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Abstract. One of the grand challenges in computer vision is to recover 3D poses
and shapes of multiple human bodies with absolute scales from a single RGB
image. The challenge stems from the inherent depth and scale ambiguity from a
single view. The state of the art on 3D human pose and shape estimation mainly
focuses on estimating the 3D joint locations relative to the root joint, defined as
the pelvis joint. In this paper, a novel approach called Absolute-ROMP is pro-
posed, which builds upon a one-stage multi-person 3D mesh predictor network,
ROMP, to estimate multi-person 3D poses and shapes, but with absolute scales
from a single RGB image. To achieve this, we introduce absolute root joint local-
ization in the camera coordinate frame, which enables the estimation of 3D mesh
coordinates of all persons in the image and their root joint locations normalized by
the focal point. Moreover, a CNN and transformer hybrid network, called Trans-
Focal, is proposed to predict the focal length of the image’s camera. This enables
Absolute-ROMP to obtain absolute depth information of all joints in the cam-
era coordinate frame, further improving the accuracy of our proposed method.
The Absolute-ROMP is evaluated on the root joint localization and root-relative
3D pose estimation tasks on publicly available multi-person 3D pose datasets,
and TransFocal is evaluated on a dataset created from the Pano360 dataset. Our
proposed approach achieves state-of-the-art results on these tasks, outperforming
existing methods or has competitive performance. Due to its real-time perfor-
mance, our method is applicable to in-the-wild images and videos.

Keywords: Machine learning · Computer vision · 3D reconstruction · Camera
calibration · Pose prediction · Human mesh regression

1 Introduction

Three-Dimensional (3D) human pose and shape estimation is one of the most active
research topics within the current landscape of computer vision and machine learning,
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thanks to its many applications in various fields. These include robotics [12,64], activity
recognition [7,44], graphics [2,6] and human-object interaction detection [13,36,37,
52]. Current approaches on 3D human pose and shape estimation tend to mainly focus
on the estimation of the 3D joint locations relative to the root joint, usually defined as
the one closest to the shape centroid. In case of humans, it is defined as the pelvis joint.

This paper aims to address the problem of estimating the absolute 3D poses and
shapes of multiple people simultaneously from a single RGB image. It is quite a chal-
lenge to accurately recover 3D poses and shapes of multiple persons with absolute
scales from a single RGB image, due to the inherent depth and scale ambiguity of a
single view. In order to addressing this ambiguity, assessing various spatial cues in the
image as a whole is required, such as scene layouts, body dimensions, and inter-person
relationships. Compared to existing approaches to the 3D pose and shape estimation
problem that focuses on recovering the root-relative pose, the task addressed here addi-
tionally needs to recover the 3D translation of each person in the camera coordinate
system (or sometimes called camera coordinate frame).

(a)

(b) (c)

Fig. 1. Absolute-ROMP is able to correctly position two people hugging: (a). Original image.
(b). ROMP mesh positioning using camera parameters as in [55]. (c). Absolute-ROMP mesh
positioning using absolute depth prediction. This figure is modified from a figure in the paper we
presented at VISAPP 2023 [1].

To further motivate the work, we would like to point out that estimating the absolute
3D location of each person in an image is essential for understanding human-to-human
interactions (e.g., two people hugging in Fig. 1). However, the task is also very chal-
lenging to estimate the absolute positions of multiple individuals, since multi-person
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activities often take place in cluttered scenes, thus leading to inherent depth ambigu-
ity and occlusions. Here we also argue that body dimensions alone only paint a vague
picture of absolute depth. Robust estimation of global positions requires multiple infor-
mation cues over the entire image, such as geometric cues, human body sizes in the
image, any occlusions which may affect the perceived sizes of persons and the layout
of the entire scene.

In the literature, most existing methods for absolute multi-person 3D pose estima-
tion extend a single-person approach with an added step to recover the absolute posi-
tion of each detected person individually. They either use another neural network to
regress the 3D translation of a person from the cropped image [50] or compute it based
on the prior knowledge about the body size [9], which ignores the global context of
the whole image. While others employ complicated architecture with extensive steps,
drastically slowing down inference [40].

