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Abstract. This paper presents the results of a research that created
and analyzed a Multimedia dataset for building energy efficiency esti-
mation. First a new Multimedia Building Energy Efficiency (MMBEE)
dataset was created from publicly available data. This work then ex-
plored the use of the window-to-wall ratio (WWR) information from
building facade images and integrated it with traditional tabular data to
create new training data, in order to predict building energy efficiency
measures. Finally, we discuss potential applications and future research
directions in using the MMBEE dataset for building energy efficiency
prediction. Throughout the paper, a number of important processes and
analyses were performed, which include feature selection, data correla-
tion analysis, WWR extraction, and comparison of deep network and
random forest models in building energy efficiency estimation. From this
first attempt at using the Multimedia dataset for building energy effi-
ciency estimation, we found the performances of deep models were better
than traditional models such as random forest. We also found that there
was an optimal point of what features shall be used for the prediction.
Nonetheless, the incorporation of the current WWR estimation results
did not yield the anticipated enhancement in estimation performance.
Subsequently, a comprehensive investigation was conducted to ascertain
potential contributing factors, and several avenues for future research
were identified to enhance the predictive utility of the WWR feature.
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1 Introduction

In New York City, buildings cause nearly 70% of carbon emissions because of
fossil fuel usage for heating, cooling, and powering purposes [4]. More than one
million buildings in NYC consume approximately 85% of the city’s electricity. A
considerable portion of these structures were erected prior to the establishment
of contemporary energy efficiency regulations. Consequently, they frequently de-
mand a higher energy input for heating, cooling, and powering when compared
to more recently constructed edifices. To achieve a carbon-neutral NYC by 2050,
the New York City Council enacted Local Law 97 in 2019, which covers most
buildings over 25,000 square feet [7]. The legislation mandates building pro-
prietors to undertake building renovations aimed at capping carbon emissions,
thereby resulting in the dual outcomes of bolstering energy efficiency and con-
straining energy utilization. In addition, buildings are graded based on ENERGY
STAR efficiency scores that evaluate a building’s energy efficiency by comparing
its performance to similar building types in comparable environments [5].

In our previous work[8], NYC buildings’ historical energy consumption data
was used in machine learning models to determine their ENERGY STAR Scores
for time series analysis and future prediction. In this work, we define this histor-
ical energy consumption data including numerical and text data as traditional
tabular data. The building’s administrative matrices serve as a prevalent tradi-
tional data source for estimating building energy efficiency performance. These
matrices provide direct information that differentiates each building, such as
water usage, electric consumption and gas usage.

Recent years have seen a surge of interest in utilizing non-traditional building
information for estimating energy efficiency thanks to the success of computer
vision approaches with deep learning models. One of the focus areas is building
facade images. Research has shown that building facade images contain valuable
information regarding building energy efficiency. Factors such as structure, fa-
cade material and Window-to-Wall Ratio (WWR) exert a significant influence
on heat reflection and absorption. Also, the orientation and the location of the
building impact the optimal WWR [12].

This paper proposes a method that utilizes machine learning to estimate the
buildings’ energy efficiency grades using traditional energy consumption data
and facade images obtained from the Google Street View API. The contributions
of this project include the following:

– Creation of a new Multimedia Building Energy Efficiency (MMBEE) dataset
from publicly available data, and analysis of the importance of each of the
Multimedia features.

– Extraction of a building’s window-to-wall ratio (WWR) data from facade
images and integration with traditional data to create new training data.
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– Utilization of neural network models to predict energy efficiency grades,
examining the WWR’s impact on determining building grades.

– Discussions of potential issues and future research directions in using the
MMBEE dataset for building energy efficiency prediction.

