with the assigned

FOV using kNN, before points are randomly discarded to meet the network input

size.

It is common to have different outdoor objects at a great range of scales. When

sampling from a large regular surface, such as the ground or the building facade,
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the chances of including points from other objects is smaller. This observation mo-

tivates us to exploit the advantages of the adaptive sampling for a faster segmen-

tation process. To allow this, both the down-sampled snapshot for label prediction

and the pre-sampled snapshot for segmentation are kept. It can be seen from Fig-

ure 3.3 that, the pre-sampled snapshots cover the same area as their corresponding

down-sampled snapshots but include more points, except for the smallest FOV.

Here, during the segmentation, when a prediction is acquired from the SVM, the

model assigns the prediction to all points in the pre-sampled snapshot instead of

the down-sampled one.

This serves as a solution to the low efficiency caused by the down-sampling oper-

ation. The discarded points are highly likely to come from the same class as their

neighbor points obtained a prediction, but they won’t be given a label until next

time they are pre-sampled again and survived the down-sampling to go through

the network, which is redundant as repetitive operations. Now that it is possible

to expedite the segmentation of a large uniformed surface at a lower cost, we can

leverage even smaller snapshot size to capture local structures at a higher preci-

sion. Overall, the adaptive sampling helps increasing the sampling precision for

small objects while maintaining a fast segmentation speed for large surfaces.
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Experiments and Results

Extensive experiments are conducted to evaluate the effectiveness of our proposed

approach for both self-supervised feature learning and weakly-supervised point

cloud semantic segmentation. The implementation and experimental results are

described in details in the following sub-sections, including Section 4.1: datasets

and snapshot capturing/evaluation; Section 4.2: self-supervised feature learning

by point cloud classification with fewer labeled data; and Section 4.3: evaluation

of semantic segmentation by point-wise voting.

4.1 Datasets and Snapshots

4.1.1 Datasets

Experiments are conducted on the Semantic3D large scale point cloud classification

benchmark[4]. This dataset consists of a variety of scenes across eight classes: man-

made terrain, natural terrain, high vegetation, low vegetation, buildings, hard

scape, scanning artefacts, and cars (Figure 1.1). Considering the huge scale of

this dataset is beyond our computational capacity, we choose two scenes, named

‘untermaederbrunnen3’ and ‘bildstein3’ for our experiments, which consist of 27.9

million points and 7.9 million points, respectively.

23
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We use all eight labels to conduct snapshot classification for the evaluation of

the self-supervised feature learning. To evaluate our weakly-supervised seman-

tic segmentation, we follow the experiment settings from the state of the art

methods[32, 33]: to combine the man made terrain and the natural terrain into

a single class of terrain, and merge the high vegetation and low vegetation into

vegetation.

4.1.2 Snapshot generation

In this experiment, for evaluating the self-supervised feature learning, we capture

8000 single-FOV snapshots as training set and 800 samples for testing, with 1024

points in each sample. In an ideal setup where the dataset is perfectly balanced

between classes, we would obtain close to 1000 training snapshots each class, but

this can hardly be realized in real world scenarios (see Table 4.1, # of samples).

The high resolution of the Semantic3D dataset [4] poses a dilemma during the

single-FOV snapshot sampling: a small sampling size is insufficient to capture

details while a large sample brings burdens to the computations. A compromise is

made here, which takes a similar approach to the multi-FOV snapshots sampling,

to take a pre-sampled snapshot with 10 times of the network input size (10240

points) and down-sample back to 1024 points per snapshot.

For the semantic segmentation, the same amount of multi-FOV snapshots are

captured at a smaller size of 512 points as the training data. The snapshot gen-

eration follows the multi-FOV sampling as described previously (Figure 3.3), and

we choose three FOVs for each snapshot. The original sampling rate is chosen as

the base sampling rate, and the other two larger FOVs are respectively two times

and ten times to the base sampling rate. Note that since each multi-FOV sample

has three FOVs, the total training samples are 24000.
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Metrics
Man Made

Terrain
Natural
Terrain

High
Vegetation

Low
Vegetation

Buildings
Hard
Scape

Scanning
Artefacts

Cars Total

Scene 1
Purity(%)

98.42
±0.27

59.42
±6.35

96.15
±2.51

92.57
±2.05

99.47
±0.15

97.02
±0.77

78.01
±29.38

87.31
±5.23

98.37
±0.19

Samples
2891.91
±92.17

21.03
±9.57

83.25
±21.08

256.3
±35.54

3847.68
±92.13

838.01
±61.28

10.34
±6.80

51.48
±16.30

8000

Scene 2
Purity(%)