For an efficient one-stage estimation, we build upon ROMP [55], a light weight,
accurate end to end multi-person 3D mesh prediction network, by adding in abso-
lute root joint depth estimation and localization head, while maintaining its end to end
and light weight nature. We thus call our network Absolute-ROMP. Even though we
adopt the same end to end pipeline of ROMP for the task of multi-person absolute
3D mesh estimation, by leveraging depth cues from the entire scene and prior knowl-
edge of the typical size of the human pose and body joints, we can estimate the depth
of a person in a monocular image with considerably high accuracy. The target depths
are discretized into a preset number of bins, in order to limit the range of predictions
and thus improve the prediction performance. The range of these bins is chosen after
taking prediction error mitigation and reasonable distance estimation in consideration.
We employ a soft-argmax operation on the bins for improved accuracy as compared to
exact bin locations, and for faster convergence during training without losing precision
to direct numerical regression. We also perform experiments on different bin sizes and
even compare with numerical output and choose the best performing method.

There is one key issue with absolute location that causes most other works to avoid
it: it requires the knowledge of intrinsic camera parameters for accurate prediction.
Since different focal lengths lead to different sizes of the same person in the image.
Therefore, we also design and train a hybrid network called TransFocal, which inte-
grates a CNN and a vision transformer to predict the vertical field of view of the image
and thus the focal length. With the predicted focal length, we can estimate absolute dis-
tance in camera coordinates without the need for known camera intrinsic parameters.
Our Transfocal model uses embeddings from a CNN model ResNet [16], which are
then converted to tokens to be fed into the vision transformer [10]. The added percep-
tual grouping and self-attention from the transformer gives our network an edge in its
accuracy over previous work [30]. As shown in Fig. 1, Absolute-ROMP achieves better
accuracy than ROMP in positioning the poses.

In summary, our contributions in this work are:

– A revised network Absolute-ROMP, with an absolute depth estimation head is pro-
posed for the ROMP network using a combination loss. It takes input from the back-
bone and then predicts the absolute location of each person in the frame normalized
by the focal length. To achieve this, we introduce absolute root joint localization in
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the camera coordinate frame, which enables the estimation of 3D mesh coordinates
of all persons in the image and their root joint locations normalized by the focal
length. This single-shot approach allows the system to better learn and reason about
the inter-person depth relationship, leading to improved multi-person 3D estimation.

– A novel network TransFocal is designed and trained to predict focal length of the
image, thus negating the requirement of intrinsic parameters. This focal length is
then multiplied with the output from the depth head to get the final output. This
enables us to obtain absolute depth information of all joints in the camera coordinate
frame, further adding to our proposed method.

– Quantitative and qualitative results show that our approach outperforms or has
competitive performance to the state-of-the-art approaches on multiple benchmark
datasets, under various evaluation metrics. We evaluate Absolute-ROMP on the root
joint localization and root-relative 3D pose estimation tasks on publicly available
multi-person 3D pose datasets. We also evaluate TransFocal on a dataset created
from the Pano360 dataset. Our proposed approach achieves state-of-the-art results
on these tasks, outperforming existing methods. Additionally, our method is appli-
cable to in-the-wild images and videos due to its real-time performance.

This is an extended version of the paper we presented at VISAPP 2023 [1]. In this
extended version, we reorganize the sections of the paper (especially the Methodol-
ogy section) and provide more detailed explanations of the new contributions of our
proposed method. We also introduce new experiments in the ablation study of binning
versus numerical output as well as various numbers of bins in TransFocal, and provide a
through analysis of the inference time of the entire system and individual components
to justify the effectiveness and efficiency of our approach. Any table, figure or equation
used in the conference paper is referenced with a citation in the caption.

This paper is organizes as the follows. Section 2 discusses related work. Section 3
describes the proposed Absolute-ROMP, including the absolute depth map head and the
focal length estimation network: TransFocal. Section 4 provides some key implemen-
tation details in network architectures and training/testing settings. Section 5 presents
experimental results and ablation studies. Section 6 provides a few concluding remarks.

2 Related Work

2.1 Single-Person 3D Mesh Regression

In single-person 3D mesh regression, parametric human body models have been widely
adopted since they allow regression of the 3D meshes from images. A good exam-
ple of such models is the Skinned Multi-Person Linear Model (SMPL) [45]. The key
is that these models allow complex 3D human mesh vertices to be encoded into low
dimensional parameter vectors. Various weakly supervised approaches have been used,
which lead to reasonable accuracy in single-person 3D mesh regression, using various
cues, such as semantic segmentation [59], geometric prior [23], motion analysis [24,27]
and 2D human pose [8]. A part-guided attention mechanism is used in [28] in order to
overcome occlusions. This is done by exploiting information about the visibility of indi-
vidual body parts while leveraging information from neighboring body-parts to predict
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occluded parts. In [30], predicted camera calibration parameters are used to aid in the
regression of the body mesh parameters.

