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Abstract

We propose an integrated solution of indoor navigation using a smartphone, es-

pecially for assisting people with special needs, such as the blind and visually

impaired (BVI) individuals. The system consists of three components: hybrid

modeling, real-time navigation, and client-server architecture. In the hybrid mod-

eling component, the hybrid model of a building is created region by region and

is organized in a graph structure with nodes as destinations and landmarks, and

edges as traversal paths between nodes. A Wi-Fi/cellular-data connectivity map, a

beacon signal strength map, a 3D visual model (with destinations and landmarks

annotated) are collected while a modeler walks through the building, and then

registered with the floorplan of the building. The client-server architecture allows

the scale-up of the system to a large area such as a college campus with multiple

buildings, and the hybrid models are saved in the cloud and only downloaded when

needed. In the real-time navigation component, a mobile app on the user’s smart-

phone will first download the beacon strength map and data connectivity map,

and then use the beacon information to put the user in a region of a building.

After the visual model of the region is downloaded to the user’s phone, the visual

matching module will localize the user accurately in the region. A path planning

algorithm takes the visual, connectivity and user preference information into ac-

count in planning a path for the user’s current location to the selected destination,

and a scheduling algorithm is activated to download visual models of neighbor-

ing regions considering the connectivity information. Our current implementation

uses ARKit on an iPhone to create local visual models and perform visual match-

ing. User interfaces for both modeling and navigation are developed using visual,

audio and haptic displays for our targeted users. Experimental results in real-time

navigation are provided to validate our proposed approach.

Keywords: Indoor navigation, blind and visually impaired, hybrid modeling,

route planning algorithm, task scheduling algorithm, ARKit.



Acknowledgements

Foremost, I would like to express my sincere gratitude and appreciation to my the-

sis advisor Prof. Zhigang Zhu, Herbert G. Kayser Professor of Computer Science,

who gave me this opportunity to conduct my thesis research in the City College

Visual Computing Lab (CCVCL). I learned from him not only how to do research

seriously, but also how to work with a heart to serve others. His guidance will

benefit me throughout the rest of my life.

I am also grateful to Dr. Lidong Chen, who was visiting CCVCL from the Na-

tional University of Defense Technology, China, when I just started my work in the

lab, for patiently mentoring me how to perform research at the beginning of my

research endeavor. In the same way, I would like to thank Prof. Hao Tang, a re-

search member of the lab and a professor from Borough of Manhattan Community

College, for providing his valuable suggestions for my research.

I would like to thank my fellow lab members in the City College of Visual Comput-

ing Lab for their collaborations, friendship and technical support. Special thanks

to Jin Chen, Tyler Franklin and Lei Zhang, who collaborated on the research

project which this thesis is part of. In particular, Jin Chen on system architecture

design, Tyler Franklin on the user interface designs and the thesis writing, and Lei

Zhang on human subject experiment designs.

Last but not the least, I wish to show my gratitude to my family and friends for

their always believing in me and encouraging me to finish my research. Thank

you all!

This work is supported by the US National Science Foundation via a Smart and

Connected Community (S&CC) planning grant (Award #CNS-1737533) and a

Partnerships for Innovation (PFI) grant (Award #IIP-1827505), and Bentley Sys-

tems, Inc through a Collaborative Research Agreement between CUNY and Bent-

ley.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Problem of Statement . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of Our Solution . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4

2.1 Assistive Tech for BVI People . . . . . . . . . . . . . . . . . . . . . 4

2.2 Multimodal Localization . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Vision-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 AR Tools for Localization . . . . . . . . . . . . . . . . . . . . . . . 6

3 System Architecture Overview 8

3.1 Hybrid Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Real-time Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Hybrid Modeling 12

4.1 Region Segmentation and Transition . . . . . . . . . . . . . . . . . 12

4.1.1 Size limitation of an ARKit model . . . . . . . . . . . . . . 12

4.1.2 Transition between models . . . . . . . . . . . . . . . . . . . 13

4.2 Hybrid Mapping with Multimodal Data . . . . . . . . . . . . . . . . 14

4.2.1 Download speed heatmap . . . . . . . . . . . . . . . . . . . 14

4.2.2 Interactive selection of destinations and landmarks . . . . . 16

4.2.3 Automatic extraction of more essential landmarks . . . . . . 16

4.3 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Automatic landmarks collection . . . . . . . . . . . . . . . . 17

iii



Contents iv

4.3.2 Graph construction . . . . . . . . . . . . . . . . . . . . . . . 18

5 Real-Time Navigation 20

5.1 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Procedure of localization . . . . . . . . . . . . . . . . . . . . 20

5.1.2 Transformations from camera to world coordinate systems . 21

5.1.3 Initial localization using beacon strength map . . . . . . . . 24

5.2 Route Planning Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Dijkstra’s shortest path algorithm . . . . . . . . . . . . . . . 25

5.2.2 Modified Dijkstra’s shortest path algorithm . . . . . . . . . 26

5.3 Task Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Boundary proximity-based algorithm . . . . . . . . . . . . . 27

5.3.2 Planned route-based algorithm . . . . . . . . . . . . . . . . 27

5.3.3 Download task scheduling algorithm . . . . . . . . . . . . . 28

5.4 User Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 User interface for traditional or low-vision users . . . . . . . 30

5.4.2 Audio-tactile interface for the blind . . . . . . . . . . . . . . 34

6 Experiments 36

6.1 System Performance Experiment . . . . . . . . . . . . . . . . . . . 36

6.2 Human Subject Experiment Setup . . . . . . . . . . . . . . . . . . . 40

6.3 System Functionality Evaluation . . . . . . . . . . . . . . . . . . . . 41

6.3.1 Operating performance test in different speed . . . . . . . . 41

6.3.2 Route comparison test . . . . . . . . . . . . . . . . . . . . . 42

6.4 System Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . 43

6.5 A Video Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusions and Discussions 45

Bibliography 47



List of Figures

3.1 The iASSIST workflow diagram, with three major components: hy-
brid modeling, web server and real-time navigation. . . . . . . . . . 8

3.2 Data storage in the iASSIST cloud database . . . . . . . . . . . . . 9

4.1 Division of the corridor on the 8th floor of the NAC building at
CCNY into six regions with overlapping gray areas . . . . . . . . . 13

4.2 Download speed (Mb/s) heatmap in the corridor of the 8th floor of
the NAC building at CCNY . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Illustration of the essential landmarks’ extraction algorithm . . . . 17

4.4 Illustration of the graph construction process for a small area . . . . 19

5.1 Procedure of localization . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Illustration of the transformations from the camera to the model
then to the world coordinate systems . . . . . . . . . . . . . . . . . 22

5.3 Illustration of the three coordinate systems on a floor plan: camera,
model and real-world . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Affine transformation equation for alignment model and real-world
coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Illustration of beacon setting . . . . . . . . . . . . . . . . . . . . . . 24

5.6 Illustration of the download task scheduling algorithm. The blue
dots refer to the start points of a user, red dots refer to the selected
destinations, and orange lines represent the planned routes. . . . . . 29

5.7 Coaching overlay graphical and textual states . . . . . . . . . . . . 31

5.8 Two modes of the visual UIs for sighted users . . . . . . . . . . . . 32

5.9 Interface for route planning . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Illustration of experimental setup of localization accuracy. (a) The
background image is the map of experimental place (a) & (b) Red
dots refer to the position of ground truth points; (b) Blue Xs refer
to the positions of test points estimated by app. . . . . . . . . . . . 37