94.39
±0.81

96.42
±0.37

95.03
±0.76

91.59
±1.23

94.22
±1.10

94.40
±0.78

-
85.58
±2.93

94.96
±0.29

Samples
1139.28
±63.40

3264.49
±81.99

1075.44
±71.23

593.05
±51.52

569.86
±51.23

1240.92
±76.18

0
116.96
±28.20

8000

Table 4.1: Statistics of single-FOV snapshot sampling on the two scenes
from the Semantic3D dataset (Scene 1: ‘Untermaederbrunnen3’; Scene
2:‘Bildstein3’). The sampling is conducted 100 times, with 8000 samples per
time. ‘-’ indicates no snapshots being sampled.

4.1.3 Snapshot purity

Based on the proposed purity metric, we run the single-FOV snapshot capturing

procedure at the base sampling rate 100 times for statistics. As shown in Table

4.1, the snapshot purity of a class is correlated with the numbers of sampled

snapshots. From the point-wise perspective, when choosing an anchor point to

find the nearest neighbors, each point in the scene has equal chance being selected

as the anchor. However, class-wise speaking, when collecting points surrounding

an anchor from a smaller class (i.e., a class with smaller number of points in the

scene), the chance of including inter-class points is relatively higher than for a

larger class, and this potentially leads to lower purity on smaller classes. Despite

the fact that noises are much more likely to be included in smaller class samples,

we can still see that the overall snapshot purity is above 90%. This result is in

favor of our claim that, statistically each snapshot is highly capable of representing

a small piece of one class from the whole point cloud. Nevertheless, we will also

investigate if low purity classes can also be fairly treated.

4.1.4 Snapshots versus objects

To comparatively evaluate our self-supervised feature learning, we also apply the

same single-FOV sampling procedure on points grouped by the original semantic

labels, instead of the whole scene of point cloud. As a result, these samples

obtained exclusively from one class have 100% purity, and we refer to them as
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‘objects’ as opposed to the ‘snapshots’. Thus the Contrast-ClusterNet trained with

the object-based approach is referred as ObjectNet, and is mainly for comparison

purposes, even though it may have its own value if obtaining objects is a possibility.

4.2 Self-supervised Feature Learning

As we discussed in our previous work [17], to verify the self-supervised feature

learning of the SnapshotNet, we conduct experiments on both single-FOV snap-

shots and labeled objects derived from the scene - ‘Untermaederbrunnen3’ of the

Semantic3D dataset. The evaluations are based on the classification accuracy on

the testing samples of an SVM (with a linear kernel) trained on the extracted

features of training samples. For the experiments, we train both the DGCNN and

the SnapshotNet exclusively on the snapshot samples while keeping the ObjectNet

trained on labeled objects. For the SnapshotNet, we also want to see if the fea-

tures can be applied to object samples. Thus we use the trained model to extract

features of both snapshots and objects separately to train a different classifier, and

this is referred to as ”SnapshotNet on snapshots” and ”SnapshotNet on objects”

in Table 4.2.

4.2.1 Learn with noises

Table 4.2 shows that, using 100% of the training data, the DGCNN has the lowest

accuracy compared to the other methods. In comparison, the SnapshotNet tested

on labeled objects has best performance on the total accuracy and all per-class

accuracies except for low vegetation, on which is best performed by the Snapshot-

Net tested on snapshots. Both the SnapshotNet and the ObjectNet yield a total

accuracy above 97%, and they are 10% higher than the DGCNN. This validates

our claim that the proposed SnapshotNet is able to learn effective features from

the raw point cloud complex scene in a self-supervised manner. It also shows that

the the noisy snapshots produce more powerful features by self-supervised learning

than the fully-supervised DGCNN.
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We see that the ObjectNet is able to achieve decent performance given that the

training samples are derived from labeled data and each object sample has 100%

purity. However, the snapshots used to train the SnapshotNet are often noisy.