Throughout the paper, a number of important processes and analyses were
performed including feature selection, data correlation, WWR extraction, and
deep network and random forest models in building energy efficiency estimation.
From our first attempt at using the dataset for building energy efficiency esti-
mation, we found the performances of deep models were better than traditional
models such as random forest. We also discovered that there exists an ideal
threshold for selecting the features to use in our predictions. At this juncture,
including the current WWR results would not enhance the performance of our
estimation as we have hypothesized. Nevertheless, the dataset would be valuable
for research and applications, and the analyses offer some insights into the data
and the models. In particular, to make WWR a good predictor for estimating
building energy efficiency, we propose the following considerations: enhancing
data quality, encompassing actions like obstacle removal (such as trees, vehicles
and pedestrians), performing image rectification, collecting more relevant im-
age data, and including supplementary data to building images. These factors
warrant further investigation in our future research endeavors.

2 Related Work

The escalating climate concerns have led to a surge in research on predicting and
improving building energy efficiency using techniques that integrate neural net-
works. Mena et al. (2014) deployed artificial neural networks (ANN) to estimate
electricity consumption of Spain’s Solar Energy Research Center (CIESOL) bio-
climatic buildings and revealed a positive correlation between electricity usage
and outdoor temperature and sunlight [9]. Yalcintas et al. (2007) [16] employed
ANN in conjunction with the Commercial Buildings Energy Consumption Sur-
vey to estimate electricity consumption per square meter (EUI) and discovered
that grouping buildings based on property types yielded more accurate predic-
tions.

Besides studies using traditional numerical and text data, the increasing
availability of image data and advancements in computational power have al-
lowed researchers to use images as another vital data source for estimating energy
efficiency. Visual attributes like window-to-wall ratio (WWR) can be extracted
using computer vision techniques as a crucial factor in estimating building energy
consumption. Li et al. (2020) [3] introduced an approach for window detection in
facade images, diverging from traditional computer vision methods of predicting
bounding boxes or segmenting the facade. While the method has the capabil-
ity to identify windows efficiently and precisely, its effectiveness heavily relies
on accurate keypoint detection, which is usually a hard problem under various
conditions, such as illumination changes and occlusions.
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Szcześniak et al. (2021) [11] introduced an automated methodology that uti-
lizes computer vision techniques to extract WWRs for buildings on a large urban
scale. This methodology can be applied universally in cities worldwide, given the
availability of geotagged street view imagery such as Google Street View (GSV)
or similar datasets. The approach still employs a traditional method with a Sobel
filter to detect both horizontal and vertical edge lines, which is hard to generalize
due to the need for experimentally setting thresholds for the detection. Sun et
al. (2022) [10] conducted research in Glasgow to estimate building energy effi-
ciency using administrative and emerging urban big data through deep learning
techniques. Their study demonstrated that building facade images provide valu-
able information for estimating energy efficiency. This research showcased the
potential of Multimedia models to outperform single-source models. However,
there was no such study being done for New York City buildings.

Phillip et al. (2023) were working on predicting future ENERGY STAR
Scores using current year building data in NYC [8]. They extracted 12 important
features from The NYC Mayor’s Office of Climate and Environmental Justice,
which collects data annually through the EPA ENERGY STAR Portfolio Man-
ager[6]. This data collection includes over 29,000 building metrics related to
water and energy consumption. However, only traditional data were utilized for
this study. Through the integration of image data into the model in this paper,
such as the utilization of the (WWR) information, it is posited that the model’s
predictive capabilities in assessing building energy efficiency are likely to experi-
ence enhancements. Should these enhancements not materialize as anticipated, a
rigorous examination of the primary contributing factors will be conducted, with
a view to devising strategies for optimizing the efficacy of WWR as a predictive
variable.

3 Creation of the MMBEE Dataset

In this study, a Multimedia Building Energy Efficiency (MMBEE) dataset is
constructed by combining Multimedia data from the NYC Energy and Water
Data Disclosure and Google Street View (GSV) images for estimating building
energy efficiency.