6.2 Plot of RMSE between the estimated positions and the ground truth
values (in meter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Localization error distribution of three approaches. (a) Baseline A:
regular region segmentation without using the new region transition
method; (b) Baseline B: adaptive region segmentation without using
the new region transition method; (c) New results: regular region
segmentation with the use of our new region transition method. . . 39

v



List of Figures vi

6.4 Navigate to CCVCL – the office of Prof. Zhu (click the image for
a demo of an initialization step and two trips including the trip
showed on the image) . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Tables

6.1 Speed test record . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



Chapter 1

Introduction

1.1 Problem of Statement

According to data from the World Health Organization (WHO) in October 2019,

there are at least 2.2 billion people, more than a quarter of the world popula-

tion, suffering from visual impairment or blindness [1]. This population includes

individuals from all five vision impairment categories, and low vision is the con-

dition that cannot be fully corrected with conventional glasses nor any medical

treatment. According to WHO’s World health report 2010, there are 285 million

people with low vision worldwide and 39 million people are suffering from blind-

ness [2]. For blind or visually impaired (BVI) people, as vision deteriorates, they

often rely on a cane or a guide dog to find their way. Although these aids are

helpful, they still face major challenges in wayfinding and navigation, especially

in an unfamiliar indoor environment.

The demand for a reliable indoor navigation application using only mobile devices

has increased over recent years. Many existing mobile applications rely on Wi-

Fi for localization, which often has inconsistent results due to the instability of

Wi-Fi signals. Some applications also used beacons and unique marks (e.g. QR

codes) around the facility, requiring expensive pre-installation and maintenance.

In addition to the cost, these applications often introduce large cumulative errors

1



Introduction 2

for navigation over longer distances. Importantly, most of the indoor navigation

applications target sight users exclusively. This is, BVI users lack access to the

necessary application functionalities for traveling safely inside the building.

1.2 Overview of Our Solution

In this thesis, we propose iASSIST, an iOS assistive application around ARKit [3]

that provides turn-by-turn navigation assistance using accurate real-time localiza-

tion over large spaces, without the need of installation of expensive infrastructure.

In addition to the basic navigation capabilities, our app also informs the users

about their current position with audio assistance (e.g. scan a landmark for local-

ization). The app aims to assist people with navigational challenges, especially for

BVI individuals, in complex indoor environments. Experimental results show that

our system can maintain accuracy to within 15 cm for indoor localization without

expensive infrastructure installation.

1.3 Major Contributions

The key contributions in this thesis can be summarized as follows:

• An iOS-based application that provides turn-by-turn indoor navigation for

BVI individuals with voice interaction.

• A client-server architecture that allows scaling to large areas by lazy-loading

models according to beacon signals and/or adjacent region proximity.

• An indoor localization method that achieves highly accurate and low-cost

indoor positioning with the help of ARKit.

• A method that solves the model transition problem caused by region seg-

mentation for a large region.
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• Automatical landmark determination and data collection for hybrid model-

ing which incorporates the Wi-Fi/cellular-data download speed, storing all

information on a remote service.

• A configurable route planning algorithm weighted by user preference and

hazard potential, with consideration of the Wi-Fi/cellular download speed

along the path proposed.

1.4 Outline of the Thesis

After the introduction to the research topic, the remainder of this thesis is orga-

nized as follows. First, we provide a survey of the current methods used for indoor

navigation in Chapter 2. Next, in Chapter 3, we introduce a brief overview of

the iASSIST architecture and its three components (hybrid modeling, web server,

real-time navigation). We will detail the system design and implementation for

the two major components (modeling and navigation) in Chapter 4 and Chapter

5. In Chapter 6, we present a performance evaluation of the proposed app, pro-

posed functionality experiments and a demo of the proposed. Finally, Chapter 7

concludes the work and discusses limitations and future works.



Chapter 2

Related Work

2.1 Assistive Tech for BVI People

Researchers have investigated various methods to assist the blind and visually

impaired in complex and unfamiliar indoor environments. Compared to outdoor

environments, where there tends to be more open space and the global positioning

system (GPS) is available, indoor positioning may often present a greater challenge

[4]: GPS localization has inaccuracy in the outdoor environment and becomes more

unstable when applied to the indoor environment.

Besides GPS, other localization strategies often require additional infrastructure

[5]. One of the most widespread navigation assistance tools is Bluetooth low-energy

(BLE) beacons. Although active methods using Bluetooth [5, 6] can improve

accuracy, pre-installed infrastructure is required, which is expensive.

Wireless networks such as the cellular [7] and Wi-Fi [8] have also been used for

indoor localization. The distribution of Wi-Fi access points in the environment.

However, the Wi-Fi signal does not cover every place consistently, so additional

routers had to be installed to ensure localization accuracy.

4
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2.2 Multimodal Localization

Many indoor localization techniques described above often need to consider mul-

tiple factors in the indoor environment to determine location, such as the effect

of the indoor obstacles’ location or size and the device signal strength and sta-

bility. This leads to the difficulty in developing a unimodal approach model for

accurately detecting the person’s location over time. On top of this, using a stan-

dalone model under mobile edge, computing environment could be a burden for

phone’s processing power and memory. To solve these problems, many studies

have integrated multimodal solutions for localization, incorporating cloud services

for storage of data and/or computation, making mobile indoor localization more

feasible and accurate [9–11]. Most commonly, localization is being performed us-

ing multiple modalities, such as Wi-Fi, beacons, audio, images, point of interests,

and the like [9, 12]. In addition, such a framework, i.e. combining various models

for each environmental condition, had been proposed for localization according to

the received signal strength of Wi-Fi access points [11]. As each model handles

only one condition, it provides higher accuracy and requires lower computation

power in unstable environments. Several solutions also have been offered, working

toward the combinatorial optimization problems of the framework.

2.3 Vision-based Approaches

Vision-based positioning methods [13] have also been proposed because they can

offer highly accurate localization without expensive infrastructure installation.

Visual-Inertial Odometry (VIO) [14] is one of the well-known visual positioning

methods to track a user’s current position using previous positions, step length and

motion direction in cooperation with visual sensors. Since smart devices nowadays

are equipped with various kinds of powerful on-board sensors, including accelerom-

eters, gyroscopes, compasses, proximity sensors, depth sensors, cameras, etc., this

method can be implemented for these platforms with no further peripheral re-

quirements. The major disadvantage of these methods, however, is the cumulative
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drift error. For long-distance and long-term tracking, additional global mapping

and/or other physical constraints are necessary to eliminate the cumulative error.

2.4 AR Tools for Localization

ARKit [3], Apple’s augmented reality (AR) platform for iOS devices, uses VIO

technique described above to track the world around the iPad or iPhone. It can

detect notable feature points in the scene image seen by an iOS device’s camera,

and the device can get its current movement by comparing the movement of these

feature points across the video frames with data from the device’s motion-sensing

hardware. Across 2D video frames, it follows the movement of feature points and

uses the aforementioned onboard motion detection to estimate their position in

3D space.

However, one of the major disadvantages of ARKit is the size limitation of its

working model. For a large region, it is difficult to store all the information into

only one model. If the model is too large, it can significantly impact localization

performance negatively. In addition, the cumulative drift error will be increased

with long-term tracking in a large region. Dividing a large region into multiple

small regions and modeling these regions separately is a good way to solve both

problems, which was proposed in an early work of our lab [15], but it causes a delay

in localization while switching models seamlessly from the previous region to the

next, creating large localization errors if salient visual signs cannot be detected

by the app during a transition. In addition, the iPhone app developed was in a

very early stage with a very preliminary user interface. In [16], ARKit is used

to demonstrate an example of how real-time data acquisition can be employed in

educational settings, while reporting similar limitations of ARKit.

