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Abstract

In this thesis, a complete task workflow of facial computing is introduced, which in-

cludes three compnents: data, algorithms and applications. Then the research focuses

on two most important tasks in facial computing: facial expression recognition and face

action unit (AU) detection, since the former is key indicators of people’s emotion and the

latter is the basic elements for more complicated facial tasks.

In the facial expression recognition part, we propose a recursive framework to recognize

facial expressions from images in real scenes. Unlike traditional approaches that typically

focus on developing and refining algorithms for improving recognition performance on an

existing dataset, we integrate four important components in a recursive manner: facial

dataset generation, facial expression recognition model building, and interactive interfaces

for testing and new data collection, and finally a dataset evaluation and cleansing. To

start with, we first create a candid-images-for-facial-expression (CIFE) dataset from Web

images. We then apply a convolutional neural network (CNN) to CIFE and build a

CNN model for web image expression classification. In order to increase the expression

recognition accuracy, we also fine-tune the CNN model and thus obtain a better CNN

facial expression recognition model. Based on the fine-tuned CNN model, we design a

facial expression game engine and collect a new and more balanced dataset, GaMo. The

images of this dataset are collected from various facial expressions that our game users

make when playing the game. Finally, we run yet another recursive step – a self-evaluation

of the quality of the data labeling and propose a self-cleansing mechanism for improve the

quality of the data. We evaluate the GaMo and CIFE datasets and show that our recursive

framework can help build a better facial expression model for dealing with real scene facial

expression tasks.

In the AU detection part, we propose a deep learning based approach for facial ac-

tion unit detection by enhancing and cropping regions of interest of face images. The

approach is implemented by adding two novel nets (a.k.a. layers): the enhancing layers

and the cropping layers, to a pretrained convolutional neural network (CNN) model. For

the enhancing layers (noted as E-Net), we have designed an attention map based on fa-

cial landmark features and apply it to a pretrained neural network to conduct enhanced

learning. For the cropping layers (noted as C-Net), we crop facial regions around the

detected landmarks and design individual convolutional layers to learn deeper features for

each facial region. We then combine the E-Net and the C-Net to construct a so-called

Enhancing and Cropping Net (EAC-Net), which can learn both features enhancing and

region cropping functions effectively. The EAC-Net integrates three important elements,

i.e., learning transfer, attention coding, and regions of interest processing, making our

AU detection approach more efficient and more robust to facial position and orientation

changes. Our approach shows a significant performance improvement over the state-of-

the-art methods when tested on the BP4D and DISFA AU datasets. We have also studied

the performance of the proposed EAC-Net under two very challenging conditions: (1)

faces with partial occlusion and (2) faces with large head pose variations. Experimental
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results show that (1) the EAC-Net learns facial AUs correlation effectively and predicts

AUs reliably even with only half of a face being visible, especially for the lower half; (2)

Our EAC-Net model also works well under very large head poses, which outperforms sig-

nificantly a compared baseline approach. It further shows that the EAC-Net works much

better without a face alignment than with face alignment as pre-processing, in terms of

computational efficiency and AU detection accuracy.

To better address the problem of effective fusion of temporal information in AU detec-

tion, we propose a C-Net based region of interest (ROI) adaptation optimal LSTM-based

temporal fusing approach. The optimal selection of multiple LSTM layers to form the

best LSTM Net is carried out to best fuse temporal features. The temporal fusion can

also be applied to facial expression recognition and other tasks.
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1 Introduction

The research in computer vision is mostly about helping people in improving their quality

of life. There are numerous computer vision topics targeting on human behavior and action

understanding to providing useful information for human-to-human and human-to-computer

interactions. By analyzing their actions, observing their facial reactions, and recognizing their

gestures, what people are doing or how they are feeling can be understood. One of the most

important topics among these works is facial computing. People pay a lot of attention to faces

and all the information a face conveys. Good-looking faces are popular, confident and friendly

faces are more welcome, whereas sad and depressed faces can obtain sympathy. For certain

groups of people, reading faces are challenging and sometimes impossible, such as individuals

with autistic spectrum disorder (ASD), or with visual impairment. Therefore a computing

system that can read faces for them would be very useful. In this thesis, we call all these face

related tasks as facial computing. The goal of our work is to investigate data, methods and

applications that enable a facial computing system to read people’s face and know people’s

feelings.

1.1 Data, algorithms and applications

To fully solve the problems in a facial computing task, we need to consider three important

components: data, algorithms and applications.

Data are the basis for many computing vision problems. The popularity of convolutional

neural networks is boosted with the ImageNet dataset, which covers thousands of objects in

the world. Facial computing also relies on data. In our work, we will look into the problem

of creating datasets useful for facial computing, by analyzing the problems that the current

datasets have, and proposing our datasets or data collection frameworks for real world facial

computing problems.

The second essential component is models or algorithms. We use algorithms to solve spe-

cific facial computing problems. Before we go into details of our algorithms we need define our

problems first. Facial computing is to analyze people’s facial attributes and expression, and

obtain their inner facial expression or feeling. Based on what we want to achieve, there are sev-

eral sub-problems in facial computing, such as facial expression recognition, arousal/valence

detection and action unit detection.We would like to formally define them here.

(1). Facial expression recognition is to classify a facial image into one of the sev-

eral (often 7) categories. The seven categories are defined as basic human facial expressions

(Happiness, Anger, Disgust, Sadness, Surprise, Fear and Neutral), thus making this facial

computing task into an image classification problem.
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(2) Facial arousal/valence detection is to decide the levels of people’s facial expres-

sions. Arousal wants to know how positive an facial expression is whereas valence detection

is to know bout the energy in one’s facial expressions. This is a two-label regression problem.

(3) Action Unit (AU) detection wants to know the basic activeness of the basic facial

action units. AU detection is a more basic problem comparing to facial expression recognition.

There are usually more than 10 AUs being analyzed simultaneously. So, from the perspective

of algorithmic processing, it’s a mutli-label classification problem.

Among the three problems, facial expression recognition and AU detection are the two

most studied topics. In our work, we target on the facial expression recognition and action

unit recognition.

In terms of its significance and applications, facial computing has impact in all dimensions:

scientifically, technologically, economically and socially. First, facial computing has a great

scientific value in understanding humans capabilities in facial understanding. Second facial

computing study could advance our knowledge in developing learning algorithms and models.

Third, facial computing has a significant economical impact: being able to tell people’s feelings

can help vendors customize their personalized advertisement, obtain feedback from audience

for all kinds of shows, achieving better understanding of students’ learning progress in class,

and helping detect deception, to name a few. Finally, for those who cannot read or who have

difficulties in reading faces, such as people with ASD, facial computing can generate assistive

tools for improving their social interaction thus improve the quality of their lives.

1.2 Overview of the thesis and contributions

This thesis include two closely related parts: facial expression recognition and action unit

detection. Except that both parts use deep learning models and involve dataset selections,

the latter can be building block of the former.

In the facial expression recognition part, we first build a candid image facial expres-

sion dataset - Candid Image Facial Expression (CIFE) – by parsing Web expression images

from image search engines. The CNN-based deep learning approaches are then employed to

train robust facial expression predictors, while fine-tuning approaches are also constructed to

improve facial expression accuracy. To collect real scene images, we have designed a facial

expression interaction game based on our deep learning model that was trained with the CIFE

dataset. With users playing both the general and the customized versions of the face game,

the correctly labeled facial expression images are selected and saved, which help us build

the GaMo dataset. We also have run a self-evaluation of the quality of the data labeling and

proposed a self-cleansing mechanism to improve the quality of the data. To prove the effective-

ness of our framework, we compared GaMo and CIFE based their balancedness, recognition
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accuracy, the effectiveness of using strictly balanced subsets, the impact of data-cleaning, and

feedback from human subjects. The experiments show that our framework can build a reliable

facial expression predictor for real scenes. We have the following new contributions in facial

expression recognition:

1. A recursive framework is proposed, which can recursively generate and automatically

cleanse the new data, and update the deep learning model to have better performance

in real scene facial expression recognition. In particular, we have a new recursive step

to clean the collected data through a self-evaluation process.

2. A deeper CNN model is used by fine-tuning VGG - a 19-layer CNN structure proposed

by the Visual Geometry Group [24]. The performance of the fine-tuned VGG networkis

comparable to the state-of-the-art approaches on benchmarking facial expression-in-the-

wild datasets, and performance comparison showed that it outperformed the results we

generated using our initial CNN model and the fine-tuned AlexNet model we reported

in our previous work.

3. We detail the design and evaluation of the game interface, which is only controlled

by human facial expressions, and automatically collecting expression images while the

players are playing the game. The new GaMo dataset is also analyzed leading to insights

and new ideas for more balanced data collection with our recursive framework in the

future.

4. The performance of facial expression recognition based on the two facial expression

datasets is compared and analyzed: CIFE and GaMo, and their more balanced subsets

using the new VGG model: CIFE is a web candid imaged based facial expression dataset;

GaMo is an in Game-based facial expression dataset collected when our users played

our facial expression game.

In the Action Unit (AU) detection part, we design an enhancing net (E-Net) to force

the neural network to pay more attention to AU interest regions on face images. We have

also proposed the cropping net (C-Net) to ensure that individual networks learn features

in “aligned” facial areas. This makes our EAC-Net – the integration of the E-Net and C-

Net – more robust to facial shifts and orientation differences. We also explored the LSTM-

based temporal fusion approach, which boosted the AU detection performance significantly

compared to static image-based approaches. In our AU detection approach, we have the

following contributions:

1. The EAC-Net integrates three important elements - learning transfer, attention coding,
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and regions of interest processing - which makes our AU detection approach more robust

to face position and orientation changes.

2. No facial preprocessing such as normalization is required to apply to input images in

our approach, which not only saves a significant amount of preprocessing time but also

maintains the original facial expression representation unaltered. We have shown that

our EAC approach has resulted in an excellent performance under large head poses,

without a face alignment preprocessing step.

3. Although face landmarks are used in our C-Net and EAC-Net, they do not need to be

very accurately located, i.e. the approach is robust to landmark detection errors.

4. The proposed EAC-Net is able to detect AUs even when faces in the input images are

partially occluded with an impressive F1 score, close to the best performance of the

state-of-the-art approaches on the BP4D dataset.

5. Multi-label learning is employed to integrate the outputs of those individual ROI crop-

ping nets, which learns the inter-relationships of various AUs and acquires global fea-

tures across sub-regions for AU detection. Multi-label and single AU based methods are

compared. With additional AU correlations and richer global features, the multi-label

learning approach shows slightly better performance.

6. A LSTM-based temporal fusion recurrent net (LSTM Net) is proposed to fuse static

CNN features, which makes the AU predictions more accurate than with static images

only.

1.3 Organization of the thesis

The thesis is organized as follows: We first introduce our thesis work in Chapter 1. After

the introduction, the thesis is divided into 2 parts. In part I, we describe our work in facial

expression recognition and in part II, details of AU detection work is provided.

Part I includes multiple aspects of work in facial expression recognition: After an overview

of our facial expression work in Chapter 2, related work in facial expression recognition is

discussed in Chapter 3. Our web collected facial expression dataset – CIFE is presented in

Chapter 4. Then the CNN models for our facial expression recognition work are described in

Chapter 5. To obtain more balanced and real scene data, a facial expression game is designed

to collect the GaMo datase; these are discussed t in Chapter 6. Evaluation of the two dataset

are conducted in Chapter 7. Finally in Chapter 8, we discussed how our facial expression

work can help people in real applications.
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As for the AU detection part, after an overview of this part in Chapter 9, the design

considerations/ideas and related work are introduced in Chapter 10: an overview of design

considerations is given in Section 10.1, and related work of AU detection is briefly discussed

in Section 10.2. We then explain our proposed EAC-Net in Chapter 11 for static image AU

detection and temporal fusion approach in Chapter 12. To evaluate our method, we test our

approach with standard datasets in Chapter 13 and with our candid image dataset in Chapter

14. Possible AU detection based applications are mentioned in Chapter 15. And finally, we

conclude the thesis and point our some future directions in Chapter 16.
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Part I

Facial Expression Recognition: a Recursive

Framework
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2 Overview of the Recursive Framework

Detecting people’s facial expressions has been an interesting research topic for more than 20

years. Facial expressions play an important role in many applications such as advertising,

social interaction and assistive technology. Research in facial expression recognition mainly

includes three parts: datasets, algorithms and real world interaction applications. In our ap-

proach, to improve the performance of facial expression recognition in real scenes, we propose

a framework for integrating dataset construction, algorithm design and interaction implemen-

tation.

Even though facial expression research should include three integrated parts, most of the

previous work mostly focused on one of the components. Consequently, algorithms or models

designed for one or several datasets do not work well when dealing with real scene problems.

With this in mind, we propose a recursive updating approach. Starting from a deep learning

model trained from facial images collected from the Web, a facial expression game is designed

for collecting new and more balanced data. Then the newly collected data are used to update

the training model. The framework is illustrated in Figure 2.1. We start with a dataset with

Candid Images for Facial Expression (CIFE) to build an initial facial expression model, which

is then served as the game engine for a facial expression game, then when users play the

game, facial images of the users are classified as different facial expressions by the model and

automatically collected. This leads to a new and balanced dataset, named GaMo (standing

for Game-based facial expression), which is cleansed with a self-evaluation mechnism and then

used to update our facial expression model.

Figure 2.1: The proposed recursive framework
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3 Facial Expression Recognition: Related Work

We already mentioned that current facial expression research mainly includes three major

components: datasets, algorithms/models, and applications. Here we would like to give a

review of each of the three components.

3.1 Datasets

Among the many datasets that have been provided by researchers for recognizing expressions

from images, there are mainly two kinds of datasets. Datasets belonging to the first category

are captured in laboratory. These include CK+, MMI and DISFA dataset [2, 3, 4, 5]. Usually

subjects are invited to their labs and sit in lighting and position constrained environments.

Good results can be achieved on these datasets but in real life scenarios, it’s always hard to

have good performance. Datasets in the second category are collected from existing media

and social networks, such as Kaggle and EmotiW [7, 8, 10]. Using web search engines, one

can easily obtain thousands of images but the datasets are usually not balanced. EmotiW is

a video clip dataset for an expression recognition challenge, and the video samples are from

Hollywood movies where the actors show different expressions. For the datasets collected

from existing media, some of the expressions like Happy or Sad are easier to obtain, but for

some expressions like Disgust or Fear, it’s hard to find enough samples.

3.2 Algorithms and models

Although the existing datasets are generally not balanced, many interesting and promising

approaches have been proposed for expression detection. Most existing facial expression recog-

nition methods have focused on recognizing expressions of frontal faces, such as the images in

CK+ [5]. Shan, et al [6] have proposed a LBP-based feature extractor combined with an SVM

for classification. In the method proposed by Xiao, et al [11], instead of training one model

for all expressions, separate models have been trained for each expression, which improve

the overall performance. Wang, et al [12] modeled facial expressions as complex activities

that consist of temporally overlapping sequences of face events. Then, an Interval Temporal

Bayesian Network (ITBN) was used to capture the complex temporal information. Karan, et

al [13] proposed a HMM-based approach to make use of consecutive frame information to

achieve better expression recognition accuracy from video.

In the past few years, deep learning methods have been successfully used for face recog-

nition and verification [62, 15]. Deep learning approaches are also used in many expression

detection applications. Liu, et al [16] proposed a Boosted Deep Belief Network to perform
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feature learning, feature selection and classifier construction for expression recognition. Dif-

ferent DBN models for unsupervised feature learning in audio-visual expression recognition

have been compared in the work done by Kim, et al [17]. Our early work [7] used CNNs on

images collected from the Web. To prove the effectiveness of CNNs, we compared CNN-based

facial expression performance on CK+ to the state of the art methods. Multimodal deep

learning approaches have been applied to facial expression recognitions tasks. An example is

Jung, et al’s work [18] in which facial landmarks based shape information and image based

appearance information are learned through a combined CNN network. The results show

that deep learning based multimodal features act better than individual modalities or the use

of traditional learning approaches. Automatically learned features have also been used for

multimodal facial expression recognition on video clips [8].

3.3 Interactive applications

In the generation of ImageNet dataset [19], Amazon Mechanical Turk (AMT) is used to

label all the training images. Workers are hired online and can remotely work on labeling

the dataset. The ImageNet is a large scale dataset that aims to label 50 million images

for object classification and without the help of online workers, the labeling would not be

feasible. This inspired us to develop the idea of involving people in the data collection process

through an online framework, preferable using games. There have been some efforts in using

games to attract people to perform some image classification work. Luis, et al [20] designed

an interactive system that attracted people to label images, Mourao et al [21] developed a

facial engaging algorithm as the controller to play their Novoexpressions game, and a player

engagement dataset was obtained and the relationship between the players’ facial engagement

and game scores were analyzed. But their goal is not to collect data. Expression games have

also been used to entertain children with Autism Spectrum Disorder (ASD) and to help them

perform facial expressions by mirroring their expressions to some cartoon characters [22].

Our online framework not only makes use of online crowdsourcing through games, but also

has much lower cost than AMT. And since the numbers of various facial expressions can be

controlled by the design of the games, the dataset can be guaranteed to be balanced.
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4 CIFE: Dataset from the Web

Since we would like to develop facial expression approaches that can be used in real world

scenes, we need to train and test the models on non-posed images, or candid images. Therefore

we collect a Candid Image Facial Expression (CIFE) Dataset. We note that most of the facial

expression images on the Web are randomly posed, and most of the expressions are natural.

Therefore we use web crawling techniques to acquire candid expression images from the Web,

and create our candid image facial expression dataset CIFE.

4.1 CIFE data collection

As we have mentioned, we define seven types of expressions: Happy, Anger, Disgust, Sad,

Surprise, Fear and Neutral. Using related key words to the each of the 7 expressions in

addition to the name of the expression (e.g., joy, cheer, smile for Happiness), we have collected

a large number of images that belong to each of the seven expressions. We have used most

of the image search engines, including Google, Baidu and Flickr. In our initial CIFE dataset

[7], the number of samples of different expressions were: Anger (1785), Disgust (266), Fear

(781), Happiness (3636), Neutral (644), Sadness(2485) and Surprise(997).

The images are from the web and most of them are not posed. However, the number of

samples in different classes was highly unbalanced. Therefore, we have added some images to

classes with fewer samples (for example Disgust and Fear) to balance the class sizes [8]. At

the end, we obtained 14,756 images for 7 classes (after some manual post-filtering by humans).

The total number for each facial expression in our revised CIFE dataset is listed in Table 4.1.

This is the dataset we use in this thesis. In [8], the CNN model was one of the modules

for video expression recoginition, but here we focus on facial expression recognition in single

images. Figure 9.1 shows a few typical examples of faces with various poses.

4.2 CIFE data augmentation

Table 4.1: Sample numbers of the seven facial expressions in CIFE (Ang, Dis, Fea, Hap, Neu,
Sad, Sur represent angry, disgust, fear, happy, sad, surprise, respectively).