2.2 Multi-person 3D Pose and 3D Mesh Estimation

3D pose refers to a person’s joint positions in 3 dimensional space where as 3d mesh
also takes into account the shape of the person recreating a 3D mesh of the person’s
body using a body model such as SMPL [45]. Extending the work from a single per-
son to multiple persons is more challenging but more useful. For multi-person 3D pose
estimation, various approaches have been proposed. In [49], occlusion-robust pose-
maps are proposed to exploit the body part association to avoid bounding box predic-
tion. In [5], an anchor-based one-stage model is used, which relies on a huge number
of pre-defined anchor predictions and positive anchor selections. To handle person-to-
person occlusions, a single-shot system SMAP is proposed in [62], which first regresses
a set of 2.5D representations of body parts and then reconstructs the 3D absolute poses
based on these 2.5D representations with a depth-aware part association algorithm. Top-
down designs are employed in both [54] and [50], which estimate targets via regression
from anchor-based feature proposals.

For further multi-person 3D mesh estimation, most approaches follow a multi-stage
design. Built on Faster-RCNN [53], a network called Coherent Reconstruction of Mul-
tiple Humans (CRMH) is proposed in [19]. The RoI-aligned feature of each person is
used to predict the SMPL parameters as in [45]. In [61], the 3D mesh of each per-
son is estimated from its intermediate 3D pose estimation. Their work further employs
multiple scene constraints to optimize the multi-person 3D mesh results. In all these
methods, the complex multi-step process requires a repeated feature extraction, which
is computationally expensive.

The ROMP network proposed in [55] regresses meshes in a one-stage fashion for
multiple 3D people (thus termed ROMP). ROMP [55] learns an explicit one-stage pixel-
level representation with a holistic view, which improves both the accuracy and effi-
ciency in multi-person in-the-wild scenes. Therefore, our proposed model is based on
ROMP.

2.3 Monocular Absolute Depth Estimation

Estimating depth information from a single view suffers from inherent ambiguity. Nev-
ertheless, several methods make remarkable advances in the last few years [32,39].
In [38], a dataset for depth estimation is obtained by employing the frozen poses and
the moving camera of the “mannequin challenge”. Training data is generated by using
multi-view stereo reconstruction and a data-driven approach is adopted to recover a
dense depth map. However, the depth maps generated lack scale consistency and there-
fore do not reflect the real depths. As described above, the SMAP approach in [62]
first regresses a set of 2.5D representations of body parts and then reconstructs their 3D
absolute poses with a depth-aware part association algorithm. In [40], the 2D pose of a
person is estimated with heatmaps of the joints, which are used as attention masks for
pooling features from image regions corresponding to the target person. To predict
the depth of each joint, a skeleton-based Graph Neural Network (GNN) is used. With
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a coarse-to-fine architecture, an integrated model is used in [34] to estimate human
bounding boxes, human depths, and root-relative 3D poses simultaneously.

All these methods either employ multi-step prediction or use large networks, which
slow down the inference. Our method is able to estimate absolute depths and regress
3D meshes of multiple people in real time with high accuracy, while also regressing
the shape parameters of individual persons.

2.4 Focal Length and Other Camera Parameter Estimation

Estimating camera parameters from a single image became popular recently [17,25,
57,58,63]. In order to estimate camera rotations and fields of view (FOVs), these
methods train neural networks for leveraging geometric cues in the image. Using an
AlexNet backbone, the approach proposed in [57] regresses the horizontal field of
view. Apart from [57], other methods discretize the continuous space of rotations into
bins, casting the problem as a classification task, and applying cross entropy [58] or KL-
divergence [17,63] losses. Also using a binning technique, [30] trains a neural network
with a bespoke-biased loss on a new collected dataset.