Another major disadvantage is, before tracking the real space, ARKit asks the

user to hold a smartphone and point it to a set of specified featured signs in the

real space and those signs, such as wall-mounted room number plate, must be

pre-recorded in the corresponding model in order to synchronize the real world
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and the model. This process can be a difficult task for BVI. In another piece of

the early work of our lab [17], a Tango 3D sensor is used to build accurate 3D

models of an indoor environment, bypassing the need to detect visual signs for

localization aside from landmark recognition and semantic understanding of the

scene. However, how to guide blind users to scan a landmark for localization using

only a 2D camera, like an iPhone camera, is still a challenge. These two major

challenges of ARKit will be addressed in this thesis, leading to a workable app

with multimodal user interfaces.



Chapter 3

System Architecture Overview

Our iASSIST is an iOS application that provides indoor navigation for both sighted

users and BVI users with voice interaction. The iASSIST has three major com-

ponents, hybrid modeling, a web server, and real-time navigation (Figure 3.1):

Before the iASSIST app can be used for navigation in a specified building, the

multimodal data of the building needs to be modeled and stored in our database.

Figure 3.1: The iASSIST workflow diagram, with three major components:
hybrid modeling, web server and real-time navigation.

8
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3.1 Hybrid Modeling

During the hybrid modeling stage, the modeler will walk around the building

and mark the destination points using the app’s modeling interface along with

the information about the destination, such as the location type, accessibility for

visually impaired people, etc. While the modeler is moving around the building,

the app automatically collects the location information, including the Wi-Fi signal

strength and the geolocation features.

All the collected information will be sent to the hybrid modeling module to model

the regions of the floor and return proposed locations to install beacons near

the important landmarks. The modeling process is completed on each floor with

multiple local regions models generated for each time. These enhance modeling

efficiency and localization accuracy for the navigation. Each region only needs one

beacon installed.

After the modeler finishes scanning a floor, all the region models and their con-

nections with the global map will be saved to our web service. The modeler can

repeat the modeling process for each floor until finished with the building.

Figure 3.2: Data storage in the iASSIST cloud database

3.2 Web Server

The web service provided by the web server component is the core component of

the app connecting the two major components, modeling and navigation. It allows
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us to provide indoor navigation in numerous locations and for multiple users. It

directly saves all models’ information received from the modeling component to

the database.

The database consists of all the region models and a global map (as shown in

Figure 3.2) that contains all the buildings’ information and connections between

the building’s regions. For the navigation, the global map will be used to determine

the path, while the region models are used to locate the user’s current position in

the building.

To efficiently manage the building information, there is an online management

system that allows the modeler to easily modify the location and region model

information of their building, which does not require any programming skills.

3.3 Real-time Navigation

In the real-time navigation stage, the iASSIST app on the user’s iPhone pro-

vides the indoor navigation for sighted users and BVI users, and two different

user interfaces are designed to increase the app accessibility and user-friendliness.

When the user opens the app in any of the modeled buildings, the user’s current

region will be determined by the beacon signals. Using speech or text input, the

user indicates their desired destination along with their path selection preferences,

the app will then plan a suitable route for the user through the global map.

The model download scheduler will then determine the downloading tasks for the

regional models with consideration for the route and the Wi-Fi strength of each

region. Downloading models ad hoc keeps the app lightweight, as it only stores in

memory the region models required for the navigation, and also allows for scaling

to an arbitrary number of mapped interiors.

To streamline the navigation user experience, our app provides the voice navigation

for step-by-step moving directions and guided visual pointers, incorporating the

vibration to remind the user to make the turn. The iASSIST also auto-corrects
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the path when users begin walking in the wrong direction. With high-accuracy

position detection, adjustable paths, and easy-to-follow guidance, iASSIST allows

people with BVI travel independently and safely indoors.



Chapter 4

Hybrid Modeling

The ARKit platform provides a powerful feature called ARWorldMap that stores

all the raw feature points that represent the mapping of the physical world. The

area map stored in the ARWorldMap, which will be called it ARKit model here-

after, can be retrieved and used for determining the user’s localization. However,

ARKit still cannot achieve indoor positioning, in a large scale, since it is not de-

signed for this purpose. Nevertheless, this powerful location determination feature

is used as the basis for our hybrid modeling, with integrating the automatic data

collection algorithm, route planning algorithm, and region segmentation process

to overcome the limitations of the ARKit.

4.1 Region Segmentation and Transition

4.1.1 Size limitation of an ARKit model

Generally, it is difficult to store the entirety of the data for a large area into only

one ARKit model. As the size of the model becomes too large, ARKit seems

to remove the older data to avoid slowing the localization process. Specifically,

by conducting numerous real-scene experiments on the ARKit platform, we have

found that the size of a point-based area map stored in an ARWorldMap object is

12
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limited to only a few Megabytes. Due to this limitation of ARKit, we must divide

a large area into multiple local regions, and then scan each region to generate the

corresponding ARKit model. For example, we divided the corridor outside our

lab into six regions (Figure 4.1). Finally, we align the coordinate system of each

ARKit model with floor plan of the area in a 2D global coordinate system using

an affine transformation that will be discussed in Section 5.1.2.

Figure 4.1: Division of the corridor on the 8th floor of the NAC building at
CCNY into six regions with overlapping gray areas

In addition, an overlapping space (shown the gray area in Figure 4.1) have been

added between region boundaries to avoid repeated switching models by accident

when users walk across around region boundary.

4.1.2 Transition between models

This method brings a new challenge, however. When a user walks from one region

to another, the app needs to switch the model of the previous region to the new

region. Since the new model has not been matched yet in the new region, the
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correspondence between the coordinate system in the new model and the coor-

dinate system in the global real world cannot be established. In this case, the

world tracking functionality of ARKit still works. The app can use the relation-

ship between the previous model and the real world temporarily before the first

successful matching in the new region. The app needs to record user’s last position

(i.e. tx, ty) and yaw value (i.e. θ) while entering the new region, for calculating

the transformation matrix using Equation 4.1 below:

Tq(x, y) =

cos θ − sin θ

sin θ cos θ

x
y

 +

tx
ty

 (4.1)

In this way, the current coordinates (i.e. x, y) in the new region is defined by the

coordinate system of the previous region temporarily (i.e. Tq(x, y)). Therefore,

the app can keep navigating using these temporary coordinates rather than get

stuck before the first successful matching in the new region.

Moreover, there may be about 1∼2 seconds delay while loading the new model.

During this period, the world tracking functionality will not work. After the

new model is loaded, it will lead to some offset when estimating the relationship

between the temporary coordinate system of the new region and the coordinate

system of the previous region. To solve this problem, we calculate the average of

the moving distance of last 10 frames and extrapolate the user’s motion linearly

to estimate the user’s current location during this gap period.

4.2 Hybrid Mapping with Multimodal Data

4.2.1 Download speed heatmap

A planned route may involve several regions. Different regions correspond to

their respective models and all these models have been stored in the web service

as discussed in Chapter 3. While navigating, the app needs to download the
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Figure 4.2: Download speed (Mb/s) heatmap in the corridor of the 8th floor
of the NAC building at CCNY

corresponding model of the region that user located from the web service via Wi-

Fi/Cellular-data connection. However, some of the regions may not have a good

signal connection. It would be better if the app can download the models of the

poor network connection regions in advance when the user is in regions with the

excellent network connection so that the user does not need to stop and wait for

downloading when entering the new region. Therefore, we create a download speed

heatmap (also in Figure 4.2) in the modeling stage.