As presented in Table 4.1, some classes have low purity to start with, such as

the Natural Terrain at a 57.47% purity, the Scanning Artefacts at 73.2% and

the class of Cars at an 87.85% purity. While the snapshots from these classes

are noisy, the SnapshotNet has shown high resistance over such noises in the

data. (Note that there are no testing snapshots in natural terrain and scanning

artefacts being sampled due to the small amount of data in the two classes) The

SnapshotNet on objects performs better than the ObjectNet, which is trained

on noiseless objects. It has also shown high accuracies over the aforementioned

three noisy classes, which further confirms our hypothesis that powerful semantic

features can be learned by predicting whether two segments are from the same

snapshot and predicting the refined pseudo-labels for the snapshots, regardless of

their semantic labels.

Method Overall Accuracy (%)
Per-class Accuracy (%)

Man Made
Terrain

Natural
Terrain

High
Vegetation

Low
Vegetation

Buildings
Hard
Scape

Scanning
Artefacts

Cars

100% training data
DGCNN 86.5 98.41 - 100 85.71 84.38 47.14 - 20

ObjectNet 97.88 97 98 100 92 98 98 100 100
SnapshotNet on objects 98.63 100 99 100 92 100 98 100 100

SnapshotNet on snapshots 97.5 99.68 - 100 94.29 98.63 84.29 - 80
20% training data

DGCNN 84.13 99.68 - 0 85.71 79.45 55.71 - 0
ObjectNet 94.88 92 99 99 85 95 95 95 99

SnapshotNet on objects 95.63 98 95 100 89 91 95 100 97
SnapshotNet on snapshots 97.13 99.37 - 90 85.71 99.45 85.71 - 40

5% training data
DGCNN 72.88 54.33 - 0 62.86 89.86 92.86 - 0

ObjectNet 88.38 82 93 98 71 82 89 95 97
SnapshotNet on objects 90.13 90 87 100 84 86 87 92 95

SnapshotNet on snapshots 95.0 97.46 - 100 68.57 98.63 78.57 - 80

Table 4.2: Classification performance on the snapshots and labeled objects
from the Semantic3D dataset, using the DGCNN, ObjectNet and
SnapshotNet. Note that ‘-’ means no samples from that class are obtained for
testing.

4.2.2 Classification with fewer labeled data

To verify the effectiveness of the proposed weakly supervised classification, we

gradually reduce the amount of labels involved in the training of the SVM. The
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experiments are set up in the similar way by comparing the DGCNN, ObjectNet,

and the SnapshotNet.

Table 4.2 also shows how the classification accuracy of different models vary when

the percentages of the classifier training data reduce from 100% to 20% and to

5%. It can be seen that the SnapshotNet outperforms the other models on overall

accuracy. The difference between the SnapshotNet (test on snapshots) and the

DGCNN becomes more significant when the training data reduces, which spans

from 11% to 22.12%. Comparatively, the end-to-end fully-supervised DGCNN is

very sensitive to the amount of training data due to the data hungry problem, that

it needs sufficient labeled data to learn representative features. The SnapshotNet

however, doesn’t rely on any labeled data for feature learning, and only need a

small fraction of labeled data to train a classifier, which is a huge advantage over

the fully-supervised model.

The snapshot-based SnapshotNet has also shown higher resistance on the reduction

of the training data than the other training schemes: the accuracy only drops by

2.5%, to 95%, when the classifier is trained with merely 5% of the data, while the

object based SnapshotNet suffers a drop of 8.5%, to 90.13%, and the ObjectNet

shows a bigger decline of 9.5%, to 88.38%. We believe that the performance

difference between the SnapshotNet and ObjectNet can be attributed to the use

of noisy snapshots to make feature learning more robust. Compared to the high

purity objects, the snapshots forces the model to distinguish whether two segments

are from the same area despite they might contain points from different classes.

In other words, we increase the difficulty of this pretext task by introducing noises

and potentially leads to more representative features.

4.3 Semantic Segmentation

Following the works of the seg-aided[32], and pseudo-labelling[33], and for the

purpose of comparison, we merge the natural terrain and man-made terrain into

one class of terrain, and put together the high vegetation and low vegetation as
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vegetation. The experiments are carried out on these six classes cleaned from the

Semantic3D dataset. (1) Having verified that the single-FOV snapshots, despite

being noisy, are able to produce meaningful features from part-contrasting, we

move forward to utilize the multi-FOV snapshot to feed the other two pre-text

tasks: scale contrasting, and the multi-FOV contrasting, and comparison results

are given. (2) For the weakly-supervised classifier, we experiment on three different

ratios of the labeled data: 100%, 20%, 10% and 5% of our total 8000 labeled

training samples, which contains 8000, 800, and 400 labels respectively. These

numbers of labels follow the distribution of the semantic labels in the dataset,

therefore the larger classes might outnumber the small class on label numbers.