None of these methods take advantage of the latest architecture innovation in the
vision space, i.e., transformer networks [10]. [33] is a rare example that takes both
an image and line segments as input and regresses the camera parameters based on
the transformer encode-decoder architecture. The line segments are extracted from the
input image using the LSD algorithm [15], and then mapped to geometric tokens which
are generated by a transformer encoder. The subsequent transformer decoder aggregates
both semantic and geometric tokens along with the queries for the camera parameters.
In contrast, our model only employs vision transformer to encode the features from
a single image and then a simple MLP layer is used for decoding, thus leading to an
integration of a vision transformer and a CNN hybrid network with a combination of
losses during supervision.

3 Methodology

Since ourt Absolute-ROMP is an extension of the ROMP network [55], we will explain
the working of ROMP before going into details about our addition. Figure 2 shows the
overall system diagram. ROMP regresses meshes in a one-stage fashion for multiple 3D
people. In the same way, Absolute-ROMP employs a one-stage, multi-head design with
a HRNeT-32 backbone [56] followed by 4 head networks: Body Center Map, Camera
Map, SMPL Map and our newly-designed Root Depth Map. We also maintain Coord-
Conv [43] from ROMP to enhance the spatial information. Therefore, the backbone
feature is the combination of a coordinate index map and output feature embeddings
from HRNET-32. Details of the backbone model will be described in Sect. 4.

Given a RGB image as input, the backbone HRNet-32 generates a feature set that
is used as input to the four heads for complete end to end prediction: a body cen-
ter heatmap, camera parameters, SMPL parameters and a root depth map, all in the
camera coordinate frame. A separate focal length estimation network - TransFocal - is
designed (and trained separately) to estimate the focal length of the image in order to
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Fig. 2. Overview of how the system works [1]. Absolute-ROMP predicts the mesh parameters
and depth. The focal length is predicted by TransFocal which are then used to get the complete
absolute 3D coordinates. This figure is modified from a figure in the paper we presented at VIS-
APP 2023 [1], by adding “Absolute Depth” output as an integration of results of Root Depth Map
and Tansfocal on the figure.

de-normalize the output from the Root Depth Map, and to generate an absolute root
depth map. This absolute root depth map along with the SMPL parameters from the
SMPL Map and the camera parameters from the Camera Map, enables us to create
absolute 3D body meshes which are then correctly filtered with the help of the Body
Center Map to generate the final output. In our experiments, the resolution for each map
is 64× 64.

This section will start with the description of a concise body-center guided repre-
sentation introduced in [55], then describe the four head networks with an emphasis on
our extension (i.e., the absolute depth map head) leading to the Absolute-ROMP, and
finally discuss our new technical contributions in parameter sampling (with improved
relative depth estimation), loss function design (with the new root depth loss) and the
proposed focal length estimation - TransFocal. Figure 3 illustrates several key steps of
the Absolute-ROMP: the body center headmap in (a), the SMPL parameters and the
root depth prediction in (b), and the final result in (c).

3.1 Preliminary: Collision Aware Representation

The entire Absolute-ROMP framework is built upon a concise body-center guided rep-
resentation. Defining an explicit and robust body center is crucial to enable the model
to accurately estimate the center location in various scenarios. Utilizing the bounding
box center of a person as the body center holds little relevance due to its propensity to
lie outside the bodily region and its lack of alignment with any precise anatomical point.
To ensure consistent parameter sampling, it becomes imperative to establish an explicit
body center. Henceforth, we computationally derive each body center by leveraging the
ground truth 2D pose of a person.
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Fig. 3. (a). An illustration of how the body center heatmap encodes size information into the
Gaussian representation (b). Shows how SMPL parameters and root depth are predicted across
the grid (c)Final result after parameter sampling.

Given that occlusion of body joints is a common occurrence, our approach involves
defining the body center as the central point among the observable torso joints,
encompassing the neck, left and right shoulders, pelvis, and left and right hips. In
instances where all torso joints remain hidden, we determine the center by calculat-
ing the average position of the visible joints. This method encourages the model to
estimate the body’s location based on the discernible parts, even when certain joints are
obscured.