Due to the limitation of iOS, it’s hard to obtain the download speed directly. The

download speed is measured by computing received data from Internet within 5

seconds and repeated the process until modeling ends. The number over each

region is the download speed (The unit is megabyte per second) for the corre-

sponding region. iOS will automatically switch Wi-Fi/cellular connections based

on the strength of the signal. There are three network access sources available

in the corridor show in Figure 4.2: cellular data (green), Wi-Fi 1(blue), Wi-Fi

2(orange). Each region records the download speed using network access source
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with the strongest signal strength. This heatmap will be used for determining the

model download task scheduling that will be discussed in Section 5.3.

4.2.2 Interactive selection of destinations and landmarks

Modelers need to input information (including name, type, and accessibility data)

for a destination when they are in front of the destination. The information is

used for route planning that will be discussed in Section 5.2.

Adding some “landmark” locations is also important for route planning and they

need to be recorded even though they maybe not refer to any accessible destina-

tions. For example, stairs may often be recorded as a landmark. While elevators

have same functionality as stairs, and are more accessible, the location of stairs

relative to elevators needs to be recorded to offer an accessible detour for BVI

users.

Selecting destinations and salient landmarks is the only interactive part during

the hybrid modeling.

4.2.3 Automatic extraction of more essential landmarks

In order to the make modeling process simpler and handier for the modelers, we

created an automatic “essential” landmarks extraction algorithm so that the mod-

elers only need to record destination information without considering intermediate

landmarks among those destinations. These destinations and landmarks will be

used as nodes in the route planning algorithm that will be discussed in Section

5.2.

The core of this algorithm is the essential landmarks extraction algorithm by break-

ing the traveling path of the modeler between two destinations into “straight” line

segments with a threshold of the measurement of straightness of each trajectory
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Figure 4.3: Illustration of the essential landmarks’ extraction algorithm

segment. It can extra several essential landmarks from a few intermediate land-

marks between two given destination. Algorithm 1 and Figure 4.3 describes the

process of extracting essential landmarks.

Algorithm 1 Essential landmarks extraction algorithm

1: Input: List li consists of N points; Two end points of li represent two desti-
nations

2: Output: A list containing essential landmarks between two destinations
3: procedure EXTRACTION(li)
4: if the count of points in li < 2 then
5: return an empty list

6: L← a line connects the end points of li
7: dp ← the maximum distance between a point P in li and L
8: if dp < T then . T is threshold that can be set
9: return the endpoints of li

10: else
11: li1, li2 ← split li at point P

12: return EXTRACTION(li1) + EXTRACTION(li2)

4.3 Graph Construction

4.3.1 Automatic landmarks collection

During modeling, the modeler walks around the area and stops in front of the

target destinations and clicks on the record destination button to type in the infor-

mation about the destination (e.g. name, type, accessibility). While the modeler
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continues to walk around the area, every second the app will automatically collect

the information about intermediate landmarks (e.g. position, download speed,

etc.) until the recording of the next destination. The essential landmarks extrac-

tion algorithm (Section 4.2.3) will automatically find several essential landmarks

(e.g. turning point) between the two destinations. If the distance between two

essential landmarks is long, the algorithm will select several unessential landmarks

between these two landmarks and record them as landmarks. For example, if the

distance is 10 meters, it will select 3 unessential landmarks. The above process

will be repeated from one destination to another until modeling is finished in a

whole area. In some cases, as the modeler might travel a path more than once

to label any missing destinations, there will exist reduplicative landmarks. Thus,

after the modeler finishes labeling all the destinations of the area, all the selected

landmarks are checked and remove those landmarks that are too close. Finally,

all destinations and selected intermediate landmarks are defined as nodes of a

multimodal graph with visual, connectivity and beacon information for the route

planning algorithm.

4.3.2 Graph construction

A local graph is constructed for each region model, with the nodes of the graph

representing destinations and essential landmarks, which are connected by edges

as traversable paths. Then the local graphs are connected into a global graph

representing a floor or even a building. The graphs are aligned with the floor-

plan and ARKit 3D models, in a world coordinate system. Figure 4.4 depicts the

process of graph construction for a small area. In (1), five blue dots refer to five

destinations including bedroom, living room, bathroom, entry and kitchen. In (2),

these gray dots refer to the intermediate landmarks that were collected automat-

ically per second. In (3), these orange dots were selected as essential landmarks.

In (4), after removing unselected intermediate landmarks, the nodes representing

destinations and essential landmarks are connected by edges as traversable paths

to form a local graph for the area.
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Figure 4.4: Illustration of the graph construction process for a small area



Chapter 5

Real-Time Navigation

Accurate localization and optimal path planning are essential for indoor naviga-

tion, especially for BVIs. In this section, multiple transformation and alignment

procedures are introduced to deal with the three different coordination systems in-

volved in the determination of the user’s localization. Route planning algorithm is

one of the major components of navigation and we proposed a modified Dijkstra’s

shortest path algorithm to provide the most suitable route for each user. Next,

we introduced download task scheduling algorithms in order to avoid users having

to stop and wait for a model to be downloaded in the poor network connection in

some regions. Finally, we introduced a traditional graphical UI (GUI) presented

to users with full or partial vision and an audio-tactile interface (ATI) presented

to BVI users.

5.1 Localization

5.1.1 Procedure of localization

When the user opens the app and holds the phone, the camera can automatically

capture images. Once a new image is captured, it is processed to find pre-defined

20
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Figure 5.1: Procedure of localization

landmarks in the saved model created by using ARKit. Upon matching the land-

mark successfully, the app uses this information to align coordinate systems of

the camera, the saved model and the real-world floorplan so that it can convert

the coordinates of the user’s location from the camera to the world (shown in

Figure 5.2) by using Equation 5.1:

Pw = Mm2wMc2mPc (5.1)

Where Pw is the location of a 3D point represented in the real world coordinate

system, Pm is the location of the point represented in the ARKit model coordinate

system (Figure 5.2), Pc is the location represented in the camera coordinate sys-

tem, Mm2w is the transformation matrix from the model to the world coordinate

systems, and Mc2m is transformation matrix from the camera to the model coor-

dinate systems. In this way, the app can obtain the real-world position of the user

(or a feature in the scene). Then, the app will ask the user for the destination of

navigation in a synthesized voice. The procedure of the app for indoor localization

is presented in Figure 5.1.

5.1.2 Transformations from camera to world coordinate

systems

There are two transformation matrices in Equation 5.1. The transformation ma-

trix Mc2m converts the coordinates in the camera to the coordinates in the model.
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Figure 5.2: Illustration of the transformations from the camera to the model
then to the world coordinate systems

In order to calculate this transformation matrix, the app needs to find a land-

mark with feature points (its representation in the camera system is Pc) and its

associated representation Pm that has pre-defined in the model. Another transfor-

mation matrix Mc2m convert a coordinate in the model Pm to a coordinate in the

real-world Pw. In order to calculate the transformation matrix Mc2m, we used an

affine transformation with at least 3 coordinates in the model and 3 corresponding

coordinates in the real world when creating models (Figure 5.4).