Expr Ang Dis Fea Hap Neu Sad Sur

Nums 1905 975 1381 3636 2381 2485 1993

Deep learning with CNNs always requires a very large number of training images in or-

der to train a large number of parameters of the network for obtaining good classification

results. Even though our CIFE dataset has 14,756 images for 7 classes, it is still insufficient
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Figure 4.1: Images from CIFE

for training a deep CNN model. So before training the CNN model, we need to augment the

dataset with various transformations to generate various small changes in appearances and

poses. We applied five image appearance filters and six affine transform matrices. The five

filters are disk, average, gaussian, unsharp and motion filters, and the six affine transforms

are formalized by adding slight geometric transformations to the identity matrix, including a

horizontal mirror image. Figure 4.2 shows an example of the facial image augmentation. By

doing this augmentation, for each original image in the dataset, we can generate 30 (=5x6)

samples, therefore the number of possible training samples would increase from 10330 be

309900, which is sufficient for training the deep learning model.

Data augmentation could also a very effective solution to some of the data problems. For

example, there could be different image illumination/occlusion/pose situations in the original

data. If we add various image transformations – in both appearance and geometry – to the

original data, various situations can be simulated in the training dataset so that the obtained

model will be more robust to all kinds of test data.

After data augmentation, we now have 309900 training images, and the model will be

tested on 4,424 original testing images (30% of 14,756). Our goal is to classify all the images

into 7 facial expression groups. To achieve our goal we design an CNN structure. In the

following, we will describe our initial CNN model, the fine-tuning of two CNN structures -
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Figure 4.2: CIFE data augmentation

ALexNet [25] and VGG [24] , and report the comparison of their performance.
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5 Algorithms: Evolvement of the CNN Structures

5.1 The initial CNN model

Our initial CNN model structure includes one input layer (the original image), three convo-

lutional layers, and an output layer. This structure was arrived by trial and error with many

experimental tests. The input color image size is 64x64, and the number of the output is 7.

We set the convolutional filters size to be 3x3. We then varied the number of layers and the

number of filter for each layer. After many rounds of tests, we finally found our most suitable

”simple” structure with 3 convolutional layers, and the filter numbers for each layer to be 32,

32, 64, respectively. For each of the three convolutional layers, we add a 2:1 pooling layer

to make the training data less redundant. The input 64x64 RGB image is then recognized

as one of the 7 labeled classes. With this structure, we can easily know the numbers of the

parameters to be around 184,000. Compared to the number of training images (309,900), the

structure setting is also appropriate. Finally, we achieved a 65.2% accuracy on our test data.

Even though the accuracy was not very high, the CNN-based facial expression showed its

obvious performance advantage over tradition approaches such as the results using support

vector machines (SVMs), 62.3% with the LBP Feature and 59.7% with the SIFT feature.

Details of the results with the traditional approaches can be found in our previous work at

[7]. We want to note here that we reported a much higher classification accuracy (81.5%)

using a similar CNN model. That was because the highly unbalanced numbers of samples in

the initial CIFE dataset used in [7]: there the recognition rates for disgust and fear classes

were very low, for both the original dataset and the revised dataset, and hence adding new

samples decreased the overall recognition statistics. We suspect that the reason for the low

performance was that the three-layer structure is unable to learn the features deeply enough.

5.2 Fine-tuning AlexNet

To further improve the performance of facial expression recognition using CNN, we noted

that learned general classification models can be used for specific classification problems [23].

Since some existing learned models are deeply trained on large scale datasets, image features

thus learned can be better features for recognition of other classification tasks. Therefore we

are curious to find out if this can help improve facial expression recognition. To try out our

idea, we did experiments by fine-tuning AlexNet [25] and VGG [24] structures.

In the AlexNet structure, there are 1 input layer, 5 convolutional layers and 3 fully con-

nected layers, leading to 60 million parameters in total. Our first guess was that training

the AlexNet on our CIFE dataset would results in better classification accuracy. The only



5 ALGORITHMS: EVOLVEMENT OF THE CNN STRUCTURES 21

Figure 5.1: Fine-tuning AlexNet structure for facial expression recognition

problem was the need for a larger number of images, as the ImageNet requires millions of

images during training.

Therefore, we instead propose a CNN fine-tuning method to train a deeper model based

on AlexNet. The rationale is that although our task is different from the ImageNet, which

focuses on object classification, similar low level filters could be used in expression recognition.

Based on this hypothesis, we can use the AlexNet and utilize our relatively ’small’ dataset to

update and fine-tune parts of its parameters for adapting it to expression recognition.

As shown in Figure 9.2, the parameters of the convolutional layers 1 through 4 are not

changed. Our new CIFE dataset is used to update the parameters of the convolutional layer

5 and the first fully connect layer, without changing their structures. In the original AlexNet,

the number of units of the second fully connected layer and the third layer are 4096 and 1000

(classes) respectively. Since the number of classes in our dataset is just 7, we needed to change

the structure in these two layers. We reduced the number of neurons in the penultimate layer

to 2048, and the third fully connected layer to 7. The classification accuracy by using this

model is 73.5% on the revised CIFE dataset, which shows that the fine-tuning leads to a

much better performance than our first attempt of using a three-layer CNN structure, a 8.3%

improvement. This was the model we used in collecting the GaMo facial expression dataset,

when only this model was available. With this decent accuracy, a system that uses such a

facial engine can lead to a good chance to obtain the right prediction in human computer

facial interaction to encourage users to play the interaction game, which will be described in

Chapter 6.



5 ALGORITHMS: EVOLVEMENT OF THE CNN STRUCTURES 22

5.3 Fine-tuning VGG

Compared to AlexNet, VGG is a much deeper network. After the GaMo data collection, we

also investigated if using a fine-tuned VGG model can improve the facial expression recognition

performance. We first tested the fine-tuned VGG model on the revised CIFE dataset for

comparing with the results with the fine-tuned AlexNet model. There are 19 learning layers

in total, with 138 million parameters . VGG layers have some similar structure as AlexNet.

They both have convolutional parts and fully connected parts. For each convolutional layer

in AlexNet, VGG replaces it with 2-4 convolutional layers. Deeper networks lead to better

representation of the input images: in the ImageNet challenge, VGG yielded a 6.8% top-5 error

compared to AlexNet’s 16.4%. We applied a similar fine-tuning approach to the VGG net as

we did to AlexNet. By fintuning on existing VGG model with the revised CIFE dataset, we

finally achieved a 76.3% accuracy, which is a 2.8% improvement over the fine-tuned AlexNet,

and 11.1% over our initial CNN model. Therefore in Chapter 7, we will show results using

the fine-tuned VGG structure for facial expression recognition with CIFE and GaMo datasets

and their sub-sets.

Through finetuning the ImageNet models, we obtained improved facial expression recog-

nition results. It indicates that the models for general image classification can share con-

volutional filters with specific purpose image classification tasks, such as facial expression

recognition. In this way the fine-tuning leads to more robust models for non-posed image

facial expression prediction.

Note that this model has been used to provide reliable CNN-based features in our work in

participating at the Emotiw 2015 challenge on bench-marking ?facial expression recognition

in the wild? datasets. This proves that the finetuning approach is comparable with the

state of the art methods in solving the facial expression recognition- in-the-wild problem [8].

In our previous work, we show that the finetuning CNN feature is the most effctive feature

among the three multimodal features we used –a LBP-TOP-based video feature, an openEAR

energy/spectral-based audio feature, and the CNN based deep image feature, enabling us to

achieve a rank 5 among 73 teams.
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6 GoMo: Game Designs and Datasets

We already showed that deep learning can lead to high accuracy facial expression recognition.

While the candid images are most likely randomly posed, but they are still different from

images from real scenario interaction. More ”real” data would be facial expression images of

people collected without any constraints. If people can show this kind of ”real” facial expres-

sion, we can use our facial expression model to select corresponding images and construct a

real scene facial expression dataset. The selected images may be useful for building a real

scene expression model. For this purpose, we decided to design a game interface that invites

people to show their facial expressions, willingly, while playing a game.

Figure 6.1: Design of the facial expression game scene

6.1 Game design

Since we would like game users to show real facial expressions yet remain engaged throughout

the game, we had to design the expression game in a way that it is straightforward and

interesting as much as possible. After performing research on the popular web games, we

found that the Tower Defense games is the style that fits our task the best. The logic of

the Tower Defense games is always very simple: the player needs to build a defense system

against the intruders. In our application, we would like the user to act as a defender against

an ”expression target”. An example of the basic game scene is shown in Figure 11.3. The

live video of the user is shown on the top-left corner of the screen so he can always see his

expression. A randomly picked expression target as shown in Figure 6.2 (a facial expression
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Figure 6.2: Facial icons representing the 7 basic expressions

icon) will enter the screen as a bomb dropped from above and the user has to protect the

village by making the bomb disappear before it reaches the ground. Some sound effects are

also added to make user more engaged. The bomb would disappear if the user makes a facial

expression that correctly matches the displayed expression (the bomb), as judged by the CNN-

based expression detector using the fine-tuned AlexNet model which was the available model

to us when we collected the new data. The score as shown on the top-right of the screen will

be increased.

6.2 General version and customized version

Here we would like to provide some technical details of our general game design. The expres-

sion game web interface accesses the camera on the user’s machine and displays the video

on the top-left corner of the screen. Then the game interface captures images of the user’s

face, and then sends face images to our server. The CNN model we trained by fine-tuning

AlexNet analyzes each image and generates a probability vector for the seven expressions and

sends it back to the game webpage. The reason for processing face images at a server is due

to the high computational requirements by the CNN model. After the probability vector of

the seven expressions is sent back to the game interface, it compares this feedback with the

expression target ID that has been displayed on the screen as a bomb and informs the server

to save the image if it matches the icon. Since the target facial expression that the user needs

to make is defined by our system, we not only know the label and have high confidence that

facial expression’s label is correct, but also can make the dataset more balanced based on our

needs.

The frame rates of typical webcameras are usually 20-60 Hz. We do not need such high

frame rates of image capturing for two main reasons: 1) From the computational resource’s

point of view, the server will have a huge workload if we run the expression recognition on

every single image since the CNN computation is time-consuming with hundreds of millions

of parameters . 2) There is no need to know the user’s expression frame by frame. Giving the

user some time delay to prepare their expression may actually result in better image quality

and as a consequence, a much better dataset. For these two reasons, we design the game in

such a way that it only sends one image per second to the server. It takes only around 200 ms
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for the server to generate the results for every single image, which makes the game run very

smoothly. We also set the number of initial game lives to be five and generate the expression

targets randomly, with equal probabilities to all the seven expressions, which theoretically

result in a balanced dataset.

The game is implemented using Javascript and HTML. The backend is hosted using Ruby

on Rails. During the game, expression icons will drop from the top of the screen, and the

user’s face is also shown in the left top corner of the screen for the user to check her/his

facial expression. If the user is able to match the expression before the icon hits the ground,

she/he will receive 1 point. The score will change as the user gains or loses points. When all

the game lives are used, a ”Game Over” sign will be shown up, together with the total score

gained by the user, and then a ”Replay” button.

After making the game available to a small group and collecting data from several users

who tried it, we realized that the collected dataset is not ideal, specifically for two main

reasons: 1) Sometimes it is hard for users to correctly imitate the exact expressions by just

looking to the icons; 2) Our expression detector sometimes is not able to correctly determine

whether the subject is making the right face or not. This makes it hard for the players to

achieve high scores and as a result, the collected data becomes imbalanced.

We were able to provide two solutions to solve the above problems. One is to change the

expression recognition to an expression verification task. This makes the classification task

much easier. Since we know the ”ground truth” or the target label for an icon being displayed

in the game, we only need to check if the probability of this specific expression reached a

predefined threshold. Each expression needs to have its own threshold since some expressions

are harder to mimic through facial expressions and have higher variety among different users.

This will help the users achieve higher scores and also include a broad range of correctly

labeled facial expressions for each expression in the dataset.

Another solution is to create an individual model for each player based on the CNN

extracted features. The user will be compared with her/his individual expression templates

instead of the general CNN model. The Deepface work [62] has proved that the CNNs is not

only able to directly perform image classification, but can also extract robust features from

the images. Thus we extract the features from the CNN for each individual user and then

these features are saved as templates for that specific user. This makes the game customized

for each player and the user can gain higher scores and is encouraged to play more.

As a part of the solutions proposed above, we designed a user registration page as shown

in Figure 6.3. The registration page is divided into 8 subareas. The first subarea shows

the current video stream. The other seven subareas display the seven registered expression

templates. To save each template image, the user can click on the corresponding subarea
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Figure 6.3: Registration page for building customized facial templates: initial page. The first
image is the live webcam view, and the rest seven are places for showing the templates of the
seven expressions.

Figure 6.4: Faces of the seven expression after the user click ”Send All”. In this example, two
of the images are not qualified so the user has to recapture these two images.

while imitating the correct facial expression. This process can be repeated several times until

the user is happy with the saved image. Once all seven expressions are registered, the user

can click the ”Send All” button to send the expression templates to the server, where the

system will detect the face area in the images and use the CNN model to extract expression

features for the user. If the face cannot be detected, an error message will be sent back to

the user, and she/he is then asked to recapture the image for the specific expression that has

caused the error, as shown in Figure 13.1.

When all the template features are saved in the server, the user will be directed to the

customized game scene. While the game is being played, the server will extract features for

the image that is being sent at the moment and compare these features to the saved facial

expression templates. We use L2 distance to select the nearest result and send it back as the

detected facial expression. Since the features are robust and the user is always compared with

her/his own model, the user will potentially achieve a higher score. We call this version of
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the game the ”customized version”, as opposed to the previous ”general version”.

6.3 GaMo: a New Facial Expression Dataset

Within one month of the release of the two game test versions to the college students of our

department, more than a hundred users played the general version and 74 users tried the

customized version. All the users that we collected data from have signed the consent form of

our IRB approval. We obtained 15455 images in total during this time period and generated

the GaMo (game based expression) Dataset. Compared to some deep learning datasets, the

size is still not big enough, but our game can run at any time, so we can obtain a much

bigger dataset when the game reaches more people. The dataset is available by contacting

the authors.

One concern about our dataset might be the use of a trained model to obtain more

expression data: Will this recognition/ verification model only create expression data that

are similar to our existing data samples and make the dataset less diverse? Will the use of a

pre-trained model affect the quality of the data labeling? We arrived at two observations:

1) The game interaction and incentive can increase the tendency of the users to express

more accurate facial expressions for data collection. We found that in playing our game,

users would rather achieve a higher score compared to the others. Thus they try to show

the correct facial expression as well as they can. This mechanism can automatically help us

avoid too many wrong labeled data with manual labeling, since the data we collected has

been double-checked: by both our model and our users themselves.

2) In the customized game mode, user are comparing with their own facial expression

templates. We checked all the templates of all the users and they were all correct. Different

people have different facial expression patterns. By collecting templates and in-game facial

expression images of different people, we can have diverse facial expression images.

We would like to note here that no manual cleanups for the images and labels have been

done in the initial GaMo dataset; all the images are used in our first evaluation in Chapter

7. By randomly checking the dataset, we have not found any labels that are very off the real

expressions. The distribution of the dataset is shown in Table 7.1. Compared to the CIFE

dataset, GaMo is more balanced, which hopefully will result in a much more reliable facial

expression detector. In conclusion, the data collection is automatic, of high quality and more

balanced. Later on in Chapter 7, we will also discuss if an automatic data quality evaluation

and cleanup could lead to better performance.
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7 CIFE and GaMo Evaluations

Based on our proposed framework, we applied deep learning and finetuning to web collected

images CIFE and obtain a facial expression recognition model - the fine-tuned AlexNet, then

we used the model to host the facial expression game to collect the new GaMo data. We

hope the GaMo dataset can be used to recursively finetune our CNN models. To prove this,

we first need show that the GaMo data can actually improve the real scene facial expression

recognition.

To determine the usefulness of the GaMo dataset, we performed the following experiments.

First, we trained a new CNN model with GaMo by finetuning the previous AlexNet model

that has been used as our game engine, which was trained on CIFE . To compare GaMo with

CIFE, we ran both a self evaluation and a cross evaluation with the two CNN models: the

GaMo CNN model and the CIFE CNN model.

In our earlier work [9], we have shown that the model trained with the more balanced GaMo

dataset produced more robust results, especially for those classes that were underrepresented

in the CIFE dataset. Further the GaMo model can be applied to the CIFE dataset with a

decent performance, but not the other way around.

In order to see if these observations are consistent with more complicated and better

performed models, we then used the fine-tuned deeper VGG models - the best models among

the ones we have developed and used. The VGG models are trained with the CIFE and GaMo

datasets, respectively, and performed the same experiments as in our earlier work.

We noted that due to the game engine we used which was based on the unbalanced

CIFE dataset, we still had fewer samples in some categories, thus the new GaMo dataset

was not completely balanced. Therefore we also ran an experiment to see if we just using

more balanced sub-sets from both CIFE and GaMo will have large changes to the recognition

results. Finally, we designed a small user study to find out if the dataset can actually improve

the game engine and game experience. For this purpose, the users played the general version

of the game hosted by the two new CNN models.

7.1 Comparison of CIFE and GaMo

Table 7.1 show the statistics of GaMo and CIFE datasets. For the CIFE dataset, as we

mentioned before, the images are collected by searching from web engines using key words.

We also went through the dataset to remove all the images that are not meaningful facial

expressions. To some extent, the numbers of samples in the seven facial expression categories

reflect the distribution of facial images numbers online. We can clearly see the imbalance of

the sample numbers for different facial expression categories, and it’s hard for us to balance
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Table 7.1: Comparison of expression sample numbers in CIFE and GaMo

Dataset CIFE GaMo

Angry 1905 1945
Disgust 975 1838

Fear 1381 1586
Happy 3636 3185
Neutral 2381 2741

Sad 2485 1898
Surprise 1993 2262

Table 7.2: Average accuracies of self and cross evaluation of CIFE and GaMo models

CIFE GaMo CIFE cross GaMo cross

Average 0.76 0.75 0.31 0.64

it since if we use the minimal number 975 for Disgust, the numbers of samples would be too

small. We can also see that the sample numbers of each facial expression from GaMo are

more balanced. Although we noticed some of the expression numbers are also smaller than

others like Fear and Disgust, it’s easy for us to make it more balanced. When we design the

game, we make all expressions show up at the same probability, but due to different ability of

the expression prediction using the game engine trained with the unbalanced CIFE dataset,

the GaMo dataset is not completely balanced. The good news is that, since we already have

known the different accuracy in predicting each facial expression, in the future data collection

with our recursive framework, we can change the show-up probabilities of of facial expression

targets to control the final data distribution. This is our ongoing work.

7.2 Comparison of CNN models with CIFE and GaMo

To compare the two models, we test the overall accuracy in recognizing all the seven expres-

sions (the average accuracy in Table 7.2 ) as well as the accuracy of each individual expression

within its own sub-dataset (Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise), as listed

also in Table 7.2, and in Table 7.3 to Table 7.6 . This would give us a good sense on the use-

fulness of GaMo dataset. Furthermore, to compare the performance of the two CNN models

based on the VGG structure, we perform a cross evaluation: the model trained on CIFE is

tested on images from GaMo and vice versa.