Nonetheless, challenges arise in scenarios involving densely packed individuals,
where severe overlap may lead to close proximity or even coinciding body centers
within the image plane. The resulting collision problem introduces ambiguity and poses
difficulties in discerning individual centers in crowded situations. To tackle this predica-
ment, ROMP [55] introduces a more resilient representation known as the Collision
Aware Representation (CAR). To mitigate the predicament arising from intertwined
body centers, ROMP incorporates a repulsion field within the CAR framework. Within
this field, each body center assumes the role of a positive charge, characterized by a
repulsion radius equivalent to its Gaussian kernel size (for details, please see Eq. 4 in
Sect. 3.2 below). The intensity of repulsion between two adjacent body centers increases
as their proximity intensifies, thereby compelling them to distance themselves from
each other.
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Let us consider c1 and c2 as the body centers of two overlapping individuals. If the
Euclidean distance between them, denoted as dcm, satisfies the condition dcm < k1 +
k2 + 1, the repulsion mechanism is triggered, prompting the close centers to separate.
This is achieved through the following equations:

ĉ1 = c1 + γdp, (1)

ĉ2 = c2 − γdp, (2)

dp =
k1 + k2 + 1 − dcm

dcm
(c1 − c2), (3)

Here, dp denotes the repulsion vector originating from c2 and directed towards c1, and
γ signifies an intensity coefficient that modulates the strength of repulsion. When mul-
tiple individuals overlap, we apply the same equations to compute repulsion vectors
dpi for each pair of centers. For a center affected by N repulsive forces, we calculate
the resultant composition of these forces by summing them numerically, expressed as∑N

i=1 d
p
i . During the training phase, CAR is employed to disentangle closely positioned

body centers, facilitating more accurate localization.

3.2 The Four Head Networks

Body Center Map Head. To generate the Body Center heatmap, which represents the
2D human body center of each person in an image, we employ the method stated in [55]
that incorporates scale information and increases the level of detail in the representa-
tion.

In ROMP’s enhanced approach, each body center is represented as a Gaussian dis-
tribution within the heatmap. To facilitate better representation learning, we integrate
the scale information of the body in the 2D image into the Body Center heatmap. This
integration allows us to adapt the spread of the Gaussian distribution to capture individ-
uals of different sizes more effectively. The Gaussian kernel size, denoted as k, is used
to determine the spread or influence of the body center in the heatmap. We calculate k
for each person’s center based on their 2D body scale in the image. The kernel size is
derived as follows:

k = kl +
(

dbb√
2W

)2

· kr (4)

In Eq. 4, kl represents the minimum kernel size, which establishes the baseline spread

of the Gaussian distribution. The term
(

dbb√
2W

)2
accounts for the ratio of the person’s

bounding box diagonal length, dbb, to the width of the Body Center heatmap,W . Squar-
ing this ratio ensures a proportional increase in the spread of the Gaussian distribution.
Additionally, kr serves as a variation factor, allowing fine-tuning of the spread based on
specific characteristics or requirements.

By incorporating the body scale information through the calculation of the Gaussian
kernel size, the resulting Body Center heatmap provides a more detailed and nuanced
representation of the human body centers in the 2D image. Figure 3(a) illustrates the
integration of the scale information of three bodies into their Gaussian distributions.
This enhancement facilitates more effective learning and analysis of body center-related
features and patterns.
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CameraMap Head. The Camera Map, denoted asW , encompasses the 3-dimensional
camera parameters (s, tx, ty), which describe the 2D scale s and translation t =
(tx, ty) of each person in the image. The scale s reflects the body size and, to some
extent, the depth. The translation parameters tx and ty range between −1 and 1 and
represent the normalized translation of the human body relative to the image center
along the x and y axes, respectively.

The 2D projection, denoted as Jb = {(xbk, ybk)}, of the 3D body joints J =
{(xk, yk)} can be derived using the following equations:

xbk = s · xk + tx; ybk = s · yk + ty (5)

In the above equations, xk and yk represent the coordinates of the k-th 3D body joint
(k represent body joints which range from 1 to 22 the maximum), while xbk and ybk
represent their respective projections in the 2D image. The scale factor s is applied to the
coordinates to account for the body size, and the translation parameters tx and ty enable
more accurate position estimates of the body joints relative to the image center. The
utilization of translation parameters in the camera map allows for improved precision
in position estimation compared to relying solely on the Body Center heatmap.

SMPL Map Head. The SMPL Map contains the 142-dimensional SMPL parameters
of a body mesh, which describe the 3D pose and shape of the body mesh. The SMPL
model establishes an efficient mapping from the pose θ and shape β parameters to
the human 3D body mesh M ∈ R6890×3. The shape parameter β ∈ R10 represents
the top-10 PCA coefficients of the SMPL statistical shape space. The pose parameters
θ ∈ R6×22 encompass the 3D rotations of the 22 body joints, represented in a 6D
representation. In total the SMPL map has 142 dimensions (10 + 6 × 22).