Figure 5.3: Illustration of the three coordinate systems on a floor plan:
camera, model and real-world

Figure 5.3 shows why the app needs to align the coordinate systems of the camera,

the saved model and the real-world floorplan. The floorplan of the corridor in

Figure 8 depicts the 8th floor North Academic Center building (NAC) in the wing

containing the City College Visual Computing Laboratory (CCVCL). The red dots
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are ground truth points on the floor for measurement. We defined the real-world

coordinate system with respect to this map. When a user opens the app, the

camera coordination system is initialized. It follows a right-handed convention:

The Y-axis points upward, and the Z-axis points toward the viewer and the X-axis

points toward the viewer’s right. The Y-axis refers to altitude but since the app

only considers 2D currently, the Y-axis coordinates are ignored here. To align the

model and real-world coordinate systems, the app uses an affine transformation.

To create a correspondence between the camera coordinate system and model

coordinate system, the app needs to find and match a landmark in the real world

(via the ARKit APIs). After aligning the coordinate system of the camera, model

and real world, the app can convert a camera coordinate to a real-world coordinate

by using Equation 5.1.

Figure 5.4: Affine transformation equation for alignment model and
real-world coordinate systems

Figure 5.4 shows how to align the model coordinate system to the real-world

coordinate system using affine transformation with 14 pairs coordinates. The red

dots are ground truth point in the real-world coordinate system. The blue dots are

coordinates in the model coordinate system. As shown in the left of Figure 5.4,

the model coordinate system skews at the real-world coordinate system without

alignment. After alignment using affine transformation, the blue dots in model

coordinate system almost coincide with the red dots in the real-world coordinate
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system. Statistical results show the alignment has a mean square error of only

0.136 m in region of 196 m2.

5.1.3 Initial localization using beacon strength map

When a user opens the iASSIST app for the first time, the app has no hints to

know user’s location and doesn’t know the load which corresponds to the model for

localization. The app uses the Estimote beacons system to determine which region

the user is in, by simply detected the beacon with the strongest signal strength.

The information of the beacons’ IDs and strengths is saved in a beacon strength

map that is connected with the corresponding regions on a floor plan. Then the

app can download the corresponding ARKit model from the web service.

The corridor of the 8th floor of NAC has been divided into six regions (Figure 5.5).

The size of each region is 13.42 m ∗ 18.3 m. We set one beacon for each region to

determine which region where the user is with the help of Proximity SDK provided

by Estimote.

Figure 5.5: Illustration of beacon setting
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Using this beacon system, when a user opens the app in this corridor for the first

time, the iASSIST app can know which region where the user is in, which allows

the app to know which model to download from our web service.

5.2 Route Planning Algorithm

5.2.1 Dijkstra’s shortest path algorithm

Dijkstra’s algorithm [18], named after its creator Dutch computer scientist Edsger

W. Dijkstra and published in 1959, can be used for finding the shortest path

between two given nodes in a weighted graph (can either be directed or undirected),

by building a tree of shortest paths from a specified source node to all other nodes

in the graph, as described in Algorithm 2. Then you can select any nodes in this

tree as a destination node and easily obtain a shortest path between the source

node and the selected destination node through the shortest-path tree.

Algorithm 2 Dijkstra’s shortest path algorithm

1: Input: dist, an array of distances from the source node s to each node in the
graph

2: Output: dist contains the shortest path from source s to each node in the
graph

3: procedure Dijkstra (Graph, source)
4: dist[source]← 0
5: for each node v in Graph do
6: if v 6= source then
7: dist[v]←∞
8: add v to Q

9: while Q is not empty do
10: v ← node in Q with min dist[v]
11: remove v from Q
12: for each neighbor u of v do
13: alt← dist[v] + length(v, u)
14: if alt < dist[u] then
15: dist[u]← alt

16: return dist[]
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5.2.2 Modified Dijkstra’s shortest path algorithm

Classical Dijkstra’s algorithm uses distances as weights. In our modified algo-

rithm, we not only consider the distance between two linked nodes but also other

attributes (e.g. download speed S, BVI accessibility A, and hazard in turning T

during a whole navigation) of each node:

Weights[v] = Weights[u] +Distance[u, v] ∗ Cost(v) (5.2)

Where

Cost(v) = a ∗ S + b ∗ A+ c ∗ T (5.3)

This algorithm will use Equation 5.2 to calculate the weight of each node. Weights[i]

stores the least cumulative weight from the initial node to node i. Assume that

the weight of node u (i.e. Weights[u]) is known and node v is next to node u,

we want to compute the weight of node v (i.e. Weights[v]). This value is equal

to the weight of node u plus the distance between node u and node v multiple by

the cost of node v. The cost of node v is affected by the three attributes in the

corresponding location: the download speed (S), BVI accessibility (A) including

obstacles and crowdedness around the location, and the hazard (T ) user faced

when making the turn in the wrong time or direction.

Different users have unique demands for route planning. According to the prefer-

ences a user selects, the algorithm will consider all or some of these attributes and

vary the three factors (a, b, c in Equation 5.3) in the cost functions to compute the

weight. In this way, it may offer a different route.

5.3 Task Scheduling Algorithms

In order to better serve the user with a more seamless app in terms of time re-

sponses, we designed three algorithms, two simple ones and a more sophisticated

one.
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5.3.1 Boundary proximity-based algorithm

If the user wants to walk around and view the current position via the indoor

map displayed in the app (for the users with normal vision or low vision), the app

will use boundary proximity-based algorithm as a primary prediction of what the

next region would be. There exists a space (e.g. 3 meters) around each boundary

of the current region and its adjacent regions. When the user enters into space,

the app will consider the adjacent region next to space as the next region. The

app will check if the model of the predicted next regions has existed in the local

storage of the smartphone by its model names. If not, the app will start a thread

to download it and then store it in the local storage. Before walking through the

boundary and entering the next region, the app has to make sure that downloading

the corresponding model from the web service is completed. Repeat the process

above when the user enters a new region. By this process, the user can move

from the current region to the next region without waiting for downloading the

corresponding model.

5.3.2 Planned route-based algorithm

After initializing the app and knowing the first region where the user is by detecting

the closest beacon, the app asks the user to select a destination and then start

to navigate, then the app will determine a route from the current position to the

destination. This route planning may involve multiple regions and the app needs

to download the corresponding models of these regions from our web service before

navigation. In order to avoid waiting too long for downloading all relevant models

once, the app will download these models separately. As long as completing the

download of the first adjacent model, the app will start to navigate. At the same

time, the rest of the download will be completed one by one in the background

while navigating.
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5.3.3 Download task scheduling algorithm

The download task scheduling algorithm integrates the download speed heatmap

(discussed in Section 4.2.1) with the boundary proximity-based algorithm and

planned route-based algorithm.

If the user doesn’t select any destinations and just wants to walk around and check

the current position with the indoor map shown in the app (for the sighted users),

the app will use boundary proximity-based algorithm as a primary prediction of

what the next region would be. After the user selected a specific destination, the

app will use the planned route-based algorithm as the primary algorithm. Since the

app can obtain the network connection of each region according to the download

speed heatmap, the app can do the download of models adaptively. For example,

if the network speed is sufficient in the current region, the app will download

all the models of other regions involved in the planned route and those regions

with poor network connection have priorities. However, if the network is slow to

download the current region model to local storage and the model has not been

pre-downloaded, the app will ask the user to stop and wait until the download is

completed in order to avoid reducing the accuracy of localization.

In some cases, users move too fast or does not follow the navigation instructions,

which may cause the navigation error or even app crash. In order to avoid these

exceptions while navigating, the app will do monitoring. First, the app will check

if the download of the model has been completed before entering a new region. If

not, it will not switch to the next model until the download is completed, even

though the user has proceeded into the new region. Nevertheless, the app can

still continue to provide positioning information in the vicinity of the new region

by using the information from the previous model and the current model’s world

tracking functionality to predict user’s motion (as discussed in Section 4.1.2).