(3) In addition to this, we include another test case with 30 labels per class,

making a total 180 labels, which is the same setup in the work of the seg-aided

classification[32] and pseudo-labeling[33]. To mitigate the potential issues when

using only a few labels, tests are conducted on the proposed cluster-based pseudo

labeling for automatically adding more training samples. (4) To evaluate the

robustness of our method over different scene point clouds, the testing results

are produced from two experimental setups. One is to segment the scene point

cloud from which the training samples are captured, while the other setup involves

training the model on one scene but segmenting another one. In the second case,

we gradually add up the fine-tuning samples from the to-be-segmented scene to

find a sweet spot where minimal fine-tuning is required to achieve comparable

results when performing cross-scene semantic segmentation.

4.3.1 Results on various contrastive learning

The results of the three contrasting approaches are listed in Table 4.3, where our

method with the three approaches is compared with a state of the art method seg-

aided classification [32] and one comparable following study, the pseudo-labeling

approach[33]. By doing part contrasting, our model yields an overall accuracy
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Iteration: 1820; F-score: 89.5%
(a) Progress: 25%

Iteration: 4371; F-Score: 87.1%
(b) Progress: 50%

Iteration: 8869; F-Score: 87.6%
(c) Progress: 75%

Iteration: 84890; F-Score: 90.2%
(d) Progress: 99.95%

(e) Ground truth

Figure 4.1: Visualization of the progression of segmenting
‘Untermaederbrunnen3’. The model is governed with the pre-text of
multi-FOV contrasting and the classifier is trained with 8000 labels. The
bottom picture in 4.1e shows the ground truth to compare with. Colors
correspond to semantic classes as the following: terrain is cyan, vegetation is
green, buildings are yellow, hardscapes are orange, scanning artefacts are
orange red, cars are red. The unlabelled points are in grey. We can see that
snapshots gradually covers up the whole scene, during which previously falsely
labeled points can be corrected by voting.

(OA) at 96.9%, 1.3% higher than the pseudo-labeling method. The average F-

score, however, is slightly lower than the Seg-aided classification at 80.2%. Look-

ing at the per-class F-scores, the part contrasting produces comparable results

with the seg-aided method on the classes of terrain and building, ours shows a

prominent improvement over the vegetation and hardscape classes, which pushes

up the per-class F-score by 18.5% and 3.6% respectively. However, the part con-

trasting performs noticeably worse than the seg-aided on small objects such as
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artefacts and cars. This seems to conform our conjecture that features learned by

part contrasting are vulnerable when describing smaller items.

The scale contrasting is proposed to bring the features at a more abstract level into

the play, thus to achieve better results on the small objects in the scene. There is a

marginal increase on the F-score of the artefacts than the part contrasting, while at

the cost of worsening on all other classes. Another small class of cars is also 10.4%

worse than the part contrasting and 20.2% lower than the seg-aided method. So far

the results have been suggesting that the scale contrasting might lack the capability

of pushing hard for powerful versatile features, and the produced features are less

descriptive at certain levels that are vital to to distinguish larger objects.

With this finding, the scale contrasting and part contrasting are combined for

further experiments, seeking to strengthening the features from both perspectives.

The collaborative effort of the part contrasting and scale contrasting urges the

model to develop powerful features leveraging knowledge from both the object

level information and higher level structural information. Our method equipped

with the multi-FOV contrasting outperforms the pseudo-labeling method on the

OA by 2% at 97.6%, and on F-score by 23.5%; it is 14.3% above the Seg-aided

classification[32] on OA, and a gain of the F-score is seen at 7.9%. There are

some significant improvement over the small classes: the per-class F-score of the

artefacts is 23.5% higher than the state of the art method at 74.8%. The class

of cars has seen an increase from 82.3% to 87% using our method. The classes

of vegetation and hardscape also experienced a very noticeable boost on their F-

scores, and the terrain and building have a slight edge over the state of the art

performance by the Seg-aided classification.