In ROMP’s implementation [55], a modified version of the SMPL model (where
the last two hand joints are excluded) is employed. We also employ the same modified
model. The 3D rotation of the first joint denotes the body’s 3D orientation in the camera
coordinate system, while the remaining rotations represent the relative 3D orientations
of each body part with respect to its parent in a kinematic chain.

To derive the 3D joints J , we employ a linear mapping via the pose matrix The
utilization of the SMPL Map allows us to represent the complex 3D pose and shape of
the human body in a compact and efficient manner. By leveraging the pose and shape
parameters, we can generate the corresponding 3D body mesh and derive the 3D joint
locations.

Root Depth Map Head. Assuming that each location on the Root Depth Map repre-
sents the center of a human body, we aim to estimate the absolute depth of the corre-
sponding root joint. Instead of directly regressing the numerical depth value, we employ
a binning technique within the log depth space. The binning resolution is set to 120,
chosen after considering prediction error mitigation and reasonable distance estimation
based on all available data. There are two important treatments in the Root Depth Map
head using the binning technique.

First, since different focal lengths of the camera can affect the scales of a person
in the image, it becomes impractical to estimate absolute depth from images captured
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by arbitrary cameras. If we want to simultaneously estimate focal lengths using the
Root Depth Map Head, we have to use 3D human datasets that provide absolute depth
information. However such datasets tend to have minimal variation in focal lengths, typ-
ically employing the same camera for all images within a given dataset. This presents
a challenge for an integrated model to learn the variable focal lengths, as it can poten-
tially overfit on the focal lengths present in the training datasets. In 3D pose and mesh
estimation, the sizes of individuals may appear differently in images taken with cam-
eras having different focal lengths. This would hinder prediction performance as model
is not trained to generalize for focal length variations. To address these issues, we nor-
malize (divide) the ground truth depth of an image by the ground truth focal length
and therefore the Root Depth Map head is free from learning and predicting the focal
length. The estimation of focal length is achieved through the training of a network
called TransFocal, which we will elaborate on in a subsequent subsection. The absolute
depth map is the final output after integrating the results from the Root Depth Map head
and the estimated focal length from the TransFocal network in Fig. 2, in that the root
depth map generated by the Root Depth Map head is normalized by the focal length.

Second, to enhance accuracy beyond exact integer bin values, we employ a soft-
argmax operation on the bins. Exact bins provide integer outputs, limiting precision,
while soft bins can output any number between bin indices based on the output value
between 0 and 1 from the bin. Consequently, there is minimal precision loss, enabling
the actual prediction to be a ratio of the bins, thereby improving the granularity and
accuracy of the model. The computation of the bin index within the log depth space is
as follows:

b(d̂) =
log d̂ − logS
logE − logS

(N − 1) (6)

Here, b(d̂) represents the bin index of the normalized depth d̂. N denotes the total
number of bins, and [S,E] represents the range of the bins. If the output map size is
64× 64, we can conceptualize this style of binning the depth map as a collection of
1D heatmaps, yielding 64× 64 predictions for each image. In other words, we have
a 64× 64 collection of 1D heatmaps. The predicted bin values B are subsequently
converted back to normalized depth using the following equation:

d̂ = exp

[∑N−1
i=0 Bi × i

N − 1
(logE − logS) + logS

]
(7)

Figure 3(b) shows how SMPL parameters and normalized absolute root depth are
predicted across the grid.

3.3 Key Technical Issues and Solutions

In the following two subsections, we will detail the Absoulte-ROMP’s implementa-
tion, highlighting our new improvements: In parameter sampling we emphasize our
improved relative depth estimation approach. In loss function design, we introduce the
root depth loss. Finally, in focal length estimation, we detail our bespoke TransFocal: a
hybrid network with CNN and Transformer to estimate the focal length.
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Parameter Sampling. To derive the 2D coordinates of a set of body centers {c}
from the estimated Body Center Map Cm and acquire the corresponding 3D body
meshes and root depth, we employ a sequence of procedures encompassing center pars-
ing, matching, and sampling. Initially,Cm acts as a probability map, where the presence
of local maxima indicates potential body centers. To identify these local maxima, we
apply the max pooling operation denoted asMp(Cm) and subsequently perform a log-
ical conjunction with Cm, denoted as Mp(Cm) ∧ Cm. Consequently, 2D coordinates
{c} possessing confidence scores surpassing a designated threshold tc are identified
as local maxima. These confidence scores at each c are arranged in a ranked manner,
with the top N centers being selected as the definitive set.