However, if the network is too bad and it takes a long time but hasn’t completed

the download yet, the app will ask the user to stop and wait until the download is

completed in order to avoid reducing the accuracy of positioning. Second, when

the user leaves current region and prepare to enter into a new region that has
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been determined according to planned route, the app will use the tracking results

provided by ARKit to determine the new region as a confirmation. If these two

results don’t match, then the user might have seriously deviated from the planned

route. In this case, the app will first obtain the new region through the beacon

system, then download and align the corresponding model, before rerouting from

the current position to the specified destination.

(a) (b)

Figure 5.6: Illustration of the download task scheduling algorithm. The blue
dots refer to the start points of a user, red dots refer to the selected

destinations, and orange lines represent the planned routes.

As an illustrative example, in Figure 5.6(a), the user opens the iASSIST app at

region 10 and the current position is represented as a blue point. The destination

the user selected is represented as a red point and it is in region 4. The orange

line represents the planned route from the current position to the destination.

This route involves regions 10, 6, 7, 8 and 4. The app needs to download the

corresponding models of these regions one by one from web service.

After completing the download of the model of region 10, the app will start to

navigate. At the same time, the app will start to download the model of region

6 in the background. Before the user enters region 6, the app will check if the

download of the model of region 6 has been completed. If not, the app will not

switch to the new model until the download is completed. If the network is too

bad and it takes a long time but hasn’t completed the download yet, the app will

ask the user to stop and wait until the download is completed in order to avoid
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reducing the accuracy of localization. If the network is pretty well in the current

region, the app will download all the models of the region involved in the planned

route and those regions with poor network connection have priority according to

the download speed heatmap.

In Figure 5.6(a), when the user leaves region 6 and prepare to enter into a new

region, the next region should be region 7 according to the planned route-based

algorithm. However, the positioning information the app provided indicates the

user is in region 2. The conflict between these two results indicates that the user

has seriously deviated from the planned route and need to reroute from the current

position to the destination as shown in Figure 5.6(b).

5.4 User Interfaces

Ultimately, all accessible applications will have multiple user interfaces (UIs), for

serving the needs and preferences of different users. This section describes the

traditional graphical UI (GUI) presented to users with normal or low vision and the

audio-tactile interface (ATI) presented to the blind and severely visually impaired

users.

5.4.1 User interface for traditional or low-vision users

While the touch-based interactive components on screen are limited, a lot of infor-

mation is communicated to users via both the GUI and the ATI. The application

has three core views corresponding to the phases of a given user’s navigation work-

flow: landmark-based localization; destination selection; and navigation process.

Landmark Scanning

As described previously, upon initiating a new session in the app, either when

first opening or after the application is unloaded from working memory, the first
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phase of the user workflow is localization using landmark scanning. In this view,

we use the familiar ARKit coaching overlay for landmark tracking with some

modifications.

(a) (b)

Figure 5.7: Coaching overlay graphical and textual states

The user is guided by the overlay to move their camera in six degrees until a land-

mark is established using a graphical illustration and on-screen text prompts seen

in Figure 5.7(a). These visual indicators update at five second intervals, according

to the orientation of the device and whether a landmark has been detected.

In this iteration of the application, we assume landmarks are always recorded and

recognized most reliably with a camera view orthogonal to the wall, such as would

be the case for markings and placards by doors in Americans with Disabilities Act

(ADA) compliant buildings. For this reason, the user is guided to tilt the device

up or down if their angle drifts outside a ten-degree threshold of accepted variance.

Once the proper angle with respect to the x-axis has been established, the user is

instructed to hold their current position and move the phone around slowly and

a graphical illustration and text (shown in Figure 5.7(a)) is provided. If after five

seconds no landmark has been detected, the user is prompted to slowly turn left

with a new graphical illustration and text (shown in Figure 5.7(b)). The text will

update telling the user to continue turning slowly, as it scans for landmarks.
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The message to continue turning will be repeated once, however at the next interval

the application will assume that the user can scanned most of their surroundings

without detecting a landmark. It will thus instruct the user to move to another

region to repeat the process. Since this initial localization is critical for subsequent

phases, this process will repeat until localization has been achieved.

Free move and destination selection

Once localized, the user is prompted to choose a destination and the app transi-

tions to the free move and destination selection view. Here there are two status

indicators in the header, a dynamic map overlay in the body area, and a drop-down

menu button and debug info bar in the footer (Figure 5.8).

Figure 5.8: Two modes of the visual UIs for sighted users

The status indicators report the name of the user’s current region and the quality

of the current mapping. For our testing, we just used numbers to refer to regions,

however depending on what area is being scanned each region could be named by

room, floor, or other differentiation. While these visual components are currently

only used for diagnostic purposes, the header section of the layout is where we
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intend to put meta information and/or controls re: the current geospatial and

navigator context.

The body area of the layout contains a toggleable map. On load, the map fills the

body area of the layout, covering the AR view from the camera and showing a

more comprehensive perspective of the user’s global location (Figure 5.8, left). By

tapping the map, however, the user can minimize it to a small style-bubble map

in the corner, displaying a narrow portion of the map close by.

In the mini-map mode, we later intend to add AR navigation objects in the envi-

ronment such as dynamic animated arrows for guiding the user visually to their

destination (Figure 5.8, right). Tapping the mini map again restores the full screen

map to its full size. In both versions of the map, we use colored dots to indicate

the current position of the user and the reference points evenly distributed at the

middle of the main thoroughfare.

Finally, in the footer we have a destination selection drop-down menu button which

the user can use to begin navigating. Currently the visual of our button is small,

but the actual hitbox fills the footer area. We intend to later make this visual

an oversize Material control with a minimum 44-pixel height and adjustable font

size to conform with WCAG 2.1 criteria 2.5.5 and 1.4.4 [19]. Tapping this menu

button spawns a menu with predefined destinations in the area. Tapping outside

the menu dismisses the context, while tapping on one of the menu items sets the

destination and transitions the app to the route planning view.

Route planning interface

Figure 5.9 shows the GUI for route planning. The layout is similar to the free

move and destination selection view, however certain components are changed.

The status widgets in the header are replaced by a dynamic navigation step ticker

which shows one or two moves ahead.

Additional markings are rendered in the body area on the map overlay. As shown

in Figure 5.9, a blue arrow marks the destination. In this figure, it is the door to
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Figure 5.9: Interface for route planning

the lab director’s office. The green line is the rendering of route progress from the

origin at the time the destination was keyed in.

In the footer area, the destination drop-down menu button is removed. In its place

is a red exit button to allow the user to cancel their current navigation context

(Figure 5.9). The route planning view can be exited manually in this way, or

automatically by arriving at the chosen destination. Exiting transitions back to

the free move and destination selection view.

5.4.2 Audio-tactile interface for the blind

Similar to the GUI presented to traditional users, while the touch-based interaction

requirements of BVI users with the ATI is limited, a key challenge in designing

our interface was to present equivalent information to the blind as to users with

full or partial vision. The three core views we described before are less distinct

to a blind user due, in part, to a design decision we made to avoid translating

the components in favor of communicating data directly in the most intuitive way

possible.
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Guide a blind user to scan a landmark

When a user enters a new place, the first thing is to find a landmark to map this

place with the corresponding model. After matching the landmark successfully,

the method can create a correspondence between the real world and the model

created by ARKit of this place, then it is ready to start to navigate. However, for

the users with visual impairments, they can’t see any visual signs, so the method

must guide them to find those landmarks.