The confusion matrices of these four experiments are listed in Table 7.3 to Table 7.6 .

Looking into the self evaluation results, we can see that the model trained on GaMo has

a much more balanced distribution on expression classification on all the seven expressions.
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Table 7.3: Self evaluation confusion matrix of CIFE

Ang Dis Fea Hap Neu Sad Sur

Ang 0.81 0.03 0.02 0.01 0.03 0.06 0.03
Dis 0.07 0.53 0.06 0.03 0.19 0.03 0.06
Fea 0.04 0.02 0.62 0.02 0.04 0.07 0.2
Hap 0.02 0.02 0.001 0.85 0.02 0.05 0.02
Neu 0.05 0.09 0.02 0.02 0.70 0.04 0.08
Sad 0.07 0.01 0.01 0.03 0.04 0.82 0.01
Sur 0.01 0.01 0.08 0.02 0.07 0.01 0.78

Table 7.4: Self evaluation confusion matrix of GaMo

Ang Dis Fea Hap Neu Sad Sur

Ang 0.62 0.07 0.02 0.04 0.11 0.08 0.04
Dis 0.06 0.69 0.03 0.06 0.05 0.08 0.01
Fea 0.02 0.05 0.62 0.05 0.11 0.02 0.1
Hap 0.02 0.02 0.01 0.81 0.04 0.05 0.02
Neu 0.01 0.02 0.02 0.03 0.85 0.02 0.02
Sad 0.02 0.05 0.02 0.05 0.04 0.77 0.02
Sur 0.02 0.02 0.06 0.04 0.04 0.01 0.79

Table 7.5: Cross evaluation confusion matrix of CIFE

Ang Dis Fea Hap Neu Sad Sur

Ang 0.11 0.06 0.03 0.02 0.48 0.0 0.29
Dis 0.02 0.18 0.01 0.02 0.50 0.01 0.25
Fea 0.01 0.05 0.04 0.02 0.26 0.0 0.6
Hap 0.01 0.01 0.01 0.02 0.34 0.01 0.53
Neu 0.01 0.02 0.01 0.01 0.85 0.0 0.11
Sad 0.002 0.06 0.008 0.008 0.71 0.01 0.19
Sur 0.004 0.01 0.03 0.017 0.13 0.04 0.79

Table 7.6: Cross evaluation confusion matrix of GaMo

Ang Dis Fea Hap Neu Sad Sur

Ang 0.71 0.02 0.01 0.01 0.01 0.13 0.03
Dis 0.13 0.28 0.01 0.16 0.01 0.36 0.02
Fea 0.01 0.02 0.44 0.14 0.02 0.11 0.18
Hap 0.02 0.01 0.001 0.91 0.01 0.04 0.01
Neu 0.12 0.05 0.02 0.14 0.24 0.39 0.03
Sad 0.07 0.01 0.01 0.08 0.02 0.82 0.01
Sur 0.04 0.01 0.11 0.17 0.02 0.05 0.58
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Even though the average performance of the CNN model on the CIFE is slightly higher than

that on GaMo, the numbers are misleading since the higher average accuracy of the CIFE-

trained CNN model is due to the much larger numbers of samples in both Happy and Sad

classes, which apparently also have much higher accuracy than others. In comparison, the

performance in recognizing Disgust and Fear is much higher using GaMo than using CIFE.

The results of the cross dataset tests are even more interesting. The model trained on CIFE

has a very low performance when tested on the GaMo dataset, the confusion matrix shows

that many images are classed to neutral. We have observed that the difference between the

images is significant among the two datasets. Our observations indicate that the expressions

in the CIFE dataset tend to be more exaggerated and thus easier to be identified, as it are

shown in Figure 6, while the GaMo dataset is more realistic to real life, as it is obtained from

ordinary users with a high amount of varieties in imitating facial expressions while playing the

game. As an example, Figure 7.1 shows two users who played the game. The first player shows

more explicit expressions while the second player’s expressions tend to be more implicit. This

makes it hard for the model trained on CIFE to classify the images from GaMo. The CIFE

model almost completely fails in recognizing Angry, Disgust and Happy in GaMo. We believe

the reason is that these three expressions in the CIFE dataset, whether they have fewer or

more samples, are much more highly exaggerated than those in the GaMo dataset. On the

other hand, when the model trained on GaMo is cross-tested on CIFE, the performance is

surprisingly good, even though the performance cannot beat that on the self-test. The reason

is that the model is further fine-tuned on a larger, more inclusive and more balanced dataset.

The GaMo model does reasonably well on all the three expressions failed by the CIFE model.

In addition, if subtle expressions (as in the GaMo dataset) can be recognized, the exaggerated

ones (as in CIFE) are not difficult to detect. As an example, the Happy faces in CIFE can be

much more easily recognized (with a 91% accuracy) using the GaMo model.

Here we also want to note that the performance using the VGG structure is much better

than using the AlexNet; interested readers please compare the results in Table 7.2 with the

results in our previous work [9]. Nevertheless, the performance comparison observations

between the CIFE and GaMo datasets are consistent from the AlexNet to VGG structure.

7.3 Comparison with more ”balanced” sub-datasets

In most facial expression datasets, the sample numbers for different expression are imbalanced.

The training process favors the class which has more samples to get higher accuracy. But

this will weaken the model’s ability to recognize the facial expression with less samples. In

reality, this will not be a good interactive experience if the facial expression model is unable

to recognize some less frequent facial expressions. So if we want to build a model that can
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Figure 7.1: Comparison of individual template images of two users from GaMo

Figure 7.2: Subtle facial expression recognition by CIFE and GaMo models (left two are
from the CIFE model and right two are from the GaMo model). Each histogram shows
the probability distribution of the seven facial expressions for each facial image. The order
of the expressions is Angry, Disgust, Fear, Happy, Neutral and Surprise. For some subtle
expressions, only the GaMo model works well.



7 CIFE AND GAMO EVALUATIONS 33

Table 7.7: Self evaluation confusion matrix of sub-balanced CIFE

Ang Dis Fea Hap Neu Sad Sur

Ang 0.71 0.04 0.05 0.06 0.04 0.19 0.03
Dis 0.06 0.55 0.06 0.03 0.19 0.03 0.06
Fea 0.04 0.02 0.64 0.02 0.04 0.05 0.15
Hap 0.05 0.02 0.04 0.73 0.03 0.07 0.03
Neu 0.05 0.14 0.05 0.02 0.60 0.04 0.08
Sad 0.11 0.04 0.04 0.04 0.05 0.68 0.01
Sur 0.03 0.03 0.08 0.02 0.07 0.01 0.67

recognize all the facial expressions with equal accuracy, the best way is to create a training

dataset with similar samples. In this case, for dataset CIFE, we will only have 4781=683x7

(683 is the number of Disgust expression samples in the CIFE train set, 70% of the total)

images in total, which may not be sufficient for training a well-performed deep learning model.

We use the subset of the CIFE dataset, which is balanced and run the same deep learning

training as the full CIFE. We augment the 683 images of each facial expression and then

finetune the VGG model. The final prediction result on CIFE is shown in Table 7.7. As

predicted, by comparing Table 7.3 and Table 7.7, overall the performance is lower than using

the full CIFE dataset, except the least frequent expressions: Disgust and Fear: The average

recognition rate drops by 9%. But for the GaMo dataset, we still have over 10K images in

the subset of balanced data, and the training data set has over 7770 images (1586x70%x7) .

The performance result using the balanced GaMo subset is shown in Table 7.8. Compared to

the result in Table 7.4, the overall performance improves by 6.4%. As a matter of fact, the

recognition rates for all the categories increase; those with lower numbers of samples in the

original GaMo datasets (Fear, Disgust and Sad) increase significantly, by more than 10%.

By comparing the two approaches in collecting facial expression images: searching from

the Web, and harvesting from game users, we have some important notes. First, it’s almost

impossible for us to get more facial images for CIFE as we already have searched most of

the image search engines in order to obtain high quality images. While for GaMo, as long

as our game is running, we can have more and more balanced expression data. Second, even

for the current version of GaMo, we retrained the deep learning model with the balanced

subset of the GaMo dataset and by testing on the same original GaMo testing data, we see

the performance has increased significantly.

In the balanced CIFE subset, due to fewer training data than the full CIFE, the perfor-

mance for Angry and Happy dropped dramatically but the accuracy for Disgust and Fear

doesn’t improve much. While for the GaMo dataset, since each facial expression still has
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Table 7.8: Self evaluation confusion matrix of sub-balanced GaMo

Ang Dis Fea Hap Neu Sad Sur

Ang 0.68 0.08 0.08 0.02 0.06 0.03 0.02
Dis 0.02 0.83 0.03 0.03 0.02 0.03 0.03
Fea 0.01 0.01 0.85 0.02 0.04 0.05 0.05
Hap 0.02 0.03 0.02 0.84 0.03 0.03 0.02
Neu 0.02 0.03 0.04 0.02 0.86 0.04 0.02
Sad 0.02 0.03 0.03 0.02 0.02 0.87 0.01
Sur 0.02 0.02 0.06 0.02 0.02 0.01 0.86

more than 1586 images, the balanced subset of GaMo is still a good dataset for training. The

balanced GaMo produced a better facial expression model than the full GaMo. For the less

representative facial expressions like Disgust, Fear and Sad, the improvement is huge. The

reason for this is that with equal consideration of all facial expressions during the training

process, all expressions’ deep features can be learned correctly, and if the test data can be

well represented by the training data, we can achieve very good results. So, with our frame-

work, we have a better chance to be able to obtain a robust expression predictor on all facial

categories.

7.4 Dataset cleaning via sample evaluation

The CIFE dataset was generated by using image search engines with keywords related to the

seven facial expression classes. On the other hand the GaMo dataset was collected by using

a facial expression recognition engine trained with the CIFE dataset for checking users facial

expression matching. Although we have manually run a proof-check on the quality of CIFE,

and have found that most human subjects (game users) in our facial expression game tried

to show correct facial expressions to achieve more scores, we cannot guarantee all the images

are correctly labeled. To reduce the impact of those weakly labeled images, we propose to

use yet another ”recursive” step to cleanse the datasets.

In our data cleaning step, we use the corresponding trained models to predict the facial

expression scores for all the images in the CIFE and GaMO datasets, respectively. So for each

image, there are 7 facial expression scores related to it. Since we know the facial expression

label of each image, only one of the 7 facial expression scores is useful for that image. For

example, a Happy image will result in 7 facial expression scores describing the 7 probability

of this image being classified as one of the 7 facial expression types, but we only consider the

value obtained for Happy facial expression. Using the facial expression scores, we can sort

all the images in each of the seven facial expression classes. For example, to sort all the Sad
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Figure 7.3: Comparison of the ”well” labeled (Correct) and ”badly” labeled (Wrong) samples
in CIFE

images, we first find all the images labeled Sad. Then we sort them based on their predicted

Sad scores. In each facial expression group, a higher score means that the score assigned to

the image is more reliable. To verify if this sorting process is meaningful, we randomly picked

images from the top 5% ”well” labeled images and the bottom 5% ”badly” labeled images.

Examples of these images are shown in Figure 7.3 and 7.4, respectively. From these two

figures, we can see the quality of the original labeling. The ”good” labeled samples tend to

have better facial expression correspondence with their labels, while for the ”badly” labeled

samples, the image content are less related to their labels.

Since the facial expression scores show how correctly images are labeled, we can use the

predicted scores as criteria to ”clean” each dataset. Here we excluded the 10% facial expression

images with the lower facial expression scores in each facial expression class in both CIFE and

GaMo. That yields in the ”cleaned” CIFE and GaMo datasets. To see if this ”self-cleansing”

can improve the facial expression recognition performance, we finetuned the pre-trained facial

expression models using the updated CIFE and GaMo dataset. After about 5000 iterations

of training with 50 images as one batch, we stopped at the converged models. The confusion

matrices for CIFE and GaMo are illustrated in Table 7.9 and Table 7.10. By comparing

them to the corresponding confusion matrices in Table 7.3 and Table 7.4, we can see the

average facial expression recognition accuracy values for CIFE and GaMo increase by 9% and
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Figure 7.4: Comparison of the ”well” labeled (Correct) and ”badly” labeled (Wrong) samples
in GaMo

8% respectively, from 76% and 75% to 85% and 83%. We can draw the conclusion that by

self-cleansing the facial expression datasets, we obtain cleaner datasets that consist of facial

expression images with higher quality, which can contribute to more accurate facial expression

recognition.

The changes in different facial expression classes can be seen in 7.9 and Table 7.10 after

the data cleansing. Comparing the confusion matrices of CIFE and GaMo recognition results

before and after data cleansing, we find most of the expressions have high recognition rates.

Note that for disgust expression of the updated CIFE model, the recognition rate dropped to

29% (from 53% in Table 7.3) . This is most probably due to the data imbalance of the smaller

training dataset after the data cleansing, since number of the samples for disgust is even

smaller, lower than what the CNN model expected to have, in a training process to control

the overal loss of all the expression categories. Nevertheless, the recongition rates with the

model cleaned GaMo data have consistent improvement across all facial expression categories

(except a slightly decrease in Neutral), since the GaMo data is more balanced. This is one

more reason why we have collected the GaMo dataset.
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Table 7.9: Self evaluation confusion matrix of the cleaned CIFE

Ang Dis Fea Hap Neu Sad Sur

Ang 0.91 0.01 0.02 0.01 0.03 0.02 0.01
Dis 0.1 0.29 0.04 0.07 0.30 0.11 0.06
Fea 0.03 0.01 0.78 0.02 0.04 0.02 0.08
Hap 0.01 0.01 0.0 0.99 0.01 0.01 0.0
Neu 0.02 0.08 0.08 0.05 0.85 0.02 0.03
Sad 0.02 0.01 0.01 0.003 0.004 0.94 0.0
Sur 0.01 0.01 0.08 0.02 0.07 0.01 0.85

Table 7.10: Self evaluation confusion matrix of cleaned GaMo

Ang Dis Fea Hap Neu Sad Sur

Ang 0.76 0.06 0.02 0.03 0.06 0.04 0.02
Dis 0.06 0.76 0.02 0.03 0.05 0.06 0.01
Fea 0.01 0.03 0.73 0.02 0.05 0.01 0.12
Hap 0.01 0.01 0.01 0.90 0.04 0.01 0.01
Neu 0.01 0.02 0.03 0.04 0.82 0.04 0.02
Sad 0.02 0.05 0.01 0.05 0.01 0.78 0.01
Sur 0.01 0.01 0.05 0.01 0.007 0.002 0.91

Figure 7.5: Users’ average scores on two GaMo and CIFE based CNN models
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7.5 Comparison in user feedback

The goal of facial expression recognition research is often to train a model that can perform

well in real scenes. This is especially true in human-computer interaction applications for

real daily activities, such as satisfaction studies of customers and viewers, and assistive social

interaction for people in need, or individuals with visual impairment and autism spectrum

disorders (ASD). One approach to verify an expression detector is through a test on ordinary

people with natural facial expressions. To accurately evaluate the two models, we analyze the

data collected from five new users (3 male and 2 female) who are not included in the GaMo

dataset, while playing the general version of the game. Note that in the phase of GaMo

data collection, we mainly use the customized game interface since users cannot perform well

with the general game interface. In this game engine performance study, the general game is

played five times by each user with the same game settings and the scores of the five rounds

are recorded. Using the two versions of our game engine, one trained on CIFE and the other

on GaMo, respectively. Figure 7.5 shows the result of this experiment. We have plotted the

two average scores for each player on games powered by the two game engines. According

to this figure, the GaMo game engine has a much better performance and results in higher

scores. This further confirms that the model trained on GaMo is more suitable for real-world

expression recognition.

This result agrees with the cross testing results which show that the GaMo model has

a better performance on the GaMo dataset itself. These observations would also support

our claim that GaMo is very useful in detecting subtle expressions. For instance, the user

can gain a point with a normal smile expression in GaMo model game as shown in Figure

7.2, while using the CIFE model, the expression can not be detected. Same fact holds for

detecting anger or any other expressions, as our players do not have any prior knowledge of

how obvious and explicit their facial expression should look like.
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8 Facial Expression Recognition: an Application

We have shown that our proposed recursive framework is useful in obtaining facial expression

data and training a robust expression predictor. We also believe that the data and trained

model is useful when solving real problems. So in this chapter we present the results of a

facial expression application (App) to help people with Autism Spectrum Disorder (ASD)

learn better social interaction skills.

8.1 A facial behavior training game for people with ASD

Autism Spectrum Disorder (ASD) is a group of developmental disabilities that are charac-

terized by social-communication impairments that cause significant deficits in the areas of

social interaction, communication and language skills, and repetitive behaviors and interests.

In particular, these deficits cause difficulties in the perception of faces and the expressions of

faces, understanding facial expressional states, and the perception of gaze direction. Stud-

ies of the face processing skills of people with ASD have shown that these impairments are

widespread and present from an early age, and affect both the perception and memory of

faces [67]. Studies have demonstrated that computer-based instruction is more effective in

individuals with ASD versus traditional instruction [68, 69, 70, 71]. Due to recent advances

in computer vision and deep learning, new avenues are now being explored in computerized

assistive and intervention programs for people with disabilities.

Our deep learning model can have high accuracy in analysis people’s facial expressions, so

we want use the facial expression deep model to help the ASD group. The main problem for

the ASD people is correctly recognize and perform facial expression, so our task is to train

them notice the facial expression and also learn to express right facial expressions. Based on

the target we want attain, we name our project EmoTrain.

8.2 Related work in applications for ASD

There exists a lot of interesting work relating to applications of human facial expression

recognition. The MIT Media Lab has created ”Affectiva”, an application for analyzing your

smile, which began as an effort to help people on the autism spectrum who have difficulty

reading facial expression, and is now being commercialized to help businesses understand their

customers[68]. In [69] Cockburn, et al propose including real-time expression recognition in

an existing dynamic game for children with ASD as a means for improving the efficacy of

the gamefied intervention platform. In their work they utilize the Computer Expression

Recognition Toolbox (CERT), which analyzes facial expressions in real-time and can classify

them into 7 basic facial expressions and 30 facial action units from the Facial Action Coding
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System. In [70] Tanaka, et al propose Let’s Face It!, a computer-based intervention program,

that is comprised of 7 interactive computer games. These games are created to enhance

the face recognition skills, holistic face processing skills, and attention to the eye region

in children with autism. The results from their study were promising, indicating that a

short-term intervention program produces significant improvements in the face processing

skills of children with autism. In [71] Golan, et al evaluate an animated series designed to

enhance facial expression comprehension in children with autism spectrum conditions, The

Transporters. The children who participated in this study exhibited significant improvement

in facial expression recognition in all the task levels.