3.1 Data from NYC Energy and Water Data Disclosure

The NYC Mayor’s Office of Climate and Environmental Justice annually col-
lects more than 29,000 buildings’ water and energy consumption data through
the EPA ENERGY STAR Portfolio Manager. This data encompasses privately
owned buildings exceeding 25,000 sq ft and City-owned buildings exceeding
10,000 sq ft [2]. It enables building owners to assess and compare their energy and
water consumption with similar building types in comparable settings, improving
the assessment of efficiency and sustainability. The dataset includes water elec-
tric, and gas consumption, greenhouse gas (GHG) emissions, and other essential
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building characteristics such as locations and primary usage types. Each build-
ing has an ENERGY STAR Score (A, B, C, or D), which indicates a building’s
energy efficiency. The score is computed by comparing the building’s energy us-
age to other similar buildings within the same category and comparable settings,
such as the physical attributes, its operations and how people use it[2].

Table 1. Dataset from NYC energy and water data disclosure per usage types.

Usage Types Total Rank A Rank B Rank C Rank D

Office 1,000 185 287 208 320
Multifamily Housing 1,000 181 148 159 512
K-12 School 1,000 206 267 188 339

Table 2. Dataset from NYC energy and water data disclosure per borough.

Borough Total Rank A Rank B Rank C Rank D

Bronx 476 91 91 66 228
Brooklyn 715 141 167 134 273
Manhattan 1,264 243 312 242 467
Queens 464 74 110 99 181
Staten Island 81 23 22 14 22

To generate a balanced dataset for machine learning experiments, we ran-
domly sampled 1,000 buildings from the pool of each of three major building
usage types: multifamily housing, office, and K-12 school. We chose these three
specific building types because of the availability of these data within the NYC
Energy and Water Data Disclosure, which allows a more robust comparative
analysis compared to the other building types. These three building types col-
lectively represent more than 81% of the primary building types found in the
Disclosure obtained from the NYC Mayor’s Office of Climate and Sustainability.
The ENERGY STAR rank distribution based on the three building usage types
is presented in Table 1 and the distribution based on the five boroughs in NYC
is presented in Table 2.

The original dataset comprised over 250 features for both numerical and cat-
egorical data. A surplus of features can lead to model overfitting. In addition, we
aimed to narrow down the number of features to focus on the building attributes
that are most relevant to energy efficiency. Therefore, we undertook a feature
selection procedure guided by the analysis of important features in Phillip et
al. study(2023) [8]. The 12 attributes include the following (the digit at the end
of each attribute type shows the number of measures): electricity use (3), gross
floor area (1), latitude (1), longitude(1), year built (1), occupancy (2), natural
gas use (kBtu) (1), eGRID output emissions rate (kgCO2e/MBtu) (1), and green
power - offsite (kWh) (1). A full list of the 12 attributes is shown in Table 4 of
Section 4.1, where we will explain a correlation analysis for the importance of
the 12 features to see if the selection is appropriate.

In addition to the 12 numerical features, our dataset also included 2 categor-
ical features, the primary usage types and the boroughs, which we utilized in our
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Table 3. Examples of Multimedia features of multifamily housing. (EU, WNEU,
EURS, GFA, GFAP, LA, LO, OCC, YB, NGU, EGR, GPO) representing electricity
use, weather normalized site electricity (kWh), electricity Use – generated from on-
site renewable Systems (kWh), gross floor area, gross floor area (Parking), latitude,
longitude, year built, occupancy, natural gas use (kBtu), eGRID output emissions rate
(kgCO2e/MBtu), and green power - Offsite (kWh) electricity use, gross floor area, lati-
tude, longitude, year built, occupancy, natural gas use (kBtu), eGRID output emissions
rate (kgCO2e/MBtu), and green power - Offsite (kWh).

Energy Score A B C D

EU:
WNEU:
EURS:
GFA:
GFAP:
LA:
LO:
YB:
OCC:
NGU:
EGR:
GPO:

58887.3
58887.3
0
38800
0
40.639208
-73.956953
1935
100
2218977.6
84.7
0

516312
502495.5
0
147660
0
40.840864
-73.911364
1941
100
8210472.6
84.7
0

1391565.5
1368769.6
0
204762
11110
40.776824
-73.981431
1990
100
8523620.1
84.7
0

271552.6
266471.2
0
78167
0
40.84902
-73.917491
1939
100
6526143.7
84.7
0

Facade & WWR

WWR = 0.1278 WWR = 0.2413 WWR = 0.07603 WWR = 0.1526

prediction. However, neural network models require numerical input, therefore it
was necessary to apply the one-hot encoding technique to convert these categor-
ical features into a format suitable for our model. One-hot encoding transforms
each category into binary vectors and creates new binary columns in the dataset.
In these new columns, the corresponding column value will be 1 if the building
belongs to that category and 0 otherwise.