When a blind user enters a new place, the method will ask the user to scan the

surroundings slowly for localization guide the user to find a landmark pre-defined

in the model. First, the procedure will ask the user to tilt the phone up or down a

certain degree to ensure the cellphone remains upright for better detection, then

will ask the user to keep this position and move the phone around slowly to detect

landmarks. We obtain the tilt information of the phone through the native iOS

APIs. If landmark detection was successful, the method will obtain the current

position of the user by an algorithm based on this landmark. If unsuccessfully

after two periods (One period is 7 seconds and the value can be set), the method

will ask the user to turn left and restart to detect. If the user turns a circle (i.e. 3

times left turn or six periods) and hasn’t found a landmark yet, the method will

ask the user to move to another place to start the above process again.

Voice guidance for turn-by-turn navigation with vibration

Voice guidance is very useful for blind users when they are walking in an unfamiliar

place. To make sure these users get navigation information, the app will repeat

navigation instruction every 2 meters in a synthetic voice. Turn left or turn right is

key information for navigation instruction. The app will notify users to prepare to

turn and walk slowly at 1 meter before the turn. The voice and vibration remind

the user when it is time to turn and to stop the turn. When the user is close to

the destination, the app will tell the user the detailed distance to the destination

until the user is in front of the destination. By this time, this navigation ends.
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Experiments

We will conduct experiments with sighted and BVI people to evaluate the accuracy

of localization and region transition, effectiveness of the route planning algorithm

and task scheduling algorithm, and investigate how BVI people perceive the indoor

environments by using the turn-by-turn navigation. All the planned experiments

will take place on campus and an IRB approval has been in place. Due to the

COVID-19, we only proposed the design of experiment and are unable to con-

duct all the experiments. Fortunately, we have finished the localization accuracy

experiments last semester that will be discussed in Section 6.1.

6.1 System Performance Experiment

To evaluate the accuracy of localization of the application, 32 test points with

ground truth data in the experimental place were selected as testing locations as

shown in Figure 6.1(a). A sighted participant stood on each point and used our

app to estimate a position respectively. In Figure 6.1(b), the red dots refer to the

positions of ground truth points and 32 blue Xs refer to 32 the estimated positions

of test points. Figure 6.2 shows the variance between each pair of the positions

estimated by the method and the ground truth values in the experimental place

are range from 0.02 m to 0.35 m, and the root mean square error (RMSE) is

36
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less than 0.15 m, which means the app can offer very accurate indoor localization

for the whole corridor (about 600 m2). Note that in this experiment, the region

segmentation as shown in Figure 4.1 was used, and the results showed that the

transition between regions was seamless and successful. In Figure 6.2, the transla-

tion boundaries between regions were marked with vertical dashed lines (in red),

indicating that the RMSEs did not become larger at the boundaries compared to

other positions.

(a) (b)

Figure 6.1: Illustration of experimental setup of localization accuracy. (a)
The background image is the map of experimental place (a) & (b) Red dots

refer to the position of ground truth points; (b) Blue Xs refer to the positions
of test points estimated by app.

Compared to our early experiments [15], this is a significant improvement in local-

ization accuracy. In our early study, we compared two region division experiments

(two baselines) using the same set of 32 test points with ground truth data. The

first experiment (Baseline A) was with a regular region segmentation but without

using the current transition method (Figure 6.3(a)). The segmentation is similar

to the one we used in our current experiment (for easy comparison, the segmenta-

tion is also shown in Figure 6.3(c)). In Figure 6.3(a), the radius of the green circle

at each test point equals to the localization error at this point. Most of the test

points were located well with a reasonable error less than one meter. Cumulative
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Figure 6.2: Plot of RMSE between the estimated positions and the ground
truth values (in meter)

errors were significantly reduced at any point where the current view of the smart-

phone was mapped successfully to the local ARKit model of the current region.

However, at some of the test locations, such as #11, #27 and #28, localization

errors were as large as over 3 meters. The reason was that each of these test

points was nearing the boundary between two neighboring regions, but there were

no salient visual features around the boundary. While crossing the boundary to

enter a new local region, the new local ARKit model was loaded, but the posi-

tioning output remained at the boundary for several seconds. This was because

the transform relationship between the current model coordinate system and the

world coordinate system has not been established before the new ARKit model

was mapped successfully for the first time.

To overcome this problem, the second experiment (Baseline B) was with an adap-

tive region segmentation (Figure 6.3(b)). Each boundary between two neighboring

local regions was located at somewhere very close to the spots with salient visual

features. Consequently, the newly loaded ARKit model was mapped quickly af-

ter crossing the boundary to enter a new local region, and then world tracking of
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ARKit and simultaneous global localization was renewed soon. The localization re-

sults as illustrated by the green circles were much better as shown in Figure 6.3(b).

However the errors at some points were still obvious, whereas in the results using

our new transition method, the error was minimal (the readers have to zoom in

to see the green circles in Figure 6.3(c) for localization errors).

(a) (b) (c)

Figure 6.3: Localization error distribution of three approaches. (a) Baseline
A: regular region segmentation without using the new region transition

method; (b) Baseline B: adaptive region segmentation without using the new
region transition method; (c) New results: regular region segmentation with

the use of our new region transition method.

The quantitative comparison of localization errors of the three experiments showed

the superior performance of the new transition method. The root mean square

errors (RMSEs) of localization were 1.55 m for Baseline A, without using our new

region transition method, and 0.41 m for Baseline B also without using the new

region transition method, but only 0.15 m when using the new transition method

with a regular region segmentation. With the similar regular region segmentation

(Baseline A), the new transition method is 10 times more accurate than the original

method. It is 2.7 times more accurate than Baseline B, and the new method

does not need an adaptive region segmentation which needs to pick up transition

boundaries close to salient visual features.
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6.2 Human Subject Experiment Setup

We plan to recruit 5 sighted participants to test functionalities and 5 participants

with visual impairments to test the performance and usability. We will first have

a brief interview about their demographic information and list all details about

their demographics including their ages, genders, and sight conditions. Then we

will conduct each experiment separately. All visual impaired participants would

either use long canes or guide dogs.

We will start with functionality evaluation. Given the purpose of functionality

evaluation is to test the operating performance of the route planning algorithms

and the task scheduling algorithms, especially on the aspects of accuracy of region

transition and effectiveness of planned route and the priority of downloaded region,

we decided to work with sighted participants as our subject for this experiment,

since we will need to assign them the various tasks that need to use their visual

perception to achieve the goal of the evaluation. Before the experiments, we will

give all the them a five-minute tutorial and introduction to let them understand

how the application works and what they will expect to do during the experiments.

Then we will ask them and guide them to stand on the starting position for each

experiment one after another. We have designed the procedure of two tests to

evaluate the application functionalities including operating performance test in

different speed and route comparison test, which would be presented in detail

below. At the end of experiments, we will interview the participants and collect

both quantitative and qualitative data to analyze the findings and further improve

our application.

With an improved application, we will continue experiments with visual impaired

participants. Same as that with sighted participants, we will start with an in-

troduction and tutorial to allow them to get familiar with the environment and

mobile application without time limitations. For safety reasons, we will ask visual

impaired participants to walk around the space of experiment room freely to fa-

miliarize them with the environment. Then we will introduce all the features that

our mobile application supports, including different voice guidance, audio-tactile
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interface, audio feedback as well as vibration that indicates the turning boundary.

After that, we will ask visual impaired participants to explore the mobile appli-

cation and indoor destinations listed on the app. During the test, we will always

have staff accompanying them for safety.