Studies have demonstrated that there are several advantages to using computer software

for instruction with ASD individuals. In [73] the impact of computer instruction vs traditional

behavioral techniques for vocabulary acquisition for children with ASD was examined. The

study demonstrated that the children learned more, paid more attention, and were more

motivated in the educational software program that was designed based on behavioral learning

principles than in an education program with human instructors. In [74] a computerized

intervention program for teaching adults with ASD to recognize facial expressions in faces

and voices, Mind Reading, was evaluated. The adults who used Mind Reading for even

a relatively short period of time showed significant improvement in their facial expression

recognition skills. The use of educational software for individuals with ASD is more effective

for a myriad of reasons. Individuals with ASD prefer computerized educational environments

since they are predictable and consistent, and devoid of the social factor which causes them

stress. With computer-based instruction these individuals have the ability to work at a pace

that suits their learning capacities, and can repeat lessons until they are mastered [72].

8.3 EmoTrain: system overview

EmoTrain is a platform that is designed to target deficits in recognizing and labeling facial

expressions, and reciprocating facial expressionally and to help teach these face processing

skills to individuals with ASD. EmoTrain is designed to teach individuals with ASD to rec-

ognize 7 basic human facial expressions and to also perform these 7 facial expressions. We

use the interaction pattern in our facial expression games. When playing EmoTrain, users

are asked to attempt to match the images of face expressions they are presented with on the

screen. By incorporating our work in real-time facial expression recognition from a mobile

camera, the platform is able to track the user’s expressions in real-time and judge if the user

is performing those expressions correctly. In [69] it is demonstrated that training in facial

expression mirroring is essential to developing recognition skills. This sort of training in mim-

icking expressions allows us to improve the skills of individuals with ASD in facial expression
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recognition, and in automatic facial expressional reciprocity.

The game logic for EmoTrain is as follows: a user is presented with images of various faces

representing the seven different facial expressions and has to perform that same expression

in order to score. The EmoTrain interface is shown in Figure 8.1. On the right half of the

screen is the game scene, on the top left corner is the live video stream from the front-facing

camera of the device, and on the bottom left corner is displayed a visualization of the facial

expressions detected in the user?s face in real-time.

Figure 8.1: Screenshot of EmoTrain interface.

Each face image target enters the screen from the top and the user has to match that facial

expression before it reaches the bottom in order to score. The face image disappears if the

user performs a facial expression that matches the target image, which is judged by the CNN-

based facial expression detector. The EmoTrain platform accesses the front facing camera on

the user’s device and sends the camera frames to our server running the CNN model– which

analyzes each image and generates a probability vector for the seven facial expressions and

sends this back to the app. The app then compares the probability vector with the image label

for the face image target. In order to combat inaccurate facial expression probability results

and make it easier for a user to score each facial expression category is assigned a predefined

threshold. This threshold varies for each facial expression since some facial expressions are

more difficult to mimic voluntarily such as anger and fear. If the threshold is reached for the

facial expression category that is the same as the image target label then that is considered
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a match and the user scores.

In order to make the platform more engaging and interactive for the user we have added

certain visualizations and multimedia. On the real-time video of the user’s face on the upper

left corner. Dlib’s face landmark detector [78] are utilized to track the user’s face on the

screen and 68 landmarks on the face. On the lower left corner of the screen a bar graph live

visualization is displayed that shows the probability of each facial expression the CNN model

predicts for the user’s face.

8.4 User evaluation

In order to gauge the effectiveness of the EmoTrain platform, 9 subjects participated in an

evaluation study. The participants were all young adults (ages 18-25) who were diagnosed

with ASD. The participants received training with the EmoTrain platform 2 times a week for

2 weeks, for 20 minutes each session. In total each participant received 80 minutes of training

in the four 20-minute sessions. The participants were administered a pre-use survey before

they began using the platform and a post-use survey after they had completed all their four

training sessions. Both surveys consisted of two sections: the first section was a general survey

to gauge interest and the second section was an assessment to determine the subject’s facial

expression recognition abilities. The general part of the pre-use survey administered before a

subject started using EmoTrain was about the subject’s online gaming preferences, and the

types of mobile devices they use along with their proficiency in using them. The assessment

part of the pre-use survey asked a user to identify the facial expressions in 14 images, where

there were 2 images for each of the 7 basic facial expression categories. The assessment

questions of the pre-use surveys were simple: How is he/she feeling? The assessment was

multiple choice with 7 choices for each facial expression and an 8th choice of “I’m not sure”.

The general part of the post-use survey administered after a subject completed all his/her

sessions with EmoTrain was about the subject’s experience with EmoTrain such as difficulties

with the platform and recommendations for improvement. The assessment part of the post-

use survey (the post-assesment) asked a user to perform the same expression identification

task as the pre-assessment but with a different set of 14 images.

The effectiveness of the platform was analyzed by determining if the facial expression

recognition skills and the facial reciprocity skills of the participants improved. The improve-

ment of the facial recognition skills of the subjects was determined by looking at the subjects’

responses to the assessments administered before and after the study. The improvement of

the facial reciprocity skills of the subjects was determined by looking at the subject’s score

for each session. If the score increased significantly for each session with EmoTrain then we

concluded that the facial reciprocity skills for that participant had improved. In Figure 8.2
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we compare each subject’s session 1 total score with session 4 total score. From this we see

that all the participants’ total score increased each session of game play with EmoTrain. This

demonstrates that even with a relatively short training period of 80 minutes the facial expres-

sion recognition and expression reciprocity skills of the participants in this study significantly

improved. In Figure 8.3 we see each subject’s pre-assesment in comparison to each subject’s

post-assessment survey. Every subject was scored out of 14, which is the total images asked to

identify. From this figure we see that most of the participants’ scores in the post-assessment

show a significant improvement from their scores from the pre-assessment in facial expression

recognition.

Figure 8.2: The improvement of subjects’ facial reciprocity skills: comparison of their game
scores in the first session and the last session.

The general survey that was administered to the participants upon completion with the

sessions demonstrated that 100% claimed to really enjoy the game, and 90% would recommend

EmoTrain to a friend. Most of the participants found the interface fairly easy to understand

and use, with only 20% stating that it was difficult to match the face expression targets.

8.5 Conclusion and discussion

As a conclusion, EmoTrain is designed as an interactive platform based on deep learning that

is designed to help improve face expression recognition and reciprocity skills in individuals

with Autism Spectrum Disorder. EmoTrain is a gamefied training platform that prompts

user’s to match the face expression images shown with their own faces in real-time. By

utilizing our work in real-time facial expression recognition from a mobile camera, EmoTrain’s

interface tracks the user’s face from the device’s front facing camera and can determine if

the user makes the correct face expression. Using this method of mimicry training, the

objective is to help people with ASD overcome their impairment in face processing skills

such as perception of faces, understanding facial expressional states, and facial expressional
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Figure 8.3: The improvement of the facial recognition skills of the subjects: comparison of
pre-assessment and post-assesment.

reciprocity. The effectiveness of this platform was evaluated by administering training with

EmoTrain to a group of participants diagnosed with ASD. By analyzing the data collected

from the participants’ performance while playing on EmoTrain over time and comparing their

face processing skills before and after playing, we demonstrated that the platform is effective.
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Part II

Action Unit Detection: Learning Transfer,

Attention Coding and Temporal Fusion
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9 AU Detection: An Overview

Facial Action Unit (AU) detection is an essential step in the facial analysis. With a robust AU

detector, facial expression and facial related action problems can be solved more effectively.

AU detection is the process to find some basic facial actions defined by FACS, the Facial Action

Coding System [26]. Each AU represents a basic facial movement or expression change. Table

4.1 listed 12 basic AUs labeled in the BP4D dataset [52], and Figure 9.1 shows four basic

AUs, namely eyebrows lower, cheek raiser, chin raiser and lip tighter. The AUs are elements

for more complicated facial actions. For instance, sadness might be the combination of AU1

(inner brow raiser), AU4 (brow lower), and AU15 (lip corner depressor).

Figure 9.1: Action unit images for AU 4, 6, 7, 17

Most of current AU detection approaches either need the processed faces with frontal views

or the texture features are artificially designed, making the features not well learned [37, 47].

To tackle these problems, we propose the EAC (enhancing and cropping) Net, (Figure 9.2),

based on the convolutional neural network (CNN)[33] to detect facial AUs automatically. Even

though a CNN has great capability in finding different patterns across images, it is not flexible

enough to know which regions of the images need more attentions, and when learning from

images in a dataset, the network is unable to shift the pixels to compare across corresponding

regions. Therefore we enhance the regions of interest by assigning higher learning weights to

corresponding areas during deep model training, and then crop corresponding areas to force

the network to learn better representations through training on related individual regions.

We first build the enhancing net (E-Net), which is constructed by adding attention layers to

a pretrained VGG net[33], one of the very effective CNNs. The E-Net yields a significant

improvement in the average F1 score and accuracy on the BP4D dataset as compared to the

state of the art approaches. We then add cropping layers on top of the E-Net and design

the EAC-Net. The cropping layers are implemented by cropping AU areas of interests from

high-level convolutional feature maps. The EAC-Net yields up to 7.6% increase in average

F1 score and 19.2% improvement in accuracy as compared to the state of the art approaches

when applying to the BP4D dataset.

To better address the problem of effective fusion of temporal information in AU detection,

we also propose a C-Net based region of interest (ROI) adaptation optimal LSTM-based

temporal fusing approach. The optimal selection of multiple LSTM layers to form the best
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Table 9.1: Rules for defining AU centers

AU index AU Name AU Center

1 Inner Brow Raiser 1/2 scale above inner brow
2 Outer Brow Raiser 1/3 scale above outer brow
4 Brow Lowerer 1/3 scale below brow center
6 Cheek Raiser 1 scale below eye bottom
7 Lid Tightener Eye center
10 Upper Lip Raiser Upper lip center
12 Lip Corner Puller Lip corner
14 Dimpler Lip corner
15 Lip Corner Depressor Lip corner
17 Chin Raiser 1/2 scale below lip
23 Lip Tightener Lip center
24 Lip Pressor Lip center

LSTM Net is carried out to best fuse temporal features. The proposed approach outperforms

the state of the art significantly, with an average improvement of around 13% on BP4D and

25% on DISFA, respectively.

This part is organized as follows. Chapter 10 provides an overall summary of the ideas of

our EAC-Net approach, and some related work. Chapter 11 details the design and analysis

of the EAC-Net. A temporal fusion approach based on LSTM is described in Chapter 12. To

evaluate our method, we test our approaches with standard datasets in Chapter 13 and with

our candid image dataset CIFE-AU in Chapter 14. Possible AU detection based applications

are discussed in Chapter 15.
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Figure 9.2: The structures of FVGG, E-Net and EAC-Net for AU detection
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10 AU Detection: Design Considerations and Related Work

10.1 AU detection: design considerations

The idea of our approach is inspired by recent breakthroughs in deep learning research. The

first inspiration is learning transfer. Pretrained ImageNet models and transfer learning have

found significant applications in many areas [27, 28]. The main reason is that the low-level

convolutional layers extract similar features across different recognition tasks, which means the

learned filters can be transferred. The second inspiration is attention coding and cross-layer

connections. Yang et al [29] proposed to use an attention layer for finding interesting areas to

provide better answers in a visual question-answering task. In salient object detection [30],

a salient map is used to describe the important sub-areas of an image. This salient map (or

attention map) is a 2D matrix with its elements ranging from 0 to 1, depicting the importance

of corresponding pixels on the entire image. We believe that by applying an attention map to

an existing network for facial computing, richer and more robust information can be obtained.

A skipping layer structure is used in the Residual Net [51]. Since both lower and higher levels

of CNN layers correspond to more spatial and semantic information, the skipping connection

of layers feeds both spatial and semantic features into CNNs, which can improve the model

performance. The third inspiration is the region of interest (ROI) learning. The SPP Net

[31] proposed an ROI pooling idea, which can turn different areas of interest into fixed length

features. Faster RCNN [32] generated region proposals for objects to be detected and used

the proposals to determine the “objectiveness”. These findings made us believe that it might

be possible to apply a similar operation to facial interest regions and learn individual filters

for specific regions.

The design of our EAC-Net has integrated the three ideas: learning transfer, attention

coding and cross-layer connections, and ROI learning. Figure 9.2 shows the structure of

our EAC-Net. The EAC-Net consists of three key parts: a pretrained model, enhancing

layers, and cropping layers. The first part is a fine-tuned pretrained VGG 19-layer network

[33]. The low-level convolutional layers (Group 1 and 2) of the pretrained network and their

parameters are frozen for low-level visual feature extraction. The parameters of the higher-

level convolutional layers (Group 3 and 4) are updated for the AU detection task. The use

and fine-tuning of VGG pretrained net are with the spirits of learning transfer, to ensure that

the network has a deep understanding of the input images. The second part of the EAC-Net

consists of the enhancing layers that are on top of Group 3 and 4 convolutional layers, thus

integrating attention coding and cross-layer connecting. The purpose of adding these layers

is to give more attention to individual AU areas of interest, meanwhile fusing features cross

different layers. The features extracted after the enhancing layers are supposed to contain
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more valuable information by integrating lower level spatial features and higher level semantic

features for AU detection. The third part of the framework includes the cropping layers for

regions of interest learning. Sub-features are cropped from ten selected interest areas of the

feature map, followed by upscale layers and individual convolutional layers for each sub-

area for further regions of interest learning. The purpose of the cropping layers is to assure

that only corresponding regions are compared by the individual cropping networks. Adding

cropping layers as the higher convolutional layers would also help the region to obtain deeper

contextual information.

10.2 AU detection: related work

AU detection has been studied for decades and many approaches have been proposed. Fa-

cial key points play an important role in AU detection. Many conventional approaches

[35, 36, 39, 41, 42, 43, 49, 55] were designed by employing texture features near the fa-

cial key points. Valstar et al [34] analyzed Gabor wavelet features near 20 facial landmark

points. The features were then selected and classified by Adaboost and SVM classifiers. Since

landmark-based geometry changing is robust in many AU detection methods, Fabian et al [37]

proposed an approach for fusing the geometry and local texture information. The geometry

information is obtained by measuring the normalized facial landmark distances and the angles

of the Delaunay mask formed by the landmark points. The texture features were obtained by

applying multiple orientation Gabor filters to the original images. Zhao et al [38] proposed the

Joint Patch and Multi-label Learning (JPML) for AU detection. Similarly, landmark-based

regions were selected and SIFT features were used to represent the local patch. Overall, the

conventional approaches focused on designing more representative features and fine-tuning

more robust classifiers. In addition to facial AU detection, some studies also have focused

on other facial related problems. Song et al [48] investigated the sparsity and co-occurrence

of action units. Wu [44] exploited the joint of action unit detection and facial landmark lo-

calization and showed that the constraints can improve both AU and landmark detection.

Girard et al [45] analyzed the influence of different sizes of training datasets on appearance

and shape-based AU detection. Gehrig et al [46] tried to estimate action unit intensities by

employing linear partial least squares to regress intensities in AU related regions.

Over the last few years, we have witnessed that CNNs boost the performance in many

computer vision tasks. Compared to most conventional artificially designed features, CNNs

can learn and reveal deeper information from the training images which in turn contribute to

better performance. Zhao et al [47] proposed a region CNN-based approach for AU detection.

Instead of directly applying a regular CNN to the entire input image, the network divides

the input image into 8x8 blocks and then trains over these regional areas independently. All
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sub-regions are then merged back into one net, followed by regular convolutional and fully

connected layers. The proposed approach outperforms both the regular and Fully Convolu-

tional Net (FCN)[47]. Jaiswal et al [40] proposed using a CNN with a shallow region and

shape mask a is employed to learn static CNN features while Long and Short Term Memory

(LSTM) is used to extract dynamic features from the trained CNN mode.

Our proposed approach is also CNN-based and we share similar ideas with Zhao et al

[47] in training sub-regions independently. The distinction of our approach is that instead

of directly dividing the image into blocks, we use a “smarter” way to find the important

areas and crop the regions of interest for individual training. In their approach, the facial

landmarks play an important role for normalizing the faces. Errors will accumulate in both

landmark detection and face normalization processes, and facial normalization may neutralize

expressions. However, in our approach, the network directly works on the interest areas of

original face images, and even though landmarks are also used for building the attention map,

our approach has a large tolerance for landmark shifting since we use a relatively large local

region to cover the AU target areas. This will reduce errors from misalignment along images

and in the meantime focus more on interest regions.
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11 EAC Net: CNN Learning Transfer and Attention Coding

The EAC-Net is composed of three parts: the fine-tuned VGG network, enhancing layers,

and cropping layers. For comparison purposes, we implement three networks using VGG net

as their base: FVGG, the fine-tuned VGG network; E-Net, the Enhancing Net based on the

fine-tuned VGG; and finally EAC, the integration of Enhancing and Cropping Nets based on

the trained E-Net model.

11.1 FVGG: fine-tuned VGG model

Fine-tuning pretrained models for image classification are proved to be efficient in many areas

[27, 28]. To make sure that we can have a deep understanding of the images for AU detection,

we employed the VGG 19-layer model [33]. The VGG model follows a conventional CNN

structure, comprising 16 convolutional layers and 3 fully connected layers. It also includes

5 pooling layers downsampling input images from 224×224 to eventually 7×7 feature maps.

In our implementation, we divide the convolutional layers into 5 groups as shown in Figure

9.2, which are separated by the 5 pooling layers. There are 2, 2, 4, 4, 4 convolutional layers

from Groups 1 to Group 5, respectively. The fine-tuned VGG (FVGG) structure reflects the

spirit of learning transfer as VGG has been modified in many related tasks such as object

detection or facial expression recognition. Before designing our special purpose networks

(E-Net and EAC-Net) for AU detection, we first modify and fine-tune the VGG net as our

baseline approach. We keep the parameters of the first three groups of convolutional layers

unchanged and update the rest of the layers during training. In order to match with our AU

detection tasks, the numbers of nodes for the last 2 fully connected layers are changed to 2048

(by reducing parameters) and 12 (by matching the 12 AU targets), respectively. Dropout is

also applied on both new layers to prevent overfitting during training.

11.2 E-Net: the enhancing net

In a regular CNN, when an image is fed into the network, CNN filters will slide through

the whole image, and different image regions are processed equally. This is fine for object

classification task since we have no idea of how the input image looks like. But for structured

images, such as faces, we would like to give more attention to more interesting regions.

As one of our inspirations, Yang et al [29] applied an attentional layer to CNN middle

features when tried to find a more effective feature for a question answering task. As shown

in Figure 11.1, if we want to know what is in the basket, a simple way is direct “filter out”

the basket region by applying an attention layer. However, this will discard a lot of informa-

tion that is not included in the attention layer, therefore we need a method to combine both
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attention enhanced features and the rest of the less important areas. Another interesting ap-

proach for combining CNN multiplayer features is the skipping layer structure in the Residual

Net [51]. We illustrate the skipping layer structure in Figure 11.2 (left). The skipping layer

connection of the residual net makes the CNN incorporating both lower level spatial features

and higher level semantic features as input, together providing a better representation of the

input image. Integrating these two ideas, we designed our E-Net unit as the combination of

the regions enhanced feature and the regular filtered feature as shown in 11.2 (right), which

is an effective integration of the attention layer and skipping layer structures.