3.2 Data from Google Street View (GSV) Images

Street view imagery offers rich visual data that is more intuitive and human-
oriented compared to other forms of data. We acquire images from the Google
Street View (GSV) service utilizing its dedicated Application Programming In-
terface (API). We requested building images from GSV using the address in-
formation from the 3,000 buildings sampled from the NYC Energy and Water
Data Disclosure database. We successfully acquired 2,972 images out of those
3,000 buildings; the 28 images were not acquired probably because of the typos
or differences in the names of the addresses.
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Table 3 lists examples of Multimedia features for one of the three building
usage types: multifamily housing. The data show a glimpse of the 12 attributes
from traditional data, and the corresponding building facade images and their
WWRs. Note that some of the WWR measures are more accurate than others.
This can also serve as a Multimedia interface for understanding the building
energy efficiency measures. This work is part of a larger effort to establish a
web-based platform with consolidated data, visualizations and simulations for
ongoing public dialogue, program evaluation, and decision-making to facilitate
collaborations among academic, community, and policymakers [1].

Fig. 1. Multimedia deep learning model overview

4 Analysis of the MMBEE Dataset

The analysis of the MMBEE dataset contains two stages (Figure 1). Firstly, a
feature section module and a YOLOv5 detection model [15] are employed in
a preprocessing step to extract important features from traditional data and
obtain WWR information from building facade images, respectively. Secondly, a
Multimedia deep learning model will be constructed by integrating a deep neural
network (DNN) model to predict energy efficiency grades.

4.1 Feature Analysis from Traditional Data

Per the analysis of important features in Phillip et al. (2023) [8], we have chosen
12 numerical attributes from the NYC Energy and Water Data Disclosure. The
attribute collection includes electricity use, gross floor area, latitude, longitude,
year built, occupancy, natural gas use (kBtu), eGRID output emissions rate
(kgCO2e/MBtu), and green power - Offsite (kWh). We computed the correlation
between all 12 features and the ENERGY STAR Score, and the magnitude of this
correlation signifies the strength of the relationship between each feature and the
ENERGY STAR Score (Table 4). A positive correlation indicates that the feature
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Table 4. Selected features arranged by the absolute correlation to ENERGY STAR
Score.

Features Correlation to ENERGY
STAR Score

Natural Gas Use (kBtu) -0.1261
Electricity Use - Grid Purchase (kWh) -0.0529
Weather Normalized Site Electricity (kWh) -0.0526
Property GFA - Calculated (Buildings) (ft²) 0.0502
Occupancy -0.0406
Latitude -0.0327
eGRID Output Emissions Rate (kgCO2e/MBtu) -0.0203
Longitude -0.0192
Electricity Use – Generated from Onsite Renewable Systems (kWh) 0.0186
Year Built -0.0079
Property GFA - Calculated (Parking) (ft²) -0.0047
Green Power - Offsite (kWh) 0.0041

positively influences the ENERGY STAR Score, while a negative correlation
implies a negative impact on the ENERGY STAR Score. Notably, natural gas
usage and electricity consumption exhibit the highest absolute correlation values.
This aligns with common intuition, as increased energy consumption typically
corresponds to reduced energy efficiency.

However, some of the features do not have a strong correlation with the
ENERGY STAR Score, for example, Year Built, Property GFA - Calculated
(Parking) (ft²), and Green Power - Offsite (kWh) have a minimum correlation
with the ENERGY STAR Score (Table 4). One of the reasons for the low correla-
tion to Year Built data is that the data may not be able to accurately reflect the
energy use, since the date of construction does not indicate what significant ren-
ovations may have been done (i.e., new windows, new boiler, even gut renovation
with insulation). The green power-offsite probably applies to very few buildings
and would be a contract/purchase decision by the owner and not related to the
energy use.