Method
Overall

accuracy (%)
Average

F-score (%)
Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars
Seg-aided[32] 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labelling[33] 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3
Part contrasting 96.9 80.2 97.4 85.5 98.4 95.1 32.3 72.5
Scale contrasting 92.1 74.5 90.6 75.7 97.5 87.6 33.4 62.1
Multi-FOV contrasting 97.6 90.2 98.2 85.6 98.8 96.6 74.8 87.0

Table 4.3: Semantic segmentation results on Semantic3D. Three
self-supervised methods are compared against the state of the art
weakly-supervised methods. All 8000 labels are used in the training of the
classifier.
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4.3.2 Segmentation with fewer labels

Table 4.4 shows the effect of reducing the numbers of available labels during the

training of the SVM classifier. Our method with the multi-FOV contrasting is

tested against the seg-aid classification and the pseudo-labeling, both using 30

labels per class. When the training data is reduced ten times to 800 labeled

samples, similar performances can still be observed despite the drastic drop in the

available training data. The OA of the 800 labels model is marginally greater

than the pseudo-labeling approach by 0.3%, the average F-score is 15.9% higher

than the pseudo-labeling approach and 0.3% over the best result from the seg-

aided classification. The per-class F-score is still significantly greater than the

state of the art method on the vegetation and artefacts, and is in the lead on the

class of hardscape. The cars, however is 14.6% lower than the segmentation-aided

classification at this level of available labels. A steady growth on this class can

still be seen when the labels increase and we expect a surpassing over the seg-

aided method when it is trained with more than 1600 labeled data. When further

reducing the labeled data by half, the overall performance starts to drop. The

per-class F-score on artefacts experiences a 28.4% decrease and for the cars it also

falls by 19.9%. This suggests that a further cut down on labeled data usage by

only 400 might come at a high price.

Method
Overall

accuracy (%)
Average

F-score (%)
Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars
Seg-aided[32] 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labelling[33] 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3
Ours 8000 labels 97.6 90.2 98.2 85.6 98.8 96.6 74.8 87.0
Ours 1600 labels 96.9 84.9 97.3 84.0 98.9 95.1 57.5 76.9
Ours 800 labels 95.9 82.6 96.3 79.7 98.3 93.6 59.8 67.7
Ours 400 labels 94.2 73.3 94.6 76.0 97.9 92.6 31.4 47.8
Ours 180 labels 85.4 63.4 84.0 57.5 94.3 89.2 11.5 44.3

Table 4.4: Parameter studies on varying the numbers of labels involved in
training. Experiments are performed on our method with the multi-FOV
contrasting to compare against the state of the art methods. The number of
labels corresponds to 100%, 20%, 10%, and 5% of the total available labels. An
additional test case using 30 labels/class is included to make a total 180 labels.

While our method has shown a superiority over the SOA methods when using as

few as 800 labels, the SOA methods are only tested on 30 labels per class, making it

180 labels in total. To make a fair comparison with the two baseline methods, the
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training data is reduced to 30 labels per class. Apart from the artefacts holding

a slight advantage over the pseudo-labeling method by 2.5%, the other classes

are below the two baselines by varying degrees. Further investigating into the

cause of this significant deficiency, two explanations are speculated. As commonly

occurred in machine learning, underfitting of the classifier might be a big factor on

the poor performance. A solution to this issue is to deploy larger amount training

data. Another factor here is that, our self-supervised learning is trained on only

8000 samples from a particular statistical distribution in terms of their semantic

labels, meaning that the learned features might not be as equally weighted, and

the weights seem to collapse when training the classifier with uniformly distributed

labels. Looking into more details, the recall rate of the artefacts is 86.0% while

the precision is merely 6.2%. On the other hand, the recall of the terrain is 75.7%

but the precision remains as high as 94.2%. These extremes are also seen on the

vegetation and cars. This seems to meet our conjecture that the even labels bring

bias into some of these classes.

4.3.3 Results on cluster-based pseudo labeling

To mitigate the impacts of the aforementioned two potential issues when using only

a few labels, tests are conducted on the proposed cluster-based pseudo labeling for

more training samples. Here, 120 clusters are randomly selected out of 300 and

each cluster center is assigned with one label. In addition, a collection of 10 labeled

sampled from each class is joined into the pseudo labeled data, consuming a total

of 180 labels. Table 4.5 illustrates a trade-off effect between the number of pseudo

labels and the labeling accuracy from the choice of threshold. A larger threshold

causes a heavier constraint when selecting the samples near the cluster center,

which leads to fewer samples to be pseudo-labeled but they are essentially much

more likely to share the same semantic label with the cluster center. According

to table 4.6, comparing to our method using 180 labels without pseudo labeling,

a boost of 7% on the overall accuracy and 11% on the F-score is seen, when

thresholding at 0.8. Our cluster-based pseudo labeling method has outperformed
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Threshold Number of Pseudo Labels Accuracy in Labeling
0.9 2631 98.1%
0.8 4253 96.1%
0.75 5078 93.7%