During the inference stage, we directly extract the SMPL parameters from the
SMPL Map Pm at the corresponding identified centers c. However, during the train-
ing process, the estimated values of c are matched with the nearest ground truth body
centers by employing the L2 distance as a measure of proximity.

Moreover, to approximate the relative depth order among multiple individuals,
we initially leverage the center confidence inferred from Cm and the 2D body scale
denoted as s, obtained from the camera parameters within the Camera Map Am. In
scenarios where individuals exhibit discernible variations in scales, the individual with
the larger s value is presumed to occupy the foreground position. Conversely, when
individuals possess comparable scales, the person with a higher center confidence is
considered to be located in the foremost position. After a certain loss threshold on the
depth prediction, the absolute depth can be used as reliable measure for depth order and
replaces the method stated above.

Figure 3(c) shows the final result of an image with the estimation of poses and
shapes of three persons.

Loss Functions. To provide supervision for Absolute-ROMP, individual loss functions
are employed for different maps. The supervision of Absolute-ROMP entails the uti-
lization of the weighted sum of the body center loss Lc, mesh parameter loss Lp, and
the root depth loss Ld.

Body Center Loss. The body center loss Lc promotes a high confidence value at the
body center c within the Body Center heatmap Cm and a low confidence elsewhere. To
address the imbalance between center and non-center locations inCm, the Body Center
heatmap is trained using the focal loss [41]. Given the predicted Body Center heatmap
Cp

m and the ground truth Cgt
m , Lc is defined as follows:

Lc = −Lpos + Lneg∑
Ipos

wc, (8)

Here, Lneg = log(1 − Cp
m)(Cp

m)2(1 − Cgt
m )4(1 − Ipos) and Lpos = log(Cp

m)(1 −
Cp

m)2Ipos represent the positive and negative focal loss terms, respectively. Ipos is a
binary matrix with a positive value at the body center location, and wc denotes the loss
weight.

Mesh Parameter Loss: Lp is defined as follows:

Lp = wposeLpose+wshapeLshape+wj3dLj3d+wpaj3dLpaj3d+wpj2dLpj2d+wpriorLprior, (9)
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where Lpose represents the L2 loss of the pose parameters in the 3× 3 rotation matrix
format, Lshape represents the L2 loss of the shape parameters, Lj3d represents the L2
loss of the 3D joints J regressed from the body mesh M , Lpaj3d represents the L2
loss of the 3D joints J after Procrustes alignment, Lpj2d represents the L2 loss of the
projected 2D joints Jb, and Lprior represents the Mixture Gaussian prior loss of the
SMPL parameters, which supervises the plausibility of 3D joint rotation and body
shape. The terms w(·) denote the corresponding loss weights.

Root Depth Loss. Similar to [40], the losses incorporated for supervising depth learn-
ing consist of cross-entropy loss on the estimated bins B and L1 loss on the bin index
b. These losses are defined as follows:

Lbins = −
N−1∑

i=0

BGT
i logBpred

i (10)

Lid = |bGT − bpred| (11)

Here we need to generate ground truth bins in order to calculate the Lbins loss. Firstly,
we compute the bin index using Eq. 6. Then the procedure to generate the final bins
from the index is outlined in the pseudo code of Algorithm 1, which is self-explainable.

Algorithm 1. Generate Ground truth Bins.

1: N ← Number of Bins
2: b(d̂) ← Bin index
3: Arange(x) ← List of integers from 0 to x
4: ABS(x) ← Absolute value of x
5: Clip(x, y, z) ← Clip each value of x between y and z

6: GTBins = 1 − Clip
(
ABS

(
Arange(N) − b(d̂)

)
, 0, 1

)

The expression for the depth loss is as follows:

Ld = wbinsLbins + widLid (12)

Again w(·) denotes the corresponding loss weights.