4.2 WWR Estimation Based on a YOLOv5 Model

The building facade image data is processed separately by a YOLOv5, due to its
straightforward architecture with a balance between efficiency and accuracy. The
YOLOv5 detects the position of building windows and facades, which are then
used to calculate the window-to-wall ratio for each building. The calculated ra-
tio becomes an additional numerical feature for the building in the DNN model.
Regrettably, there is no existing pre-trained model specifically designed for de-
tecting facades and windows. As a result, we trained the model using the facade
database from the Center for Machine Perception (CMP) [13], which comprises
605 building images annotated with 11 label classes (facade, molding, cornice,
pillar, window, door, sill, blind, balcony, shop, deco) [14].

Furthermore, we conducted another training by exclusively using facade and
window labels of the same dataset, in order to assess whether performance im-
proves when distractions from other labels are minimized. The purpose of this
model is to detect windows on the facade image. Once the model is trained,
it predicts the coordinates of the identified windows and facades. These coor-
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dinates serve as the basis for performing image segmentation on the windows
and facades, effectively isolating them from the rest of the image. By quantify-
ing the number of pixels within these segmented areas, we are able to calculate
the window-to-wall ratio (WWR). To illustrate, in Figure 2, we observed that
the window mask encompassed 119,606 pixels, while the facade mask contained
349,980 pixels. Consequently, the window-to-wall ratio (WWR) for the given
image is calculated as 0.3418.

Fig. 2. Example for demonstrating the processes for calculating the Window-to-Wall
Ratio (WWR) of a building facade based on the areas of windows (upper) and facade
(bottom) shown in white.

4.3 DNN Model for Estimating ENERGY STAR

The DNN model for predicting the ENERGY STAR rating of buildings is a
conventional multiple-layer neural network model 1. The model comprises one
input layer, two hidden layers and one output layer. The input layer took in up
to 21 inputs, 12 numerical features that we selected based on their importance
(Table 4) and 8 one-hot encoded categorical features (5 for boroughs and 3 for
property usage types), and one from the WWR precitor. In the 2 hidden layers,
we employed 128 nodes and 32 nodes respectively and used the Rectified Linear
Unit (ReLU) activation function. To address potential model overfitting, we
introduced a 40% dropout between the first hidden layer and the second hidden
layer, followed by another 50% dropout between the second hidden layer and the
output layer. At the very end, the output layer utilized the softmax activation
function to generate a vector consisting of four binary values, each representing
one of the four energy efficiency ranks (A, B, C and D). For training, the model
utilized the Categorical Cross-Entropy loss function and the Adam (adaptive
moment estimation) optimization algorithm. This combination is widely utilized
in multi-class classification studies and aligns well with the objectives of our
research.
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5 Experiments and Results

5.1 Window and Facade Detection

When the YOLOv5 model is trained (fine-tuned) using 11 labels, we observed
that it performs well in detecting facades (82%) and windows (78%) in the CMP
dataset compared to the other label classes. However, when specifically examin-
ing the ”window” label, it exhibited misclassifications of 1% and 3% as ”sill” and
”blind,” respectively. Therefore, we enhanced the accuracy of window detection
by fine-tuning the model with only 2 labels (windows and facades). This results
in an increase in window detection accuracy from 78% to 80%, although the ac-
curacy for facades detection remains the same at 82%. Additionally, it requires
less time to achieve optimal performance.

5.2 Multimedia Classification

Using Traditional Data In conducting our DNN model evaluation with the
12 numerical features (Table 4) and 8 one-hot encoded categorical features (for
building location and usage type information), our analysis revealed a significant
influence of building usage types on the accuracy of energy efficiency ranking
predictions (Table 5). The model’s performance saw notable improvement when
tested separately on each building type, from 3.40% for Office Buildings to 8.09%
for Multifamily Housing, as opposed to aggregating them into a single dataset
(All Types). To further assess the impact of building usage types on the pre-
diction of energy efficiency ranks, we conducted an additional evaluation. This
time, we excluded the attributes for primary building usage type (3 of the 8 one-
hot encoded categorical features) from the dataset. Our findings demonstrated a
marked improvement in model performance when these usage types were omit-
ted (Table 5), particularly boosting up the performance for Office Buildings, to
a 2.64% improvement.