Table 4.5: Trade-off of the threshold section in the Cluster-based pseudo
labeling. Larger threshold value puts heavier constraints on the
pseudo-labeling, leading to fewer labels but higher labeling accuracy.

the SOA deep learning method using pseudo-labelling on the F-score by 7.4%,

particularly ours has an edge on segmenting the smaller objects such as artefacts

and cars, where increases of 23.5% and 11.4% are gained respectively. When

comparing to the seg-aided method, we also have an advantage on the overall

accuracy by 8.9%.

Method
Overall

accuracy (%)
Average

F-score (%)
Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars
Seg-aided[32] 83.3 82.3 98.1 67.0 98.8 91.5 51.3 82.3
Pseudo-labelling[33] 95.6 66.7 94.2 61.2 97.7 84.6 9.0 53.3
180 labels without pseudo labeling 85.4 63.4 84.0 57.5 94.3 89.2 11.5 44.3
120 clusters t0.9 + 10 labels/class 91.6 70.6 91.6 61.8 96.9 87.2 32.6 53.4
120 clusters t0.8 + 10 labels/class 92.2 74.1 91.6 71.8 96.9 87.4 32.5 64.7
120 clusters t0.75 + 10 labels/class 92.0 73.5 91.1 67.3 97.3 85.3 31.1 69.1

Table 4.6: Parameter studies on the cluster-based pseudo labeling threshold
selection. Experiments are performed on our method with the multi-FOV
contrasting to compare against the state of the art methods. Three threshold
levels are tested on 120 random clusters for pseudo labeling samples. An test
case using 30 labels/class without pseudo labeling is included for comparison.

It is worth explaining on the decision of the random selection when choosing

120 clusters for pseudo labeling. It was realized that for those larger clusters,

despite being able to generate more pseudo labels, the included samples tend to

be homogeneous. In other words, their features are less representative, so it’s not

always a good idea to go for larger clusters in the pursuit of more pseudo labels.

For instance, two buildings looking completely different might have their samples

far from each other in the feature space, and it would be more helpful to have

each of their samples being chosen during the pseudo labeling. On the other hand,

the very small clusters often contain few samples from the minority classes, and

these clusters are an important source of acquiring distinct features from those

minority classes. These factors pose a difficult decision on the cluster selection,

to obtain as many pseudo labels as possible while maintain the diversity of the



Experimental Results 35

Fine-tune data
Overall

accuracy (%)
Average

F-score (%)
Per-class F-scores (%)

Terrain Vegetation Building Hardscape Artefacts Cars
1600 93.2 84.7 94.3 94.9 94.7 87.8 47.8 88.7
800 96.2 84.8 97.1 95.4 97.5 94.7 36.9 87.9
400 94.5 85.5 95.6 95.1 94.3 90.7 47.4 89.6
0 95.9 84.7 96.8 95.4 95.2 94.4 33.4 93.4

Table 4.7: Cross scene segmentation performance of our method. The model
is pre-trained on the scene ‘Untermaederbrunnen3’ and fine-tuned on different
numbers of samples from ‘Bildstein3’.The decreasing numbers of fine-tune
data make up to 20%, 10%, 5%, and 0% of the total 8000 samples captured
from ‘Bildstein3’.

features. Thanks to the large number of clusters, we believe that random selection

is a better way to evenly include both large and small clusters for pseudo labeling.

4.3.4 Segmentation across scenes

Having shown the advantages of proposed method on a single scene point cloud

when the learning is governed by the multi-FOV contrasting. To verify the strength

of our model on quickly adapting to other data, the following experiments are

designed to test on cross-scene segmentation. The goal is to find out if this model

is capable of producing decent segmentation performance by only fine-tuning the

model on minimal amount of fine-tuning data. Taking the model obtained from

previous experiments, which is trained on the scene ‘Untermaederbrunnen3’ from

the Semantic3D. This model is fine-tuned with a series of number of samples from

the scene ‘Bildstein3’, such as 1600, 800, 400, 0 samples, which take up to 20%,

10%, 5%, and 0% (no fine-tuning) of the total samples. Recall that the model

has two networks working in sequence. The clusternet is trained with the pseudo-

labels acquired from the features extracted using a well trained contrastnet. So to

fine-tune our model with new data, the pseudo-labeling process is carried through

first. This involves extracting features of the fine-tuning data using a pre-trained

contrastnet and predicting new pseudo-labels for them with the converged KMeans

from our previous experiments. Then the pre-trained clusternet is fine-tuned on

the new data with their pseudo-labels before starting segmenting the new scene.
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(a) Progress: 99.95%; F-score: 84.7% (b) Ground truth