Figure 11.1: Attention layer for a question answering task [29]

Figure 11.2: Skipping layer connection in Residual Net (left) and E-Net (right)

Figure 9.2 includes the E-Net structure and Figure 11.2 demonstrates how the E-Net works

by using our enhancing layers. The feature map output from Group 2 is multiplied by the

designed attention map – the first enhancing layer (details will be discussed below), in parallel

with the convolutional layers in Group 3. The two feature maps – one from the enhancing

layer and the other from the Group 3 convolutional layers – are then fused by element-wise

summation. The same operation is performed jointly by the second enhancing layer with the

convolutional layers in Group 4. The reason why we designed the enhancing layer is that not

all the areas of a facial image are equally important for individual AU detection. We can see

that different AUs focus on corresponding sub-areas of the face. For example, in Figure 11.3,

the eyebrow raiser AU is close to the texture in the area near the middle of the eyebrows and
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the lip corner AUs are determined by the texture information around lip corners. These areas

are more important than the nose or most of the other parts of the face. For this reason, we

build the attention map for AUs based on key facial landmarks, as shown in Figure 11.3.

AU center definitions. We have noticed that many previous works provide robust facial

landmark positions [50]. Furthermore, our approach does not require the localization of

landmarks to be very accurate in pixels since we are trying to find the areas for AUs. We

work on 12 AUs as listed in Table 9.1 since these are the ones labeled in the datasets we use.

After obtaining the facial landmarks as shown in Figure 11.3, we can define the centers for

AUs and then build a bounding box around the center. Observing the AU figure, we manually

define the center of AUs (the green spots) based on the muscles of a human face. Note that

many AU centers are not directly on the same spots of the detected landmarks. We define a

scaled distance as a reference for facial pixel shifting by calculating the distance of the outer

corners of the two eyes, as shown in Figure 11.3. The centers for 12 listed AUs in Table 4.1

are illustrated in Figure 11.3 (the green spots). Since most AUs are symmetric on a human

face, we define one pair of points for each AU. We should note that some AUs share the same

centers, such as the lip corner puller and the lip corner depressor. So finally we defined 20 AU

centers on the face for the 12 AUs listed in Table 9.1. The rules for defining the centers of

the 12 AUs are also summarized in Table 9.1. After obtaining the AU centers, we can build

the attention map based on center positions.

AU center localization and AU area extraction. Given an image like the one shown

in Figure 11.3 (left), we first obtain the landmarks for the key points on the face, which

are shown with blue points. Having the facial key points, we can obtain the AU centers by

shifting a distance or directly using existing facial landmarks. The AU centers are illustrated

with green points in Figure 11.3. The AU centers are in pairs due to the symmetry of the

human face, with each AU center corresponding to one or more AUs. To make the shifting

distance more adaptable to all face images, we define a measurement reference for the shifting

distance. Inner corner distance is used as the scaled-distance, as shown in Figure 11.3. This

scaled-distance (listed in in Table 9.1 for each AU) is used to help locate the AU centers. We

first resize the images to 100x100 to make sure the same scales are shared among all images.

Then, for each AU center, we define the nearby 5 pixels belonging to the same area, therefore

the size of each AU area is 11x11. Higher weight is assigned to the closer points to the AU

center. The relationship follows the following equation:

w = 1− 0.095 · dm (11.1)
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Figure 11.3: Attention map generation. Left: landmarks(blue) and AU centers (green) on a
face; Right: attention map of the face

where dm is the Manhattan distance to the AU center.

Attention map generation and application. An attention map obtained for a face image

is also demonstrated in Figure 11.3. The areas in the attention map with higher values

correspond to the AU active area in the face image and can enhance deep learning at these

areas in our enhancing layers. We then apply the obtained attention map to the VGG feature

maps. Figure 9.2 has shown the E-Net structure in the EAC-Net framework. For Group 1

and Group 2, we keep the layers unchanged for detecting low-level features. For Group 5 (size

14×14), the feature maps are too small to use any attention map, so eventually, we apply

the attention map only to Group 3 and Group 4, thus we add two enhancing layers. Adding

attention layers directly to the feature maps by replacing the original ones will lose all the

contextual information. So, we add the attention maps to the feature maps in parallel with

the convolution operations, in Group 3 and Group 4, respectively, as shown in Figure 9.2.

The element-wise summation is then conducted to obtain enhanced feature maps. We call our

enhancing net based on the fine-tuned VGG model the E-Net. The E-Net structure is also

similar to Residual Net [51] but is designed not only for integrating features of different levels

but also for generating enhanced features by applying an attention map. Of course, the E-Net

also includes the VGG fine-tuning network. After training this model, we observed that the

E-Net can lead to 5% increase in average F1 score and 19% increase in average accuracy on

the BP4D AU dataset [52]. The detailed experimental results are reported in Chapter 13.

11.3 EAC-Net: the integrated model with enhancing and cropping

The E-Net can generate the features with more emphasis on the AU related regions, but it

does not change the fact that the same AU areas are not normalized across different images,

and different facial regions still share the same set of filters to extract features. For a general
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object detection task, sharing the same filters for the whole feature map is a norm, but for

understanding a face, which is a very structured target, this is not an effective approach.

Naturally different facial regions should use different sets of filters, which would be more

efficient since we can train separate filters for specific AU regions, around nose, eye or mouth

areas, respectively.

In the state of the art work, a simple region layer structure [47] has been proposed to

provide certain local convolutional training. The idea is to divide a feature map into 8×8

subregions, and each region uses a separate CNN model. Then if faces are aligned for all

the input images, we can obtain those locally trained CNN models for individual sub-blocks.

The disadvantage though is that during face normalization and image division, some context

information might be lost, and since face normalization is trying to align the faces to a neutral

expression, the facial expression might be weakened.

C-Net construction. The goal of our cropping net (C-Net) is to obtain each individual AU

related area without changing the textural information of the original images. Then, for each

AU sub-area, independent convolutional layers are applied to learn more features. Figure 9.2

also includes the structure of the C-Net. Cropping layers are added to the end of Group 4,

right after the enhancing feature maps are obtained. The output size for the feature map from

Group 5 is 512×28×28. With the same ratio as an AU area of 11×11 pixels in the attention

map versus the face image of 100×100 pixels, the cropped areas should have the size of 3×3.

For each of the 20 AU centers, we obtain a feature sub-map with size 512×3×3; in total, we

have 20 such feature sub-maps for the 20 AU centers. When adding convolutional layers after

the cropped feature map, the newly obtained feature map size will be 512×1×1. We feel that

this is less representative for the AUs. So, before adding new convolutional layers, we apply

an upscaling layer to the feature maps, upscaling the feature maps to 512×6×6. Actually,

our experiments show that this upscaling layer by itself leads to approximately 1% increase

in AUs average F1 score.

EAC-Net construction and training. To make the C-Net converge more quickly, we build

the C-Net on top of the pretrained E-net, thus leading to the Enhancing and Cropping Net

(EAC-Net). So the features obtained from Group 4 have already been pretrained for AU

detection. During implementation, we have found that feature values obtained from the last

convolutional layer of Group 4 are very large and make the C-Net unable to converge. So

a local response normalization layer is added before C-Net convolutional layers. The local
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response layer normalization algorithm follows Eq. 11.2:

x′i =
xi

(k + αΣjx2j )
β

(11.2)

In our experiments, k=2, α=0.002 and β=0.75. xi, x
′
i are the model extracted feature values

before and after applying the normalization, while j =, 1..., 9 denotes the 9 neighboring 2D

feature pixels around xi (including itself). All the individual convolutional layers are followed

by fully connected layers with a fixed size of 150. We then concatenate the fully connected

layers. The rest is similar to FVGG and E-Net.

AU detection is different from a regular classification task in the sense that instead of

classifying images into one object category, multiple AUs can co-occur simultaneously. Thus

this is a multi-label binary classification problem. Cross entropy as in [47] is used to measure

the loss for this kind of problem. In our loss function (Eq. 13.2), we added offsets to prevent

the number from becoming too large:

Loss = −Σ(l · log(
p+ 0.05

1.05
) + (1− l) · log(

1.05− p
1.05

)) (11.3)

where l is the ground truth label for one certain AU, p is the regressed number by the trained

model for the certain AU ranging from 0 to 1.
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12 LSTM Net: Temporal Fusion in AU Detection

12.1 Why LSTM

A facial action always has a temporal component when using a video sequence as the input,

hence knowing the previous states of a facial expression can definitely improve the AU detec-

tion. However, one of the limitations of the CNN structure is the lack memory of previous

states. Regular CNNs are only able to process a single image at a time. To deal with a se-

quence of images, C3D [57], which is basically a 3D version of CNN, has been proposed. C3D

can deal with sequential images but the number of input images is fixed. The training of a

C3D is very time consuming too. Another huge shortage is, compared to using regular CNN,

the lack of existing pretrained models similar to VGG [33], GoogleLeNet [58] and ResNet

[51], which can all provide very good initial parameters as a starting point for training. The

current best network for temporal fusion is the Long Short Term Memory (LSTM) network

[60]. As a recurrent net, it can memorize the previous features and states, which can help

current feature learning and estimation. It also has novel gate structures to make it suitable

for long time and short time temporal feature learning. LSTM has also proved to be effective

in action recognition [59].

Figure 12.1: Structure of a simple LSTM block [61].

12.2 LSTM-Net: temporal fusion based on LSTM

The structure of a LSTM block is shown in Figure 12.1. In the LSTM block, Ct−1 and Ct are

the cell state parameters at the previous and the current times, the long and short memories

are described by the cell state vector Ct. The cell states store the memory parameters in

LSTM. At each time step, a LSTM kernel will take the previous output ht−1 and the new
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input xt to generate the new output ht through gates, which is shown as yellows blocks in

figure 12.1. Meanwhile, the cell state gets updated. A new input feature fed to a LSTM block

will go through three steps. First, the LSTM has to decide what information to obtain/forget

from the old cell state. This is based on the previous LSTM output ht−1 and new input

feature xt. The forget vector ft follows equation 12.1:

ft = σ(Wf · [ht−1, xt] + bf ) (12.1)

where Wf and bf are the forget gate parameters. The next step is to update the cell state

for future use. The new cell state Ct is determined by two elements: previous partially saved

cell state Ct−1, current LSTM input xt and previous output ht−1. The last two vectors need

to go through an “input gate” and a tanh activation function. The updated cell state can be

obtained using equation 12.2:

Ct = ft ∗ Ct−1 + it ∗ Čt (12.2)

where it is the merged input of xt and ht−1 defined by equation 12.3,

it = σ(Wi · [ht−1, xt] + bi) (12.3)

where Wi and bi are the input gate parameters. Čt in equation 12.2 is the candidate cell

state for generating final cell state and output which we can regard as a temporal cell state

parameter, following equation 12.4:

Čt = tanh(Wc · [ht−1, xt] + bc) (12.4)

where Wc and bc are the candidate gate parameter.

Finally, we generate the current output ht for the LSTM based on the updated cell state

Ct, the current input feature xt and the previous output ht−1, which can be described by

equation 12.5:

ht = σ(Wo · [ht−1, xt] + bo) · tanh(Ct) (12.5)

where Wo and bo are the output gate parameters. Meanwhile, the output ht and the cell Ct

are passed to next time output generation.

LSTM can be easily connected with CNNs. Fully connected layers of a CNN can be

directly fed into the input of LSTM blocks. To better represent the fully connected features,

multiple LSTM kernels can act as a layer to represent temporal features. As shown in Figure
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Figure 12.2: Connection of CNN and LSTM

12.2, the CNN can extract the image features as a 1-D vector. The first frame of an image

sequence at time t1 is sent to the LSTM layer at t1. The LSTM layer will produce output

feature h1 for the first frame, then at time t2, a new frame is sent to the LSTM layer and the

new output feature is produced based on x2 and h1, so on so forth. Here we use hi(i = 1...n)

to represent the ith LSTM feature; in Figure 12.2 n = 24. In different tasks, either only the

last LSTM feature hn or the whole LSTM features {h1, h2, ...hn} are used for final prediction.

In our case, we believe that all the frames can contribute to the AU detection. Therefore, we

use all the LSTM features; in our experiments, the number of frames is 24.

LSTM can effectively fuse the temporal information in a sequence. Similar to the con-

volutional layers, more than one LSTM layers can be stacked to form a LSTM-Net in order

to achieve deeper understanding of the temporal relationships. As shown in Figure 12.2, the

LSTM Net has 2 LSTM layers stacked for AU detection. In our work, we will try different

number of layers to compare the LSTM based AU feature fusion performance.
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13 AU Detection Evaluations

13.1 Datasets and evaluation methods

The most popular datasets for AU detection are CK+ [53], BP4D[52] and DISFA[54]. AU

datasets are harder to obtain compared to other tasks such as image classification. This is

because there are multiple AUs in one face which requires much more manual labeling work.

Here we give a brief review of the AU datasets referred and compared in this thesis.

DISFA: 26 people are involved in the DISFA dataset. The subjects are asked to watch videos

while spontaneous facial expressions of the subjects are obtained. The AUs are labeled with

intensities from 0 to 5. We can obtain more than 100,000 AU-labeled images from the video,

but there are much more inactive images than the active ones. The diversity of people also

makes it hard to train a robust model.

BP4D: There are 23 female and 18 male young adults involved in the BP4D dataset. Both

2D and 3D videos are captured while the subjects show different facial expressions. Each

subject participates in 8 sessions of experiments, so there are 328 videos captured in total.

AUs are labeled by watching the videos, and the valid AU frames in each video vary from

several hundred to thousands. There are around 140,000 images with AU labels that we can

use.

The AU labels in BP4D datasets are either 0s or 1s, meaning the related AUs are active or

inactive. In reality, AUs may be in states between 0 and 1, i.e., expressions have intensities.

This can make the prediction more accurate but much more data labeling work will be needed.

In this thesis, we mainly focus on the 0-or-1 AU label classification.

To train a deep learning model, we need larger numbers of image samples, and the diversity

of the samples is also important. Similar to the experiment settings in [47], we choose BP4D

to train our model. We first split the dataset to 3 folds based on subjects. Each time two

folds are used for training and the third fold for testing. For the DISFA dataset, all samples

are used for testing the BP4D trained model.

The balance of data is very important in training deep learning models. For our task of

multi-label learning, this is even more challenging since several AUs are not independent of

each other. The original occurrence rate for the 12 selected AUs is shown in the first row of

Table 13.1. We can clearly see that the AUs are divided into two groups. AUs 6, 7, 10, 12,

14 and 17 are more representative than the minor AUs 1, 2, 4, 9, 11 and 12. The minor AUs

are not presented in many of the image samples. If we just pick all images that do include
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Table 13.1: BP4D samples balancing for AU occurrences in training

AU 1 2 4 6 7 10 12 14 15 17 23 24

Original 0.24 0.18 0.23 0.44 0.52 0.58 0.57 0.43 0.15 0.36 0.19 0.16
Minor AU In 0.56 0.43 0.40 0.47 0.57 0.64 0.59 0.56 0.35 0.58 0.46 0.39

After balancing 0.39 0.32 0.33 0.45 0.54 0.60 0.56 0.49 0.30 0.50 0.33 0.30

the less representative AUs, the occurrence rate is shown in table 13.1, the second row.

We can see that even with only the image samples that include the less representative

AUs, the occurrence rates are still imbalanced. And we still need to keep the other samples

to maintain the data diversity. Thus, we have finally decided to try to keep the balance of

training data by changing the selection rate during training. For all the training samples,

we used to equally and randomly pick a fixed number of images. To compensate for the

less occurred AUs, we increase their rates during random picking operation by 4 to 7 times.

Then the occurred rates by doing this are shown in Table 13.1, the third row, which is more

balanced.

Both the F1 score and the average accuracy are used to measure the performance of AU

detection. In a binary classification scenario, especially when samples are not balanced, the F1

score can better describe the performance of an algorithm [34, 35]. The F1 score includes two

components: precision (p) and recall (r). The precision is also called the positive predictive

value and is the fraction of true positive predictions to all positive predictions. The recall

is also called sensitivity and is the fraction of true positive predictions to all ground-truth

positive samples. Knowing p and r, we can obtain F1 using Eq. 13.1:

F1 =
2p · r
p+ r

(13.1)

13.2 Implementation details and results

In our deep learning models, the basic VGG structure is employed as the base, so all of the

input images to the networks are resized to 224x224 to become compatible with the structure.

In order to maintain consistence in creating the attention map for the E-Net and the ROI

cropping parameters for the cropping layers, we use the facial landmark data provided by the

BP4D and DISFA datasets. We use a fixed learning rate of 0.0001 and a momentum of 0.9

in our training. For updating the model, SGD is employed. First, the VGG fine-tuned net

(FVGG) is trained as the baseline for our proposed E-Net. EAC-Net training is based on

pretrained E-Net with new C-Net layers. Throughout the training, 50 images are randomly
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Table 13.2: F1 score comparison of AU detection on BP4D dataset

AU LSVM JPML[38] DRML[47] FVGG E-Net EAC

1 23.2 32.6 36.4 27.8 37.6 39.0
2 22.8 25.6 41.8 27.6 32.1 35.2
4 23.1 37.4 43.0 18.3 44.2 48.6
6 27.2 42.3 55.0 69.7 75.6 76.1
7 47.1 50.5 67.0 69.1 74.5 72.9
10 77.2 72.2 66.3 78.1 80.8 81.9
12 63.7 74.1 65.8 63.2 85.1 86.2
14 64.3 65.7 54.1 36.4 56.8 58.8
15 18.4 38.1 33.2 26.1 31.6 37.5
17 33.0 40.0 48.0 50.7 55.6 59.1
23 19.4 30.4 31.7 22.8 21.9 35.9
24 20.7 42.3 30.0 35.9 29.1 35.8

Avg 35.3 45.9 48.3 43.8 52.1 55.9

selected from the whole training dataset as a batch, and an epoch has 20 batches. The FVGG

and E-Net models converge after about 100 epochs and the EAC-Net converges after about

500 epochs. We trained our models using a workstation with a GeForce GTX TITAN X

graphics card, and it took 2-3 hours (100-150 epochs) for FVGG or E-Net and 10-15 hours

(for 500-800 epochs) for EAC-Net.

13.2.1 Results on BP4D dataset

We trained three models using the BP4D dataset: fine-tuned VGG (FVGG), E-Net, and

EAC-Net. The accuracy and F1 score for all 12 selected AUs, and the average accuracy and

the average F1 score are listed in Tables 13.2 and 13.3, respectively. We also list the results

from the state of the art work DRML [47] using deep learning and traditional approaches

LSVM [47], and JPML [38] in same settings for comparison.