Table 5. DNN model estimation results with the traditional data.

Building Types With Types Without Types
All Types 45.68% 47.81%
Multifamily Housing 53.77% 53.85%
Office 49.08% 51.72%
K-12 School 53.48% 53.59%

Using Window-To-Wall Ratio We used the YOLOv5 model for 2 classes
(facade and window) fine-tuned by the CMP dataset to extract the window-to-
wall ratio (WWR) from building images, which we then incorporated into our
tabular dataset. Owing to the varying quality of the images and constraints of
our model, WWR extraction was feasible for approximately 75% of the 2,972 ac-
quired images for the 3000 building tabular samples. Of the 2,213 WWR values
extracted from the 2,972 acquired images, 844 pertained to multifamily housing,
713 to K-12 schools, and 656 to office buildings. Without WWR labeling, we are
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unable to provide an exact estimation of the precision of WWR determination
when employing the fine-tuned YOLOv5 model trained on the CMP dataset.
Nevertheless, it is reasonable to anticipate that the model’s performance is un-
likely to surpass the established accuracy levels of 80% and 82% for façade and
window recognition in the CMP test dataset.

Also as shown in Figure 3, we also observed that buildings categorized as
multifamily housing and office spaces with the highest energy efficiency ranks
exhibited the largest average WWR values. In contrast, K-12 schools with an
energy efficiency rank of ’A’ displayed the lowest average WWR values. Further-
more, the upper limit of WWR for multifamily housing buildings was notably
smaller compared to the other two building types. This phenomenon may be
attributed to the prevalent traditional façade style of multifamily housing build-
ings, in contrast to K-12 schools and offices, which often feature façade styles
with higher WWR, such as curtain walls.

Fig. 3. Window-to-Wall Ratio distribution per building usage and energy efficiency
ranks for multifamily housing, office and K-12 school buildings. The majority of WWR
were clustered between 0.10 to 0.20. Nevertheless, it’s worth noting that there were
outliers among office and K-12 school buildings.

We assessed our DNNmodel’s performance using the updated tabular dataset,
now encompassing WWR values for the buildings. Not surprisingly, our experi-
mentation revealed that the addition of WWR did not yield an improvement in
our model’s performance (Table 6). It is important to note that the training and
testing samples lacking WWR information were derived exclusively from data
instances possessing facade images. Consequently, the performance exhibited in
this context deviates slightly from that observed when considering the complete
dataset. (Table 5).
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Initially, we had anticipated that merging WWR into our dataset would en-
hance the model performance. However, contrary to our expectations, its inclu-
sion resulted in a minor decline in overall model performance. There are multiple
reasons for this. First, as we have analyzed above, the accuracy in WWR estima-
tion using the fine-tuned YOLOv5 model is not as high as we expected. Second,
the facade images only cover one side of the buildings, and they do not cover
the whole side at all (as we can see clearly in Table 3. Third, the orientations of
the building would also be a factor in WWR for energy efficiency.

Table 6. DNN model estimation results with and without including WWR for the
MMBEE samples.

Building Types With WWR Without WWR Difference
All Types 55.00% 53.13% -0.13%
Multifamily Housing 60.47% 61.54% -1.07%
Office 41.89% 44.14% -2.25%
K-12 School 49.03% 49.12% -0.09%