Figure 4.2: Semantic labelling of the scene ‘Bildstein3’ using the model
trained on ‘Untermaederbrunnen3’. Colors correspond to semantic classes as
the following: terrain is cyan, vegetation is green, buildings are yellow,
hardscapes are orange, scanning artefacts are orange red, cars are red, and the
unlabelled points are grey. It can be seen that our method is capable of
recognizing the rough outline of the smaller items such as cars, but lacks
precise semantic labeling.

As demonstrated in Table 4.7, experiments are tested with different amount of

fine-tune data from 1600 to 0 samples. It is seen that the OA and average F-

scores are close to each other among the four fine-tuned models. Compared to the

other five classes, artefacts are prone to large fluctuations on F-score. To compare

with the single-scene performance trained with 8000 labels (Table 4.4), a drop

of 27% on the artefacts attracts most attention among all other results, which

are considerably close to or even surpasses the single-scene results. Despite that

the results have shown an edge of our method when adopting to new data even

without any fine-tuning, there is no significant improvement by adding in more

fine-tuning data. One interpretation of this particular behavior is again related to

the statistical distribution of the classes. As discussed on the snapshot purity, the

number of points in each class are greatly uneven, leading to a large disparity on

the number of snapshots being captures in each class. This is particularly the case

when it comes to the artefacts, where as shown in Table 1.1 that no snapshots from

this class are picked up during sampling, meaning that the fine-tuning was largely

conducted on samples from bigger classes such as terrain or building. Figure 4.2

illustrates the visualization of the semantic labelling compared with the ground

truth. It can be observed that the hardscapes away from the center are mislabeled

as terrain, and this also happens on the lower part of the church’s tower. The cars
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are correctly located but the labeling precision is not as satisfactory because the

surrounding terrains are mislabeled into cars. These observations again align with

our hypothesis, that some classes are under-trained due to the lack of samples or

the training is contaminated with low-quality samples.



Chapter 5

Conclusions and Future Works

In summary, we have proposed the SnapshotNet for self-supervised feature learning

on the complex scene point cloud, including a new pre-text task that joins the part

contrasting and the proposed scale contrasting for stronger features. We have also

designed a weakly-supervised method for point cloud semantic segmentation by

training with fewer coarse-grained labels. While reducing the labels involved in

the downstream tasks, a cluster-based pseudo labeling technique is implemented

to obtain more training data. The proposed methods are evaluated and verified

on a real life complex scene dataset and the experimental results indicate that our

method is capable of learning effective features from unlabeled scene point cloud

data. Compared to the state of the art methods, our methods still show several

advantages. This model is able to produce comparable results at a slightly higher

cost on label collection. When the cluster-based pseudo labeling is enabled, our

model is capable of producing comparable results with the state-of-the-art methods

using only 180 labels. As a deep learning model, our method does not rely on hand

crafted features, and it has proven to be robust to be directly applied to cross-

scene segmentation without or with a small dose of fine-tuning within the same

dataset, saving the effort of training a model on every new scene.

There are also some weaknesses of the proposed method, particularly that the

quality of snapshots capturing are greatly influenced by the statistical distribu-

tion of the semantic classes. We have tried to resolve this issue by designing the

38
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multi-FOV snapshots and have gained some significant improvement, but the per-

formance on smaller items still needs further improvement. In the future, the

snapshot capturing could be further investigated, such as utilizing the surface nor-

mal or other local geometrical information, to potentially improve the sampling

quality and enhancing the local semantic labelling precision. The noises in the

snapshot sampling could also be turned into certain advantages for a multi-level

contrastive learning: noisy snapshots might contain parts from other objects such

that not all points from both samples agree on each other when forming a positive

pair. If the dissimilarity between two parts can be quantified and well measured,

a contrastive pair can be then defined in one of the multiple levels, instead of

choosing from only positive or negative.
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