As shown in Tables 13.2 and 13.3, for the BP4D dataset, compared to the state of the

art approaches, the VGG fine-tuned model (FVGG) has a higher average accuracy, but the

average F1 score does not outperform the state of the art. Note that in our proposed approach,

we do not perform any preprocessing to the input images. For the more representative AUs –

6, 7, 12, 14 and 17, the network is able to better predict the AU labels than the state of the

art approaches, without being told the position of the AUs. We believe that this is due to the

depth of the VGG model, which can learn very deep features, and the pooling layers, which
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Table 13.3: Accuracy comparison of AU detection on BP4D dataset

AU LSVM JPML[38] DRML[47] FVGG E-Net EAC

1 20.7 40.7 55.7 27.2 71.1 68.9
2 17.7 42.1 54.5 56.0 72.9 73.9
4 22.9 46.2 58.8 80.5 77.4 78.1
6 20.3 40.0 56.6 72.3 76.9 78.5
7 44.8 50.0 61.0 64.1 70.7 69.0
10 73.4 75.2 53.6 72.4 75.7 77.6
12 55.3 60.5 60.8 69.1 82.8 84.6
14 46.8 53.6 57.0 52.8 56.7 60.6
15 18.3 50.1 56.2 67.4 77.6 78.1
17 36.4 42.5 50.0 61.2 69.3 70.6
23 19.2 51.9 53.9 72.2 80.2 81.0
24 11.7 53.2 53.9 77.0 82.3 82.4

Avg 32.2 50.5 56.0 64.4 74.5 75.2

make the AU detection robust to position and orientation shifts. For the less representative

AUs – 1, 2, 4, 15, 23 and 24, however, the texture is less discriminative for instance around

the eyebrow area. Also, the occurrence rates are still smaller than the other AUs even after

the balancing, making the training more challenging.

The E-Net results show both better average accuracy and F1 scores than the state of the

art approaches and the VGG fine-tuning net. On average, the improvement using E-Net over

FVGG in the average F1 score and average accuracy are 8.3% and 10.1%, respectively. The

results show the effectiveness of our proposed enhancing layers.

To explore more details of the E-Net, we extract the feature maps from multiple layers

in the E-Net and VGG fine-tuning Net. In Figure 13.1, the last feature map of Group 4

convolutional layers from each of the two structures, FVGG and E-Net, are visualized. Each

feature map is 512×28×28, i.e.—with 512 feature arrays, each of 28×28. We visualized the

512 feature map into a 32×16 arrays of 28×28 images. We can clearly see that the attention

map made a big difference in the output feature maps. In the VGG feature map, the hot

areas or the attention areas do not have a meaningful focus. In some areas, even the edges are

highlighted as valuable features. The neural network has no idea which region to look into.

While in the E-Net feature map, we can clearly see the network is concentrating on the area

on the face, mainly the regions enhanced by the attention map. This can make the E-Net

extract more valuable features for AU detection.

Finally, our EAC-Net achieves the best average performance in AU detection in terms of
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Figure 13.1: Visualization of selected feature maps from Group 4, with FVGG only (left) and
with E-Net (right).

both F1 score and accuracy measures. Compared to the state of the art approaches, The

EAC-Net shows improvement of F1 scores in all the AU detections results, except for AU2

(DRML) and AU15 (JPML), and of accuracy measures for all the 12 AUs. We can also see

that the F1 score and accuracy measures all have improved from E-Net to EAC-Net: even

though the cropping layers of the C-Net only slightly increases the average accuracy by 0.7%,

the F1 score, which is a more appropriate indicator of the performance of the algorithm,

increases by 3.5% over the E-Net. We know that the major role of the cropping layers is for

a ”smart” alignment, so it might not have a significant effect on the faces of the BP4D data,

which are mostly close to frontal view.

In evaluating our EAC-Net, we applied cross validation, in each round, we used the images

of 23 out of the total 41 human subjects for training and the rest for testing. We hope by

applying this cross validation, the trained model can focus more on detecting AUs rather

than identifies of the human subjects. Due to the limited number of the subjects, identi-

tyinformation might also be learned. To reduce this influence, we could use the following

two approaches: 1) Collecting more diverse data for training. If we have enough number

of human subjects, the individual ID information will have less impact on AU recognition
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Table 13.4: F1 score comparison of AU detection on DISFA dataset

AU LSVM APL[47] DRML[47] FVGG E-Net EAC

1 10.8 11.4 17.3 32.5 37.2 41.5
2 10.0 12.0 17.7 24.3 6.1 26.4
4 21.8 30.1 37.4 61.0 47.4 66.4
6 15.7 12.4 29.0 34.2 52.5 50.7
9 11.5 10.1 10.7 1.67 13.4 80.5
12 70.4 65.9 37.7 72.1 71.1 89.3
25 12.0 21.4 38.5 87.3 84.2 88.9
26 22.1 26.9 20.1 7.1 43.5 15.6

Avg 21.8 23.8 26.7 40.2 44.4 48.5

Table 13.5: Accuracy comparison of AU detection on DISFA dataset

AU LSVM APL[47] DRML[47] FVGG E-Net EAC

1 21.6 32.7 53.3 82.7 75.1 85.6
2 15.8 27.8 53.2 83.6 82.5 84.9
4 17.2 37.9 60.0 74.1 74.5 79.1
6 8.7 13.6 54.9 64.2 77.4 69.1
9 15.0 64.4 51.5 87.1 84.0 88.1
12 93.8 94.2 54.6 67.8 70.1 90.0
25 3.4 50.4 45.6 78.6 73.8 80.5
26 20.1 47.1 45.3 61.7 68.6 64.8

Avg 27.5 46.0 52.3 74.9 75.7 80.6

results. 2) Redesigning the model loss function by adding a regularization part, for example,

by using the ID loss as an reverse loss in order to have an impact on the model loss, so that

the model training process will learn more on AU detection and less on the ID information of

each subject.

13.2.2 Results on DISFA dataset

We follow the setting in [47] to evaluate our approach on the DISFA dataset. Since the DISFA

dataset is smaller in diversity and has less positive samples of AUs than BP4D, we do not

directly train the model on DISFA. Instead, we use the trained model from BP4D. In DISFA,

only 8 AUs are labeled; 3 of them do not exist in BP4D. Therefore we use our pretrained fine-

tuned FVGG, E-Net and EAC Net to extract features from the DISFA images. Afterward,
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Table 13.6: AU occurrence rates in DISFA dataset

AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26

4.9% 4.3% 15.2% 7.8% 4.1% 12.88% 27.7% 8.8%

we use linear regression to transform our 1x2048 features to 1x8 AU prediction labels. 27

subjects are split into 3 folds to make sure the predictions are independent.

The AU detection accuracy and F1 score are shown in Tables 13.4 and 13.5. Compared to

the state of the art approaches, we see more significant improvement than that with BP4D.

The F1 score of the EAC-Net increases by 4.1% over the E-Net, and the average accuracy

increases by 4.9%. More importantly, the improvement yielded by C-Net is more significant

than by the E-Net. Note that the significant improvement on DISFA is due to the following

reasons:

(1) Our proposed approach is capable of balancing the training datasets. The DISFA

dataset is more imbalanced than BP4D. If we directly use all the raw data, the AU occurrence

rates of AU 4, 12, and 25 are much higher than the others (AU 1, 2, 6, 9, and 26), as shown

in Table 13.6. Our preprocessing in balancing the data can improve the AU detection results.

(2) Our approach is more robust in dealing with wild images. The DISFA subjects have

small rotation angles to the frontal view, so normalization is usually required in most the state-

of-the-art approaches, while our approach only needs to know the approximate landmarks

positions on the faces. This makes our approach much more robust dealing with faces which

are not in frontal view. This will be further shown in Section 13.4 on AU detection on face

images with large head poses.

13.3 EAC-Net with partially occluded faces

The AU detection on partially occluded faces is a very challenging problem. Without complete

faces, which could be occluded by hands, glasses, hats, and other people, traditional landmark

or patch-based approaches may fail to detect AUs. A few researchers [56] [57] have tried to

learn partial facial regions to in order to detect AUs. Since our EAC-Net has both region

enhancing and region-based CNN models, we would like to test if our model can have a good

performance in AU detection when the faces are partially occluded.

There are three main reasons for us to conduct this experiment. First of all, our model

learned enhanced features and cropped local features in the enhancing and cropping layers of

EAC-Net. After the cropping layers, the local convolutional features are merged and learned

as a combined feature, therefore we believe during this process, some interesting correlation
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can be learned. Thus even without raw input data for some of the regions, our EAC-Net

might still be able to detect the remaining AUs on a partially occluded face. Second, if the

AUs are detectable from partial faces, it is necessary to extend our investigation to which

parts of a face convey more information than others for AU detection. Third, we are also

interested in knowing if it is possible to predict all AUs without the primary parts of the face

visible for some AUs. If this is true, this will imply that the AUs mainly perceivable from the

occluded parts might be guessed based on the learned AU correlations in our model.

Figure 13.2: Occluded faces for AU detection.

Given above reasons, we conduct the following experiment on AU detection with occluded

faces. As shown in Figure 13.2, we used our EAC-Net model directly to test on the BP4D faces

where only upper, lower, left and right half-face are visible, respectively. By investigating the

model performance, we would like to know which parts of the faces are more important in

determining AU states. To make sure the results is better than a random guess, we also ran

the test with the test data where whole faces are occluded. For a fair comparison with our

previous AU detection results using the EAC-Net on original face images in BP4D, the same

settings with BP4D training are used. In our experiment, we not only detect the “perceivable”

AUs on the occluded faces but also try to predict the “unperceivable” ones, such as predicting

the lower face AUs from the upper face images.

The occluded face AU detection results are shown in Table 13.7. In the table, “Lower”

means only lower half of the face are used for testing, the same goes for “Upper”, “Left”, and

“Right”. For “None”, we simply set all the pixel values to be 0s and feed the zero image into

the EAC-Net. For columns Lower and Upper, since some AUs cannot be seen when running

such a test on occluded faces, we use underlined numbers to note certain AUs results are

“guessed” by the EAC-Net model. Some interesting conclusions can be made based on the

results. Here are several observations:

(1) We can predict the “unseen” AUs status with partial faces. Comparing our “unseen”

AU predictions (underlined numbers in Table 13.7) to a totally unavailable result, we can see
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Table 13.7: F1 score comparison of AU detection on partially occluded faces of BP4D dataset

AU Lower Upper Right Left None EAC

1 31.8 27.4 31.4 25.2 27.7 39.0
2 30.0 31.6 34.6 32.4 4.5 35.2
4 21.8 29.1 21.1 28.7 22.8 48.6
6 70.5 54.9 39.7 52.9 64.8 76.1
7 72.3 74.4 66.4 70.1 58.6 72.9
10 77.0 64.6 60.9 62.6 52.6 81.9
12 75.0 67.6 57.9 59.9 56.9 86.2
14 58.5 51.6 48.2 45.7 44.5 58.8
15 15.0 14.8 7.3 18.4 3.8 37.5
17 58.1 39.3 38.7 37.8 6.0 59.1
23 28.6 18.9 27.1 12.5 13.14 35.9
24 16.3 13.0 4.3 7.6 4.9 35.8

Avg 46.3 40.6 36.5 37.8 29.8 55.9

that the EAC-Net always provides better-than-random-guess results with the four kinds of

half occluded face images, although there are obvious differences among the four cases.

(2) It seems that the lower half of a face is the most useful part for AU detection. If we

only look into the lower part of each face for AU detection, the EAC-Net model can produce

comparable results to the DRML[47] and FVGG result and yield much better performance

than the one from the other three parts (i.e., upper, left, and right). Even for some unseen

AUs, like AU1(Inner brow raiser), AU2 (outer brow raiser), AU4 (Brow lower), the results

are similar to or better than the results generated from “Up” face where these areas are seen.

(3) We also notice that the face AU correlation is important in single AU detection. For

some obviously independent AUs like AU7 (Lid tighter), the appearance features may be

enough and the “visibility” of that part can produce the best result (74% for AU7 in Upper

faces). But for AUs like brow related and lip related ones, they are more dependent on the

occurrence of some other AUs. For example, results could be different on detection of AU17

and AU 23 with the lower part or entire face being used. Including the upper face information

can help infer whether the AUs of ”chin raiser” and ”lip tighter” are active.

(4) The upper/lower half-faces overall can generate better results than left/right half-faces,

which means the proposed EAC-Net might not learn the symmetrical relationship of the face

very well. This is an interesting finding that inspires us to design a model with such a function

in our future work.

(5) From Table 13.7 we can find that the predictions results of some of the “unseen” AUs
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Table 13.8: Pitch and yaw angles for the 9 poses, and the detected frames using pEAC-Net
from the validation (development) dataset (For each pose, there are around 11,000 images)

Poses Angles (yaw, pitch) in degrees Detected frames: %

1 (-40, -40) 66.87
2 (-40, -20) 98.18
3 (-40, 0) 99.99
4 (0, -40) 99.96
5 (0, -20) 100
6 (0, 0) 100
7 (40, -40) 88.67
8 (40, -20) 98.14
9 (40, 0) 99.46

using the lower half-faces are even better than the “seen” AUs’ in upper half-faces. This is

probably because during the training process, not only the direct AU features, but also the

relationship of different AUs are learned. Our deep learning model always try to yield an

overall designed loss; this is also the limitation of deep learning. If we want the deep learning

to have a better and also more balanced results, we may need to design more sophisticated

structures and loss functions to cover more situations.

From the occluded faces experiment, we can see the proposed EAC-Net can predict reliable

AU results with only half faces, especially with lower half face images. This may be a good sign

for some scenes where only lower faces can be seen, such that the upper faces are occluded by

sun glasses and hats. Knowing the correlation of AUs plays an important role in AU detection

for design better AU detection models.

Figure 13.3: Nine head poses of a face in the BP4D AU dataset with large head poses from
FERA 2017 data[63].
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Table 13.9: AU detection results on BP4D images with large head poses: all 9 poses

FERA Baseline Our pEAC-Net

AU F1 Accuracy F1 Accuracy

1 15.4 57.0 27.2 90.3
4 17.2 52.0 33.2 88.3
6 56.4 67.6 69.9 85.3
7 72.7 64.2 80.8 85.4
10 69.2 63.8 83.4 88.3
12 64.7 66.0 80.2 88.2
14 62.2 62.2 62.1 78.6
15 14.6 30.7 25.1 90.7
17 22.4 48.5 34.2 78.2
23 20.7 37.3 26.1 89.1

Avg 41.6 54.9 52.2 86.3

13.4 EAC-Net on faces with large head poses

In our previous experiments, we have found that our EAC-Net not only exhibits excellent

performance in near frontal static face images for AUs detection, but also its ability in dealing

with AUs detection and prediction on partially occluded facial images. However, in real-

world scenarios, it is rare for people to show their spontaneous expressions without changing

head poses. In our EAC-Net algorithm design (Chapter 11), we have hypothesized that

our approach is adaptive to facial poses since we have created the attention map and the

local convolutional networks are based on facial landmarks. To verify whether the proposed

approach can really predict AUs with large head poses, we evaluate our algorithm on a newly

derived dataset with different views of face images, which were generated from the BP4D

database as the FERA 2017 challenge dataset [63].

The dataset used in the FERA 2017 challenge was generated from BP4D and BP4D+

[64]. BP4D+ is an expanded version of BP4D with more subjects in multi-modality. In our

previous experiments, we employed the 2D version of BP4D to train the E-Net and EAC-Net.

In fact, the BP4D and BP4D+ have also captured a 3D face model for each face image frame.

In the FERA 2017 challenge, in order to create an AU dataset with multiple poses, the 3D

face model of each face is rotated by pitch angles of -40, -20, and 0 degrees, and yaw angles

of-40, 0, and 40 degrees, respectively, from its frontal pose, so in total there are nine poses

for each face in total. Figure 13.3 shows one example, and Table 13.8 lists the pitch and yaw

angles of each of the nine poses. As a result, nine videos with corresponding nine head poses

are generated for each video sequence of a subject from the BP4D dataset.
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Table 13.10: Comparison of F1 scores between the FERA baseline and our pEAC-Net on
faces with the 9 poses

FERA Baseline

AU 1 2 3 4 5 6 7 8 9

1 10.3 15.0 13.6 19.3 19.6 17.1 18.0 14.5 12.3
4 15.0 15.9 14.8 19.1 19.0 18.3 20.2 20.2 17.5
6 50.5 55.7 13.4 68.9 74.7 72.4 56.0 53.2 49.3
7 72.1 72.9 41.3 74.6 79.7 78.7 71.6 74.7 75.8
10 55.4 71.0 64.2 77.7 77.6 75.0 63.9 67.9 65.9
12 52.2 67.8 18.4 78.6 80.9 77.1 59.6 63.8 60.1
14 51.5 56.3 9.0 67.5 72.4 74.4 61.9 67.0 67.8
15 13.1 15.0 14.2 14.6 14.6 14.6 14.3 15.9 15.2
17 17.3 25.1 23.5 24.2 24.6 24.1 22.0 21.1 19.5
23 22.7 22.9 19.9 20.8 19.6 16.6 20.1 20.1 20.8

Avg 36.0 41.8 23.2 46.5 48.2 46.8 40.8 41.8 40.4

Our pEAC-Net

AU 1 2 3 4 5 6 7 8 9

1 18.8 37.5 22.2 10.1 40.0 66.7 40.1 33.3 40.0
4 7.0 40.0 33.3 40.0 30.7 66.7 25.0 18.2 8.0
6 66.7 66.7 72.2 60.8 68.2 80.0 69.2 75.0 52.1
7 66.7 62.9 73.1 75.7 85.7 85.7 83.7 84.7 73.3
10 85.0 69.2 76.9 83.3 90.9 75.0 62.8 92.3 82.8
12 74.3 68.5 85.1 74.2 86.7 66.7 64.3 84.2 72.0
14 66.7 51.1 51.2 68.9 59.3 50.0 60.0 61.2 74.1
15 57.1 5.1 36.4 25.0 28.6 10.2 7.0 40.0 11.8
17 23.5 36.4 34.7 35.3 46.2 50.0 58.8 21.4 44.4
23 44.4 36.3 7.3 57.1 47.1 6.3 9.0 46.2 11.7

Avg 50.3 46.9 48.5 52.1 58.3 54.1 46.4 55.7 46.2
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Table 13.11: Comparison of accuracy scores between the FERA baseline and our pEAC-Net
on faces with the 9 poses

FERA Baseline

AU 1 2 3 4 5 6 7 8 9

1 25.2 35.9 32.9 56.3 58.0 50.0 72.9 90.2 91.5
4 30.0 37.2 14.3 45.6 55.4 62.7 50.1 81.0 92.0
6 73.2 72.7 69.6 81.3 82.9 79.1 66.7 47.3 35.7
7 60.6 64.2 53.9 69.5 73.8 72.8 61.0 60.4 61.7
10 56.3 65.0 71.1 74.9 72.2 67.5 61.2 56.0 50.3
12 62.7 70.7 60.9 81.0 81.1 76.4 63.6 53.9 43.6
14 61.8 62.6 51.6 71.2 73.0 73.0 60.8 53.3 52.4
15 39.8 21.8 10.2 67.8 21.5 12.1 36.8 28.5 37.8
17 69.9 46.8 24.6 74.1 59.8 52.2 46.4 30.6 32.3
23 27.1 27.5 55.4 50.8 46.6 59.4 34.9 18.9 15.4