Excluding Low Correlation Features Our experiments have demonstrated
that improving model performance involves a delicate balance in feature selec-
tion. We found that removing features with low correlations enhanced the model
by reducing distractions. However, relying excessively on a limited set of highly
correlated features can also undermine performance. In experiments, we used
the tabular dataset with WWR that we generated in the previous section for
the WWR test (all types included) the result is shown in Table 7. Setting a
correlation threshold of 0.03 for feature selection resulted in a substantial en-
hancement in estimation accuracy (a 2.24$ improvement than No Exclusion).
The new estimation accuracy achieved a z-score of 1.43, approximately corre-
sponding to a 7.55% significance level. Upon setting the threshold at 0.02, a
discernible enhancement was still evident; however, it did not represent a signif-
icant deviation when contrasted with the inclusion of the entire set of variables.
Conversely, opting for a threshold of 0.04 led to the selection of too few features,
significantly impairing the model’s performance. The z-score for the estimation
accuracy plummeted to -5.97, indicating an almost 0% significance level and
emphasizing the importance of a balanced approach to feature selection.

This experiment also explained why adding the WWR results as of now can-
not improve the performance of estimation. Our analysis showed a correlation
of -0.0135 between WWR and a building’s ENERGY STAR Score. This corre-
lation falls below the correlation threshold (0.03) that we found to optimize the
model’s performance and the correlation threshold (0.02) that does not hurt the
performance (Table 7).

Table 7. DNN model estimation results with different correlation thresholds for the
MMBEE samples with all building types.

Excluding Features Accuracy STD
No Exclusion 55.00% 1.56%
< abs(0.04) Correlation 45.68% 1.63%
< abs(0.03) Correlation 57.24% 1.71%
< abs(0.02) Correlation 55.85% 1.46%
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RF-Based Model In addition to employing DNN models, we also constructed
a random forest (RF) model for our data analysis, as a baseline model to show if
the DNN models have some advantages. To determine the optimal parameters,
we iteratively explored various combinations, ultimately identifying the most
effective configuration as having a tree depth of 16 levels and employing 100
trees in the forest. In comparison to our DNN models, the random forest model
yielded worse results (Table 8, for all building types). However, random forest
models are less influenced by the correlation coefficient of features. More features
do not negatively impact their performance; in fact, having a greater number of
features often enhances their effectiveness. On the other hand, our DNN models
needed feature selection to mitigate distractions by excluding less correlated
features, reflecting the contrasting feature handling approaches between the two
kinds of models.

Table 8. Comparison of results using RF and DNN models on different correlation
thresholds for the MMBEE samples with all building types.

Excluding Features Accuracy (RF) Accuracy
(DNN)

Full Feature Set 53.77% 55.00%
< abs(0.04) Correlation 44.13% 45.68%
< abs(0.03) Correlation 48.95% 57.24%
< abs(0.02) Correlation 51.51% 55.85%

6 Conclusion and Discussion

In this paper, we introduced a new Multimedia Building Energy Efficiency
dataset - MMBEE, which includes both tabular and image data extracted from
publicly available sources. This dataset can not only serve as a Multimedia inter-
face for understanding building energy efficiency but also provide a benchmark
for testing machine learning algorithms and computer vision algorithms. We
performed a number of important processes and analyses, including feature se-
lection, data correlation, WWR extraction, and various ways of building energy
efficiency estimation.

While the dataset would be valuable for research and applications, and the
analyses offer some insights into the data and the models, our preliminary exper-
imental results yielded unexpected outcomes, as our initial hypothesis as well as
the results from other research groups posited that the inclusion of image data
would enhance model performance by providing valuable visual information for
predicting building energy efficiency. With the multiple factors we analyzed in
the experiment section, our combined model not only failed to improve perfor-
mance but actually exhibited a slight decrease in accuracy. It is important to
note, however, that we cannot definitively conclude that image data lacks utility
for energy efficiency prediction.

For one thing, we suspect that the WWR estimation model’s limitations,
particularly its inability to accurately capture all windows and facade elements
in the images, played a role in this outcome. The fact that WWR extraction
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was successful for only 75% of the images underscores the imperfections in our
YOLOv5 model. To address this, we plan to refine the building facade segmenta-
tion and obstacle removal processes, which should enhance the YOLOv5 model’s
ability to accurately capture WWR from images.