To collect all the quantitative data of functionality experiment, we will embed a

calculator in the application to count the accurate points and errors for speed test,

the time, the number of turns and the number of obstacles for route comparison

test. To assemble qualitative data of usability test, we will integrate the method of

video-recording, interview and questionnaires, and ask visual impaired participants

to explore the interface of the application by giving them specific tasks. Then we

will ask them to arrive to the specific destination using this application.

6.3 System Functionality Evaluation

The experiment for functionality evaluation includes two parts: operating perfor-

mance test in different speed and route comparison test.

6.3.1 Operating performance test in different speed

The goal of speed test is to evaluate the accuracy of region transition and the

performance of the task scheduling algorithms between different regions under

different walking speeds. We will ask sighted participants to hold an iPhone with

our app and walk in a different speed: slow, medium and fast from same starting

point to same ending point one by one in a large experimental place with several

regions. Although walking speeds can vary greatly depending on many factors

such as height, weight, age, the average human walking speed at crosswalks is

about 5.0 kilometers per hour (km/h), or about 1.4 meters per second (m/s).

Before starting speed test, we will test all sighted participants’ walking speed and

set speed ranging from 1.2 ∼ 1.6 m/s as medium speed. Walking speed that less

than 1.2 m/s is slow speed, and larger than 1.6 is fast speed.
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ID Age Height Weight Walking Speed Speed Category RMSE

A ≤ 1.2 m/s Slow
B ≤ 1.2 m/s Slow
C 1.2 ∼ 1.6 m/s Medium
D ≥ 1.6 m/s Fast
E ≥ 1.6 m/s Fast

Table 6.1: Speed test record

We still use the corridor shown in Figure 6.1(a) as an experimental site, where

the 32 ground truth positions are marked with red tape. From Section 4.1.1 and

Section 4.2.1, we know this corridor has been divided into six regions and each

region has a different Wi-Fi or cellular data connection quality. A marked position

will be selected as a start position and each of the five sighted participants (with

different walking speeds, as in Table 6.1) will walk from the starting position,

go through all other marked positions with the same order, then return to the

start position. Each time a participant reaches a marked position, he will stop

and click a button to record the current position provided by our app. Finally,

the RMSE between 32 recorded positions and 32 ground truth positions will be

calculated and used to evaluate operating performance. Lower values of RMSE

indicate higher accuracy of region transition and better performance of the task

scheduling. We can also compare these five RMSE values to understand how the

operating performance changes under various walking speeds.

6.3.2 Route comparison test

The goal of this test is to determine whether the current route we designed is

better than other routes. A good route is supposed to meet the target users’

needs, which are timesaving, target-user-friendly, less turns and less barriers. We

will ask sighted participants to walk from the same starting point to the same

ending point via different routes at similar normal speed. The mobile application

will count the amount of time, turns and barriers each route takes. Then we will

compare the difference of current planned route with other routes.
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6.4 System Usability Evaluation

The usability experiments we planned to conduct included interface trials and

a user experience survey. To investigate the usability of our indoor localization

system and to identify users’ needs, the trials would ask participants with vi-

sual impairments to freely select non-duplicated destinations from various choices.

Each session contains five experiments in parallel and have an experimenter ac-

companied each participant to ensure their safety as well as take records of the

procedure. The usability evaluation with target users will have five stages:

1. Introduction. The participants with visual impairments will receive expla-

nations of the purpose of experiment and how to interact with our mobile

application.

2. Interface evaluation. participants with visual impairments will explore the

application by themselves. We will give them tasks to perform to test the

interface, such as find the Select Destination button, and encourage them

speak loud and freely about their feelings. Researchers will take notes with

key data and observations of their feedback and interaction and provide

guidance for each task.

3. Experience evaluation. After the interface evaluation, we will ask partici-

pants with visual impairments to select and explore a destination. At the

end, they will answer a questionnaire toward their experience.

4. Reports of sessions. Each session will be photographed and video recorded

to further observe users’ behavior during interaction and exploration. All

data will be used to get insights and suggestions to improve the application.

5. Design and redesign. According to the feedback and observations, we will

design and redesign our mobile application to satisfy visual impaired peoples’

needs and create more independent and efficient experience.
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6.5 A Video Demo

A better understanding of the iASSIST app may be obtained after watching the

demo video by clicking Figure 6.4. The experimental place is located on the 8th

floor close to our lab CCVCL, in the NAC building. In the demo, we showed:

• Initialization. The app guided a blind user to scan a landmark (a poster in

CCVCL). When matching the landmark successfully, the app told the user

the current position and asked the user to select a destination.

• Trip 1. After the user selected the Office of Professor Zhu as a destination,

the app started voice guidance for turn-by-turn navigation with vibration for

a short planning route. At the same time, the app provided a route planning

interface for sighted users with word guidance.

• Trip 2. After the user reached the Office of Professor Zhu, they selected El-

evator as a destination, started turn-by-turn navigation for a longer planned

route.

Figure 6.4: Navigate to CCVCL – the office of Prof. Zhu (click the image for
a demo of an initialization step and two trips including the trip showed on the

image)

https://drive.google.com/open?id=1vwOspdd7mps5w4yPFX4JlXkiK_LLLPjj


Chapter 7

Conclusions and Discussions

In this thesis, we introduce iASSIST, an indoor navigation application accessible

to BVI people for navigating unfamiliar indoor environments using an iOS de-

vice. Our key contribution is a multi-model framework for localization in a large

indoor environment with high accuracy and low cost. We proposed a solution

to smooth the transition between models, with the algorithm that predicted user

position during the transition period. Using our indoor localization system, we

can significantly increase the accuracy of the user position comparing to what the

original ARKit tracking can do. The Experimental results have shown the RMSE

of localization is less than 0.15 m in the whole corridor (about 600 m2) with a

simple region segmentation scheme that is easy to implement, thanks to the new

transition method proposed in this thesis.

We provide a simple process for modeling which pairs the automatic and manual

data collection process with a straightforward online data management system.

Importantly, our modeling process and web service enables simplified management

of the models in the database, facilitating easy maintenance in case of the indoor

environment must be altered. Also, with region segmentation, our application can

work in numerous buildings without increasing the size of the app, since it only

required the necessary models in the mobile device.

45
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The iASSIST app also implemented a custom route planning based on the Dijkstra

algorithm that render a user-preference and safety route for BVI users. It also

adjusts the route based on users’ motion that avoid the users get lost when move in

wrong direction. Additionally, we provide two different interfaces, one for sighted

and one for BVI users. With the turn by turn moving instructions showing on the

screen for sighted users, incorporate vibration reminders for make turns. For BVI

user, we have voice enhance interface to overcome the difficulty of visual marker-

based positioning methods. In addition, our sign detection approach helps BVI

users find a sign through voice instruction.

Finally we point out a few limitations of the work and a number of future direc-

tions.

Our current models for the single floor outside our lab do show a fair accuracy of

localization, but due to our ongoing efforts to control the spread of COVID-19 in

our city, we are unable to perform all the experiments we planned. Our next step,

for example, was to model the rest of the building and validate the accuracy of

our multi-model framework on a large scale. Also, as we cannot received feedback

from our users, we cannot further optimize features to increase user experience.

For the future, we would like to further explore the capability of our application, by

experimenting with novel modeling techniques to provide accessible navigation at

a large scale. As well as enhance the features to improve the BVI user experience,

through level the tactile feedback based on user’s distance away from the correct

direction. To better assist the BVI, we will also consider implementing the obstacle

detection during navigation, such as preparing the user to open a door, moving

away from obstacle and slowly down speed for incoming crowd.
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