Avg 50.7 50.5 44.4 67.3 62.4 60.5 55.4 52.0 51.3

Our pEAC-Net

AU 1 2 3 4 5 6 7 8 9

1 82.0 80.0 72.0 88.0 82.0 98.0 94.0 92.0 88.0
4 90.0 82.0 84.0 94.0 82.0 94.0 88.0 82.0 70.0
6 82.0 80.0 80.0 82.0 72.0 94.0 84.0 76.0 78.0
7 74.0 60.0 72.0 82.0 80.0 98.0 86.0 82.0 84.0
10 88.0 68.0 76.0 88.0 88.0 96.0 74.0 90.0 90.0
12 82.0 78.0 86.0 82.0 84.0 96.0 80.0 82.0 86.0
14 76.0 54.0 58.0 82.0 56.00 98.0 76.0 62.0 86.0
15 94.0 88.0 86.0 88.0 90.0 94 92.0 88.0 70.0
17 74.0 58.0 70.0 78.0 72.0 88.0 86.0 56.0 70.0
23 90.0 86.0 80.0 94.0 82.0 94.0 90.0 86.0 70.0

Avg 83.2 73.4 76.4 85.8 78.8 95.0 85.0 79.6 79.2
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Table 13.12: AU detection results on BP4D faces with large head poses using pEAC-Net with
a face alignment pre-processing

F1 Score

AU 1 2 3 4 5 6 7 8 9

1 19.3 13.9 13.3 6.8 25.0 31.3 18.2 0 0
4 25.0 0 33.3 14.2 25.0 42.1 6.1 14.3 37.8
6 58.3 60.0 65.0 73.5 74.1 63.1 69.1 51.1 45.7
7 80.4 76.7 73.9 88.8 80.5 78.9 87.4 82.7 70.4
10 83.7 78.9 72.2 89.2 85.3 86.1 85.7 76.5 77.8
12 72.4 79.3 73.1 85.3 78.6 84.7 73.1 65.5 74.1
14 36.4 29.2 48.0 30.4 42.6 33.3 44.4 53.1 31.8
15 31.3 0 22.2 33.3 11.11 28.6 25.6 27.8 16.0
17 30.2 21.8 34.6 18.5 49.1 27.5 28.6 37.9 17.8
23 22.2 10.0 10.5 40.0 33.3 37.5 6.9 34.1 7.7

Avg 45.9 37.0 44.6 48.1 50.5 51.3 44.5 44.3 37.6

Accuracy

AU 1 2 3 4 5 6 7 8 9

1 50.0 26.0 22.0 46.0 40.0 56.0 82.0 70.0 60.0
4 52.0 62.0 60.0 52.0 64.0 78.0 38.0 52.0 70.0
6 60.0 68.0 72.0 64.0 72.0 72.0 66.0 54.0 62.0
7 68.0 66.0 62.0 80.0 70.0 68.0 78.0 74.0 58.0
10 76.0 68.0 60.0 82.0 78.0 80.0 78.0 68.0 68.0
12 68.0 76.0 66.0 78.0 74.0 82.0 66.0 60.0 70.0
14 44.0 42.0 48.0 36.0 46.0 44.0 40.0 54.0 38.0
15 56.0 78.0 72.0 60.0 68.0 70.0 42.0 48.0 56.0
17 26.0 14.0 32.0 12.0 38.0 26.0 20.0 28.0 26.0
23 58.0 62.0 66.0 58.0 52.0 60.0 46.0 46.0 52.0

Avg 55.8 56.2 56.0 56.8 60.2 63.6 55.6 55.4 56.0
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In our experiment, we train our EAC-Net by extracting the provided videos with 9 poses

from the FERA 2017 training set. We note the EAC model trained on face images with large

head poses as pEAC-Net. The number of images for training is about 260,000, and similar

balancing strategy as we used in Table 13.1 is applied for boosting up the numbers of samples

of the under-represented AUs. We use the same training configurations as we did in frontal

view BP4D AU detection.

For comparison purpose, the FERA 2017 organizers [63] have provided AU detection base-

line results on both its validation and test datasets, which are both from BP4D+. However,

at the moment, only the performance results of the baseline approach on the validation (de-

velopment) dataset is available to researchers. Therefore we only compare the results of our

EAC approach with the baseline results on the validation dataset. We also use the landmarks

provided by the challenge organizers, so the configurations of the dataset for testing on the

validation dataset are the same with the baseline approach.

To further investigate whether our model can avoid face alignment by directly applying AU

detection to face images with large head poses, we have also aligned 1,000 randomly selected

images from each of the 9 poses. We applied the pEAC-Net trained on face images with large

head poses to the aligned face images in an attempt to verify if the alignment would improve

or degrade the AU detection performance.

The overall F1 and accuracy scores on all the nine poses are reported in Table 13.9,

against the results of the baseline approach on the FERA development dataset. Table 13.10

and Table 13.11 show the F1 scores and accuracy values on face images of the nine individual

poses, respectively. To make it easier to compare, the baseline results for all the 9 poses on

the validation dataset are also listed. Table 13.12 lists the F1 and accuracy results of AU

detection with aligned BP4D face images within 9 pose views.

From the results, we have several interesting observations as follows:

(1) Based on the pEAC-Net AU detection results on the BP4D face images with large head

poses, the pEAC-Net shows its ability to detect AUs from facial images with different poses.

Comparing to the baseline approach, there is a 10.6% improvement in F1 score. Although it

is not fair to compare this with the EAC-Net results on the frontal view data of BP4D, we

can see the performance improvement is at the same level. This shows that the pEAC-Net is

able to detect AUs on face images with large head poses.

(2) The dataset of BP4D face images with large head poses provides 9 fixed view angles.

We test our pEAC-Net on the 9 poses and find that in all the 9 angles, the pEAC-Net can

make a better AU prediction than the baseline approach. Same to the finding from the

baseline approach, the best single view result that our pEAC-Net has achieved is also on the

pose #5, which is the F1-score at 58.3% for the 20-degree pitch angle from the frontal view.
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This is interesting and might be due to the appearance of facial expressions when viewed from

20-degree angle being better than the frontal view in 3D space, while the face is not largely

occluded. Note that this finding is also similar or compatible to the finding for non-frontal

view facial expression classification reported in [65], where the similar performance was also

achieved for 30-degree view as compared to the other view angles in recognizing six prototypic

facial expressions from the static 3DFE database [66].

(3) Another observation we can make is that with larger angle orientations, the perfor-

mance is generally becoming worse due to more information loss. However, our pEAC-Net

performs relatively much more robust to view angle changes: the lowest F1 scores of our

pEAC-Net are comparable to the highest F1 scores with the baseline approach.

(4) The aligned face AU detection experiment gives us many valuable insights into our

pEAC-Net model. Our pEAC-Net can directly work on face images with large head poses

and predict better AU results on all the nine poses than the results with an alignment pre-

processing step. This shows the orientation invariant ability of our pEAC-Net model in

dealing with head pose variations on AU detections, although large pose may still affect the

AU detection due to information loss. As a comparison, alignment is not only time consuming

(from only 30 ms to 2500 ms per image) but probably also degrades the fidelity of original

facial expressions.

13.5 AU evaluation with temporal features

We showed that our proposed approach can achieve good performance in static image AU

detection, we also mentioned that by employing temporal features, we can obtain more useful

information, so we conduct experiments to see if the LSTM based fused feature can show

better detection results. In our evaluation, we compute F1 scores for 12 AUs in BP4D and

8 AUs in DISFA. F1 scores can be compared directly as an indicator of the performance of

different algorithms on each AU. The overall performance of the algorithm is described by the

average F1 score.

13.5.1 Adaptive learning vs. conventional CNN

We proposed our ROI Nets for the adaptive region learning in 11. Compared to the conven-

tional CNNs which share the same set of convolutional filters for the whole feature map, we

hypothesize that by learning ROIs separately, a better understanding of AUs can be achieved.

To validate this hypothesis, we train 2 neural networks on the BP4D dataset: a fine-tuned

VGG model - FVGG, and the ROI Nets (on top of the basic VGG model). 12 AUs are used

together, so the loss function is based on the predicted results for the 12 AUs. To prevent
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extreme loss explode which will stop the training, we added offsets to the loss function as

shown by Equation 13.2, where l is the label and p is the generated probability for an AU.

Loss = −Σ(l · log(
p+ 0.05

1.05
) + (1− l) · log(

1.05− p
1.05

)) (13.2)

The two models are both based on static images. During each iteration, we randomly select

50 images as a batch to compute the training loss. SGD is employed for back propagation.

The VGG net pretrained parameters are used for initialize the model, and the parameters

of the first 8 convolutional layers are not updated during training. This makes the set of

parameters smaller, which helps the training algorithm converge. To make the name more

straightforward, we call the ”C-Net” ROI Nets. We use the proposed structure (VGG Net

+ ROI Nets) in Chapter 11 to train the adaptive region learning mode - which we still call

ROI Nets. The new designed regional convolutional filters are initialized following a gaussian

distribution. For the conventional fine-tuned VGG (FVGG) net, only the last prediction

layer of the basic VGG model is replaced with a fully connected layer with 12 kernels. We use

sigmoid activation functions for the 12 AU probability generators. The two deep models both

start with the same learning rate 0.001 which is decreased when the loss is stable. Momentum

for both models are set to 0.9.

The final models of both ROI Nets and FVGG are obtained after training the deep net

20,000 times. We then compare the F1 scores for each AU. The results are shown in Figure

13.4. We can see that region learning with ROI Nets yields significant improvement, on

average by 12.4%.

Figure 13.4: Comparison of FVGG and ROI-Nets in AU detection on BP4D
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Figure 13.5: Comparison of single and multi-label learning on BP4D

Figure 13.6: Comparison of static image and temporal fusion in AU detection on BP4D
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13.5.2 Single vs. multi-label AU detection

In our proposed ROI Nets, the regions are determined based on the positions where the

AUs take place. Since each AU has corresponding regions, we may use only the local learned

features to represent the AU for detection. This single AU detection approach differs from the

approach we use for the adaptive region learning evaluation (Figure 9.2) where we concatenate

all the AUs features as one fused feature. Our hypothesis is, by concatenating multiple

AU features, we may obtain valuable global information as a supplement for individual AU

detection or to provide more correlations. However, it’s also possible that it brings some noise

to the “purity” of an AU feature. To validate our hypothesis, we conduct an experiment to

compare single AU detection and multi-label AU detection. In multi-label AU detection, one

image is labeled with multiple AUs. In this case, we cannot guarantee that we are able to

provide the same number of positive and negative samples for all AUs. But for single AU

detection, since the training for each AU is performed separately, we can prepare the training

data for each AU in a way that the training data is always balanced during training. The AU

detection results for single vs multiple AU detection is shown in Figure 13.5.

By comparison, we can clearly see that even with equal positive and negative sample dis-

tribution, the multi-label AU detection slightly outperforms the single AU detection approach

in most AUs, on average by 1.3%. That implies that the global information does have an im-

portant impact on the fusion learning. We have some more interesting findings if we look into

the different AU detection results. For the under-represented AUs (where the AU shows up

less frequently in the dataset), such as AU2, AU15, AU23, the balancing of training samples

(as in the single AU detection) can boost the performance more significantly. Whereas for

some highly related AUs such as AU6 and AU12, both for happy, the multi-label learning has

a higher chance to learn this correlation and improve the AU detection for these two AUs.

13.5.3 Temporal vs. static

A facial action always has a temporal component, hence knowing the previous state of a facial

expression can definitely improve the AU detection. We proposed the LSTM layer for fusing

the temporal information with static image features. From our previous evaluations, the best

performance was obtained for static images with the ROI Nets. In this experiment, we use the

ROI model as a baseline to compare with region cropping recurrent temporal model (noted

as R-T in figures and tables). Here, the LSTM layers are used for fusing the static image

features. 512 LSTM kernels are employed to construct each LSTM layer. We then utilize

24 frames as a sequence to represent the video. In our data preparation, we follow the same

framework as the one we used to train the static image learning models. The only difference is
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Table 13.13: F1 score on BP4D dataset (ROI: ROI Nets; R-Ti: ROI Nets + i-layer LSTM
Net )

AU LSVM JPML[38] DRML[47] CPM[43] CNN+LSTM[56] FVGG ROI R-T1 R-T2

1 23.2 32.6 36.4 43.4 31.4 27.8 36.2 47.1 45.8
2 22.8 25.6 41.8 40.7 31.1 27.6 31.6 56.2 48.0
4 23.1 37.4 43.0 43.4 71.4 18.3 43.4 52.4 45.9
6 27.2 42.3 55.0 59.2 63.3 69.7 77.1 78.5 76.7
7 47.1 50.5 67.0 61.3 77.1 69.1 73.7 80.8 79.6
10 77.2 72.2 66.3 62.1 45.0 78.1 85.0 87.8 85.3
12 63.7 74.1 65.8 68.5 82.6 63.2 87.0 89.4 87.2
14 64.3 65.7 54.1 52.5 72.9 36.4 62.6 74.8 71.6
15 18.4 38.1 36.7 34.0 33.2 26.1 45.7 58.5 48.0
17 33.0 40.0 48.0 54.3 53.9 50.7 58.0 68.4 59.5
23 19.4 30.4 31.7 39.5 38.6 22.8 38.3 40.4 37.5
24 20.7 42.3 30.0 37.8 37.0 35.9 37.4 59.4 51.1

Avg 35.3 45.9 48.3 50.0 53.2 43.8 56.4 66.1 61.4

Table 13.14: F1 score on BP4D dataset (ROI: ROI Nets; R-Ti: ROI Nets + i-layer LSTM
Net )

AU LSVM JPML DRML CPM CNN+T1 E-Net EAC ROI R-T1 R-T2

1 23.2 32.6 36.4 43.4 31.4 37.6 39.0 36.2 47.1 45.8
2 22.8 25.6 41.8 40.7 31.1 32.1 35.2 31.6 56.2 48.0
4 23.1 37.4 43.0 43.4 71.4 44.2 48.6 43.4 52.4 45.9
6 27.2 42.3 55.0 59.2 63.3 74.5 72.9 77.1 78.5 76.7
7 47.1 50.5 67.0 61.3 77.1 80.8 81.9 73.7 80.8 79.6
10 77.2 72.2 66.3 62.1 45.0 85.1 86.2 85.0 87.8 85.3
12 63.7 74.1 65.8 68.5 82.6 63.2 87.0 87.0 89.4 87.2
14 64.3 65.7 54.1 52.5 72.9 36.4 62.6 62.6 74.8 71.6
15 18.4 38.1 36.7 34.0 33.2 56.8 58.8 45.7 58.5 48.0
17 33.0 40.0 48.0 54.3 53.9 55.6 59.1 58.0 68.4 59.5
23 19.4 30.4 31.7 39.5 38.6 21.9 35.9 38.3 40.4 37.5
24 20.7 42.3 30.0 37.8 37.0 29.1 35.8 37.4 59.4 51.1

Avg 35.3 45.9 48.3 50.0 53.2 52.1 55.9 56.4 66.1 61.4
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Table 13.15: F1 score on DISFA dataset

AU LSVM APL[47] DRML[47] FVGG ROI R-T1

1 10.8 11.4 17.3 32.5 41.5 42.6
2 10.0 12.0 17.7 24.3 26.4 27.2
4 21.8 30.1 37.4 61.0 66.4 65.5
6 15.7 12.4 29.0 34.2 50.7 55.5
9 11.5 10.1 10.7 1.67 8.5 22.8
12 70.4 65.9 37.7 72.1 89.3 82.9
25 12.0 21.4 38.5 87.3 88.9 88.3
26 22.1 26.9 20.1 7.1 15.6 25.9

Avg 21.8 23.8 26.7 40.2 48.5 51.3

that to construct the image sequence, we randomly find other 23 images prior to the selected

image from the same subject. This will create more non-repeatable training data. Afterward,

the sequence is fed into the training model. To find the best LSTM structure, we tried 1 (in

R-T1), 2 (in R-T2) and 3 (in R-T3) stacked LSTM layers for AU detection, as demonstrated

in Figure 12.2. The AU detection results are shown in Figure 13.6.

From the results shown in Figure 13.6, we can clearly observe the improvement in AU

detection due to applying the LSTM layers. The average F1 score is also improved by 9.7%

using R-T1 over ROI Nets. Another conclusion we can make here is that with more LSTM

layers, the performance decreases, as the ROI features are sufficient to represent the AU

images and one LSTM layer is enough to reveal the temporal corrections.

13.6 Performance comparison

By observing the results of our previous experiments, we can clearly see that the ROI Nets can

learn more powerful local AU features that would result in better AU detection compared to

conventional CNNs. The performance was similar in single AU detection and multi-label AU

detection, but the multi-label detection approach shows slightly better overall performance

due to the strong correlation among AUs and richer global information. In the static/temporal

exploration experiment, we witnessed that the LSTM Net with one LSTM layer boosts the

AU detection accuracy by a 9.7% average F1 improvement, which implies that the temporal

context information plays a very important role in detecting facial actions.

To compare our approaches with other state of the art methods, we have collected the

F1 measures of the most popular methods in same 3-fold settings based on BP4D in Table

13.14. The approaches includes a traditional SVM based method, a 2-D landmark feature

based approach, JPML [38], the Confidence Preserving Machine (CPM) [43], a block-based

region learning static CNN, DRML [47], and a recurrent net fusing LSTM with simple CNN,
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CNN+LSTM [56]. For our proposed approaches, we first use the FVGG as the baseline

approach. Then we show the results of adaptive ROI Nets based on static images. Finally,

we test our ROI Nets + our LSTM based recurrent approach with one and two LSTM layers

(RC+T1,RC+T2). All the results can be seen in Table 13.14. On average, our best model

R-T1 achieves a 12.9% improvement compared to the state of the art approach. Across the 12

AUs, our R-T1 model outperforms the best in the literature except AU4, where CNN+LSTM

performs the best.

To further explore the capabilities of our proposed approach, we run the comparison on

DISFA dataset as well. Not as popular as BP4D, fewer state of the art approaches report their

results on DISFA. We use the BP4D trained model to extract features from all the images in

DISFA and conduct a 3-fold cross evaluation with the extracted features. For static image

evaluation, we directly run multi-label linear regression and for temporal evaluation, we use

the structure that shows the best performance in BP4D evaluation, that is, a one layer LSTM

to train the DISFA temporal model. The results are shown in Table 13.15. As we can see,

our R-T1 model leads to a 25% improvement over the state of the art model.