In order to acquire the necessary building images for our system, we utilized
the GSV API to scrape the data. By providing specific address details, including
the street name, city, state, and zip code, the API returns the closest camera
facing the building. Additionally, we can flexibly adjust the camera’s field of
view (FOV) and pitch to optimize the coverage of a building’s facade images
from the API. However, it is important to note that images obtained from the
Google Street View API often exhibit distortion due to varying camera angles,
the camera not facing the front side of the building directly. This distortion
alters the geometric properties of the building structure, posing challenges for
our model to accurately detect facades and windows. In addition, trees, vehicles
and pedestrians often occlude the building facades. Therefore, we need to first
remove those occluded regions from consideration, for example, using a semantic
segmentation model, and then rectify the images of building facades after the
removal.

Furthermore, to maximize the utility of WWR in our prediction model, we
intend to complement it with additional information, such as building window
directions, the orientations of the building facades in the images, and the spe-
cific building facade types and building materials. These aspects will be key focal
points in our future research efforts to improve the overall accuracy and efficacy
of our energy efficiency predictions. In addition, the integration of Window-to-
Wall Ratio (WWR) into predictive models necessitates consideration of build-
ing typologies, architectural configurations, and material selections as influential
variables. For instance, a structure employing a curtain wall design, equipped
with high-performance glass (or triple/quadruple-paned windows), might accom-
modate a more generous WWR while simultaneously upholding energy efficiency
and indoor comfort.

In summary, we have worked out a pipeline to automatically extract a Mul-
timedia Building Energy Efficiency (MMBEE) dataset from publicly available
databases. As of now, our model’s performance did not align with our initial
expectations and contradicted existing research findings due to the limitations
of the collected image data. Nevertheless, the pipeline and the insights from ana-
lyzing the data enable us to bring several aspects to our attention that we believe
can help reconcile the disparities between our experimental results and those of
other researchers. A notable portion of these considerations revolves around en-
hancing data quality, encompassing actions like obstacle removal (such as trees,
vehicles and pedestrians), image rectification, collection of more relevant image
data, and inclusion of supplementary data to building images.

References

1. Climate Solidarity: Reimagine the future of new york city via co-created scal-
able urban resilience projects. Available at https://climatesolidarity.nyc/(accessed



MMBEE: a Multimedia Building Energy Efficiency Dataset 15

2023/10/25))
2. Energy Star: How the 1–100 energy star score is calculated. Available at

https://www.energystar.gov/buildings/benchmark/understand metrics/how score
calculated (accessed 2023/10/18)

3. Li, C.K., Zhang, H., Liu, J.X., Zhang, Y.Q., Zou, S.C., Fang, Y.T.: Window detec-
tion in facades using heatmap fusion. Journal of Computer Science and Technology
35 (2020). https://doi.org/10.1007/s11390-020-0253-4

4. Mayor’s Office of Climate and Environmental Justice: NYC 2021 En-
ergy Benchmarking - Mayor’s Office of Sustainability. Available at
https://www.nyc.gov/site/sustainability/codes/energy-benchmarking.page (ac-
cessed 2023/10/21)

5. Mayor’s Office of Climate and Sustainability: 2023 Energy grades. Avail-
able at https://www.nyc.gov/site/buildings/property-or-business-owner/energy-
grades.page (accessed 2023/05/01)

6. Mayor’s Office of Climate and Sustainability: Energy and water
data disclosure for local law 84 2021: Nyc open data. Available at
https://data.cityofnewyork.us/Environment/Energyand-Water-Data-Disclosure-
for-Local-Law-84-/usc3-8zwd (accessed 2023/10/20)

7. New York City: Local law 97 - sustainable buildings. Available at
https://www.nyc.gov/site/sustainablebuildings/ll97/local-law-97.page (accessed
2023/10/18)

8. Phillip, D., Chen, J., Maksakuli, F., Ruci, A., Sturdivant, E., Zhu, Z.: Improv-
ing building energy efficiency through data analysis. Companion Proceedings
of the 14th ACM International Conference on Future Energy Systems (2023).
https://doi.org/10.1145/3599733.3600244
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