From the results in Tables 13.14 and 13.15, our proposed approaches have the best perfor-

mance in both static and sequence image based AU detection. In the static images based AU

detection using deep learning, our ROI Nets outperforms the state of the art deep learning

approach, DRML. Our proposed adaptive region cropping method shares the same idea of

learning different sets of convolutional filters for different sub-regions, but our method has the

following advantages that makes it different from the state of the art:

1) Our sub region selection is adaptive. DRML used a straightforward image dividing

strategy. Assuming the facial images are aligned, each image is equally divided into 8x8=64

sub-regions. This framework in easy to implement, but we need to make sure that the face

images are actually aligned in the first place. In order to assure this precondition, all the

faces need to be transformed to a neutral shape. This may cause information loss since the

faces of different individuals may have different shapes or sizes. In addition, if the original

faces are not in frontal pose, we may also lose some appearance features after changing the

pose. On the contrary, we select the regions of interest adaptively. Our approach works based

on the detected landmarks and the positions of facial action muscles, which are biologically

meaningful. Also note that our approach is robust to landmark position errors. This is

because the feature maps in our network go through several pooling layers. Imagine that the

position detection error in original image of size 224x224 is 10 pixel. With the pooling layer

for cropping the feature map being of size 14x14, the error turns to be less than 1 pixel. This

significantly improves our proposed adaptive region cropping net.

2) A very deep pretrained network (VGG) is used as the base. DRML creates a shallow
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convolutional network for region based AU detection. Instead of training everything from

scratch, we choose to borrow parameters from an existing very deep CNN model. The main

advantage of this approach is that the pretrained model has been trained with millions of

images. Although the tasks are different, the parameters are transferable. With the pretrained

model as the starting point of our AU detection training, we can achieve a more powerful model

than by training a shallow neural network.

In sequential image based AU detection, Chu et al. [57] designed a network by combining

both CNN and LSTM. To obtain the spatiotemporal fusion features, the last layer features

of the CNN and LSTM nets are concatenated. Different from their use of AlexNet for static

image feature extraction, we have proposed the adaptive region cropping convolutional net.

We use LSTM to fuse the temporal deep features as well, but we have also compared different

layers of LSTM and noticed that one layer LSTM shows the best performance.

Intuitively, more LSTM layers should yield higher recognition rates. But in our experi-

ment, we have found we can achieve the best performance when we use one single LSTM layer

rather than two or three layers. This might be related to the features fed into the LSTM net.

We suspect that if the features are well learned by one layer of LSTM, that single LSTM layer

is already sufficient for achieving the temporal fusion. Adding more layers may lead to more

gradient loss and more parameters might also make the model hard to converge.
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14 CIFE-AU: A New AU Dataset and Evaluation

14.1 CIFE-AU: a dataset for AU detection in the ”wild”

The CIFE dataset is an facial expression dataset collected from web. We choose the CIFE

dataset as the base for creating an AU dataset – CIFE-AU – because there are much more

subjects involved in the dataset compared to most of the AU datasets collected in laboratory

settings. The images in CIFE are with different poses, lighting conditions and resolutions.

This makes the dataset more challenging for classification but also provides more representa-

tive samples for deep learning.

In the Facial Action Coding System (FACS) [26], more than 40 AUs are listed, but not

all these AUs are equally important. In BP4D, 12 AUs are labeled, whereas in DISFA only 8

AUs are labeled. In our new dataset CIFE-AU, we used the most popular 14 AUs, containing

all the AUs from BP4D and two additional ones from DISFA. Here we mainly choose the

configuration of BP4D because BP4D is a larger and more diverse dataset, making it more

convenient for us to train a based deep model and conduct comparison. We added another 2

AUs since we think this 2 AUs is important in representing some facial expressions. These 14

AUs are listed in Table 14.1, with their names in the third column and their indices in FACS

in the second column. Their presences in BP4D and DISFA are also noted in the table. We

hope that these 14 AUs are sufficient to represent multiple facial expressions.

Table 14.1: List of the AUs in the CIFE-AU dataset

AU No. FACS index AU Name Notes

0 1 Inner Brow Raiser in BP4D & DISFA
1 2 Outer Brow Raiser in BP4D & DISFA
2 4 Brow Lowerer in BP4D & DISFA
3 6 Cheek Raiser in BP4D & DISFA
4 7 Lid Tightener in BP4D
5 10 Upper Lip Raiser in BP4D
6 12 Lip Corner Puller in BP4D & DISFA
7 14 Dimpler in BP4D
8 15 Lip Corner Depressor in BP4D
9 17 Chin Raiser in BP4D
10 23 Lip Tightener in BP4D
11 24 Lip Pressor in BP4D
12 9 Nose Wrinkler in DISFA
13 25 Lip Apart in DISFA
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For labeling AUs in a video sequence, we just need to specify the start and end frames of

an AU in the sequence which means many frames can be skipped for labeling between the two

frames. But, for labeling AUs for an image dataset, all image frames need to be examined

to generate AU labels. This makes the AU labeling for such a dataset more challenging. In

total, 14758x14 decisions have to be made for all the 14 AUs in the CIFE dataset with 14756

images. To make the work less tedious, an AU labeling interface is designed to help label the

CIFE dataset. On the interface, the AU coders are asked to pick up the active samples that

belong to one of the 14 active AU. Using the interface, an AU coder goes through AUs one

after after another, and for each AU (whose No. can be input on top of the interface and

whose description is also shown), the coder goes through all the samples, screen by screen, by

simply clicking on the subwindow of an image that includes the AU to turn its background

from blue to red. The coder can even come back from the place where he or she stops the

last time. Figure 14.1 shows a screen in the selection of images for labeling AU No. 6 (FACS

index is 12): Lip Corner Puller.

Figure 14.1: An AU Labeling interface

In our work, 3 experienced AU coders were employed to label all the images. We then
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Table 14.2: AU occurrence rates in the CIFE-AU dataset

AU Index 1 2 4 6 7 10 12 14 15 17 23 24 9 25

Occurence9.2%6.1%7.2%14.3%19.5%17.4%18.9%6.1%6.5%6.7%36.7%33.5%13.2%47.3%

Figure 14.2: Examples of AU detection in the “wild”

merged the coded results and obtained the AU labels, leading to the CIFE-AU dataset.

14.2 Evaluation on CIFE-AU

The proposed E-Net shows its outstanding performance on standard AU detection when

compared to the state of the art methods. But whether this approach is useful in real scene

AU detection needs to be evaluated. This is also the motivation for us to generate the CIFE-

AU dataset. The CIFE-AU dataset contains images from the wild, hence there are fewer

restrictions on the expressions and AUs. This also makes the AU detection more challenging.

In the CIFE-AU dataset statistics, we notice that the occurrence rates for AUs are quite

biased (Table 14.2). This makes it difficult to jointly train the deep model for all AUs. To

ensure that sufficient image samples for both active and inactive AUs can be fed to the neural

network during training, the training is performed on each AU individually. Each training

batch contains 50 samples with half being active and the other half being inactive samples.

In the original CIFE, the entire dataset is already divided into training and test parts, so

we directly use these two sub-datasets for training and testing the model. For comparison

purposes, we implement the state of the art approach DRML introduced in [47], therefore

three models - DRML, FVGG and E-Net - are then compared against each other on both of

their accuracy and F1 score values for all the 14 AUs. Based on the evaluation results (Table

14.3), the proposed E-Net is able to achieve the best performance: on average, 9.9% increase

in the F1 score and 21.0% in accuracy over DRML.

Table 14.3 also gives a detailed comparison of accuracy and F1 score values for all the
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Table 14.3: Results on the CIFE-AU dataset

Accuracy F1 score

AU DRML[47] FVGG E-Net DRML[47] FVGG E-Net

1 47.3 77.3 86.7 19.2 31.2 37.2
2 62.5 87.9 88.4 16.8 24.9 25.8
4 68.7 80.9 87.4 16.5 19.5 16.9
6 65.1 66.8 76.4 30.1 33.6 36.6
7 71.4 69.9 73.6 34.8 46.8 47.2
9 49.4 73.1 79.6 27.2 36.9 37.0
10 45.2 64.3 63.2 32.1 35.9 39.0
12 58.7 70.5 78.8 33.1 46.9 50.1
14 55.2 86.8 82.7 13.4 18.2 15.4
15 60.1 84.9 85.8 16.5 20.8 22.1
17 57.3 76.5 87.9 19.6 25.4 31.2
23 55.9 73.2 73.5 42.3 62.8 65.6
24 53.7 66.5 73.8 56.2 61.6 64.0
25 62.3 71.0 69.9 63.7 70.4 72.3

Avg 58.1 74.9 79.1 30.1 38.3 40.0

AUs using the CIFE-AU test dataset. Although we tried to balance the data before feeding

it to the network during training, the lack of sufficient active samples still affects the under-

represented AUs and the F1 scores for these AUs whose occurrence rates are very low. On the

other hand, for the AUs with more active samples, the models show better performance both

in accuracy and F1 scores. Despite these difficulties, we still see that compared to the state of

the art approaches, the proposed E-Net can achieve better results on the “wild” AU dataset.

Figure 14.2 shows examples of some AU prediction results on the test images. For the DRML

approach, the input images need to be aligned in a way that similar facial regions fall into the

same blocks. The images in CIFE-AU though are mostly random posed, which makes it hard

for the state of the art approach to perform well. For E-Net on the other hand, the attention

layers will move according to the landmark key points and even when the landmarks have

localization errors, the E-Net can still handle the AU detection reasonably well.



15 AU DETECTION: APPLICATIONS AND DISCUSSIONS 88

15 AU Detection: Applications and Discussions

Action Units (AUs) are the basic facial movements that work as the building blocks in for-

mularizing multiple facial expressions, such as attention monitoring [79]. pain detection [80],

deception detection [81] and personality evaluation[76]. The successful detection of AUs will

greatly facilitate the analysis of the complicated facial actions or expressions. AU detec-

tion has been studied for decades as one of the basic facial computing problems and many

interesting approaches have been proposed.

15.1 Possible applications

Compared to facial expression recognition which is trying to classify facial image to 7 basic

classes, AU detection focuses on more basic facial element actions. The combination of basic

AU actions can lead to more interesting questions, so the AU detection can have more usage

in real life applications.

There are many problems in the application side which needs reliable AU detection. One

of the very important application is driver status monitoring in assistive driving[79]. Driver’s

attention is a very important factor to ensure the driving safety. Being able to detect the

tiredness and distraction of the driver can help assistive driving system have better under-

standing of driving status. AU detection can give a good evaluation of tiredness and attention

[79]. There are many other applications such as pain detection and deception detection that

AU detection can provide important features.

15.2 Personality evaluation: a real-world problem

15.2.1 Interview evaluation: problem statement

Personality is a strong predictor of important life outcomes like happiness and longevity,

quality of relationships with peers, family, occupational choice, satisfaction, and performance,

community involvement, criminal activity, and political ideology [76]. Personality plays an

important role in the way people manage the images they convey in self-presentations and

employment interviews, trying to affect the audience first impressions and increase effective-

ness. As is known, the first impression made is highly important in many contexts, such as

human resourcing or job interviews.

15.2.2 FI: the first impressions dataset and the task

The First Impressions (FI) dataset [76] include 10,000 video clips, each is 15-second long

and is annotated with personality traits by AMT (Amazon Mechanical Turk) workers. The
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Figure 15.1: Illuatration of AMT based first impression data labeling.

traits correspond to the “big five” personality traits used in psychology and are well known to

hiring managers using standardized personality profiling: (1) extroversion, (2) agreeableness,

(3) conscientiousness, (4) neuroticism, and (5) openness to experience. Here we call these five

personalities as 5 traits.

Figure 15.1 illustrates a user interface for the generation of the 5 labels for the video clips.

AMT workers are asked to compare 2 videos from the dataset instead of label all in order to

minimize human bias. For each pair of video clips, five traits are compared by AMT workers:

friendly vs. reserved for extroversion, authentic vs. self-interest for agreeableness, organized

vs. sloppy for conscientiousness, comfortable vs. uneasy for neuroticism, and imaginative vs.

practical for openness to experience. The workers just compare different pairs of video clips

for the 5 traits. Each video clip may also be compared with many other other different video

clips. So all the scores are comparison scores (0s or 1s) between pairs of videos. These scores

are used to generate a cardinal score (ranging from 0 to 1)for each video clip by fitting a BTL

model [77]. And the generated cardinal score is regarded as the ground truth for that video

clip in the first impression dataset. Figure 15.2 shows several samples labels obtained through

this crowd source labeling approach. We can see in figure 15.2, the labeled scores for 5 traits

represent the level of different personality profiles. The emotion states can give a clear clue

for us to understand the personality of the candidates and the score is able to describe the

difference. But for algorithm designs, the size of face and the environment seem changing a
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Figure 15.2: Samples of labeled videos sequence.

lot across different videos, poses are also varying a lot, so this is a very good dataset to test

the robustness of our AU and emotion detection algorithms.

The First Impression dataset is a typical video based supervised learning task. The task

is to use deep learning to regressed to 5 values represent the ”big five” personality traits. We

can apply our facial computing approaches to this task. If our proposed approach can show

the good performance in standard and candid AU dataset, it should be able to provide some

good performance in personality evaluation task.

15.3 Discussion

Starting from the fine-tuned VGG to the EAC-Net to the LSTM-Net, we see a steady im-

provement in AU detection performance. From the experimental comparisons, we can see our

proposed EAC-Net leads to significant improvement over the state-of-the-art baselines in AU

detection, since the enhancing and cropping layer make the neural network have a better un-

derstanding about the AU features. LSTM based temporal feature fusion with the LSTM-Net

shows the capability to find AU relationships in nearby frames and hence have boosted the

AU detection performance. We obtained better results on the BP4D AU datasets compared
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to the state of the art approaches. Furthermore, by observing the comparison results of the

LSTM-Net and the ROI-Net (a simplified EAC-Net but more effective and efficient) on BP4D,

we witnessed that the LSTM Net with one LSTM layer boosts the AU detection accuracy by

a 9.7% average F1 improvement, which implies that the temporal context information plays

a very important role in detecting facial actions. On the DISFA dataset, the LSTM-Net out-

performs the stat-of-the-art approaches by an even larger margin, a 25% improvement. To

extend our work to more “wild” scenarios, we generated a new dataset by manually labeling

the CIFE dataset. This makes our CIFE-AU dataset different from the existing AU datasets

in the sense that the CIFE-AU contains labeled web images without constraints in poses,

lighting conditions, and environments. Our approach shows its robustness in detecting AUs

in “wild” images. We will look forward to testing our approaches in more real applications

like personality evaluation in the next step.
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16 Conclusions and Future Work

16.1 Concluding Remarks

In this thesis, the facial computing problem is tackled in two frontiers: facial expression

recognition as a higher level task and action unit detection as a lower level task. We use deep

learning models for both tasks, and three aspects are considered in undertaking the tasks:

data, algorithms, and applications.

In the first part, we propose a recursive framework in order to achieve real scene facial

expression recognition . We first build a candid image facial expression dataset –CIFE– by

parsing Web expression images from image search engines. The CNN-based deep learning

approaches are then employed to train robust facial expression predictors, while fine-tuning

approaches are also constructed to improve facial expression accuracy. To collect real scene

images, we have designed a facial expression interaction game based on our deep learning

model that was trained with the CIFE dataset. With users playing both the general and the

customized versions of the face game, the correctly labeled facial expression images are se-

lected and saved, which help us build the GaMo dataset. We also have run a self-evaluation of

the quality of the data labeling and proposed a self-cleaning mechanism to improve the quality

of the data. To validate the effectiveness of our framework, we compared GaMo and CIFE

based their balancedness, recognition accuracy, the effectiveness of using strictly balanced

subsets, the impact of data-cleansing, and feedback from human subjects. The experiments

show that our framework can build a reliable facial expression predictor for real scenes.

In the AU detection part, we design the enhancing net (E-Net) to force the neural net-

work to pay more attention to AU interest regions on face images. We have also proposed

the cropping net (C-Net) or region of interest (ROI Net) to ensure that individual networks

learn features in “aligned” facial areas. This makes our EAC-Net – the integration of the

E-Net and C-Net – more robust to facial shifts and orientation differences. We have eval-

uated our proposed E-Net and EAC-Net against the state-of-the-art approaches. The AU

detection results show that our approach can achieve better performance on commonly used

AU datasets. With deep pretrained models and a “smarter” way to focus on interest regions,

the proposed approach shows its power in AU detection on multiple datasets including BP4D

and DISFA. We have further tested our EAC-Net on BP4D occluded face data and found

that our learning model is able to detect, and to a certain extent, predict AUs even with half

faces visible, especially for lower-half faces. We have also shown that the proposed EAC-Net

works well with faces with large pose differences.
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Furthermore, we looked into the integration of three effective mechanisms: the region

adaption learning, temporal fusion and single/multi-label AU learning, in AU detection and

proposed a novel approach for the integration. We first used our adaptive region of interest

cropping net (the C-Net or ROI Net), which compared to conventional CNN, proves to be

able to learn separate filters for different regions and can improve the accuracy of AU de-

tection. We then analyzed the proposed model by training it in a multi-label AU detection

manner and showed that the new model can outperform a single AU detection model. We

finally explored the LSTM-based temporal fusion approach, which boosted the AU detection

performance significantly compared to static image-based approaches. We also tried to find

an optimal structure of LSTM layers to connect with the proposed ROI nets to achieve the

best results for AU detection.

16.2 Limitations and Some Future Directions

Deep learning models do have some limitations, which also have been relfected during the

course of this thesis research.

First, our deep learning models, as most of the practices in the field, always try to control

an overall designed loss. Statistically this may yield a high overall performance in classification

or recognition, but may not so for some specific classes, especially some underrepresented

classes. Therefore, if we want the deep learning to have a better and also more balanced

results, we may need to design more sophisticated structures and loss functions to cover more

situations.

Second, the internal structures of the deep models are still hard to explain. Overall, our

best understanding so far is that the earlier layers extract lower level features, and latter layers

higher level features, but the exact mechanisms are usually hard to explain. We have tried

to look into the feature maps extracted from the expression recognition models and the AU

detection models, and we have seen some more meaningful feature maps with our fine-tuning

and attention structures, but these findings are hard to be generalized.

Third, intuitively, more layers should lead to better recognition results. We have seen

this in our facial expression recognition part, in which using VGG with more layers led to

better recognition results. We have also hypothesized that more LSTM layers should yield

higher recognition rates. But in our experiment, we have found that we can achieve the best

performance when we use one single LSTM layer rather than two or three layers. This might

be related to the features fed into the LSTM net. We suspect that if the features are well

learned by one layer of LSTM, that single LSTM layer is already sufficient for achieving the
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temporal fusion. Adding more layers may lead to more gradient loss and more parameters

might also make the model hard to converge.

Finally, it is the general thought of how far we can go with deep facial models with the

current achievements in performance. In the future, we may extend our facial expression

recognition and AU detection work in many aspects. Our recursive framework with the

game-based approach can help us obtain much more real-world data and provide more robust

models for facial expression recognition in real life. We would also like to improve our work in

AU detection to find more responsive areas for the enhancing and cropping nets rather than

manually locating the positions at present. In addition, we may explore integrating more

temporal information into the EAC-Net framework to deal with the wild video AU detection

problem.
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