Focal Length Estimation. In order to estimate the focal length effectively, we design a
hybrid network called TransFocal (Fig. 4), which combines a convolutional neural net-
work (CNN) with a vision transformer. CNNs have a stronger inductive bias compared
to transformer networks when it comes to processing images [4]. This allows them to
learn embeddings quickly from a smaller subset of data. However, when trained on
a sufficient amount of data, vision transformers can outperform similar state-of-the-art
CNNmodels [10] due to their self-attention architectures that offer better generalization
properties [4]. Recent studies have shown that combining CNN embeddings with vision
transformers results in a hybrid system that performs better than larger and deeper
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Fig. 4. TransFocal Architecture. The image is input into a ResNet backbone to create embeddings
which are then projected into latent embedding space and used as input for the vision transformer.
The output from the transformer’s many layers is then decoded using a fully connected layer. This
figure is adopted from the paper we presented at VISAPP 2023 [1].

vision transformers, with significantly lower computational cost for fine-tuning [11].
By leveraging the strengths of both architectures, we can train the model on less data
while achieving improved accuracy.

Since the focal length measured in pixels has an unbounded range and changes
when resizing images, we instead estimate the vertical field of view (vfov) v in radians
and then convert it to the focal length fy using the following equation:

fy =
0.5h

tan(0.5v)
(13)

In the above equation, h represents the image height measured in pixels. We follow the
assumptions made in [63] and [30], where we consider zero camera yaw and assume
that the effective focal length values are the same in both directions, i.e., fx = fy = f .

TransFocal takes a complete image as input to predict its vfov, which remains the
same for all subjects in the image of a video sequence. This means that inference needs
to be performed only once to obtain absolute coordinates for each frame of the video
sequence. The full image contains rich cues that facilitate transformer’s self-attention.
In particular, vanishing points and geometric lines help the network semantically reason
about the vertical field of view of an image.

Using a bin technique similar to our absolute depth map head and the approach
in [30], we discretize the vfov space v into B bins, effectively transforming the harder
regression problem into an easier classification problem. Additionally, similar to our
depth map head, we aggregate the predicted probability mass using a soft argmax oper-
ation. During our testing, we found that combining the cross-entropy loss LCE (with a
smaller weight) and the softargmax-biased L2 loss [30] Lagmax improves model con-
vergence. Therefore, the final loss Lfoc is defined as:

Lfoc = λagmaxLagmax + λCELCE (14)
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In the equation above, λagmax and λCE represent the weights associated with the
respective loss terms. This formulation helps the model effectively estimate the focal
length based on the vertical field of view prediction.

4 System Configurations and Implementation Details

In the following, we will describe the system configurations the implementation details
of both Absolute-ROMP (especially the absolute depth map head), and TransFocal (i.e.,
the focal length estimation network). We will cover important topics including network
architectures, training datasets, training setting details, and evaluation metrics.

4.1 Absolute-ROMP

Network Architecture. First HRNet-32 [56] is employed as the backbone for
Absolute-ROMP. CoordConv [43] is also maintained from ROMP to enhance the spatial
information. In this way, the feature set extracted by the backbone is the combination
of a coordinate index map and output feature embeddings. This feature set is then used
as input to the four heads of Absolute-ROMP for complete end to end prediction: the
Body Center Map head, the Camera Map head, the SMPL Map head and our newly-
designed Absolute Root Depth Map. The architecture of the Absolute Root Depth Map
is similar to the other map heads. As in, it uses a series of feed forward ResNet blocks
after a Trans block. Finally a 1× 1 convolution layer is used to get the final output map.
For details on the Trans block and basic ResNet block architecture of the map heads
please refer to [55]. The only alteration made for the Absolute Root Depth Map is the
output of the final 1× 1 convolutional layer, with a size of 120× 64× 64: the binning
resolution is set to 120 and the map size is 64× 64.

Training Datasets. The basic training datasets used in the experiments include
three 3D pose datasets and four in-the-wild 2D pose datasets. The three 3D pose datasets
are Human3.6M [18], MPI-INF-3DHP [48] and MuCo-3DHP [48]), and the four in-
the-wild 2D pose datasets are MS COCO [42], MPII [3], LSP [20] and Crowdpose [35].
Pseudo 3D annotations from [31] and pseudo 3D labels of 2D pose datasets provided
by [22] are also used. 3D datasets provide us with ground truth depth shape and 3D
pose. Whereas 2D datasets are added to increase training data and improve generality
where the projection of the 3d joints back to 2D is compared to ground truth. Psuedo
3D data acts as an in between. We also use the 3DPW [47] training set for fine tuning
the Absolute-ROMP model only for evaluation on a 3D pose dataset 3DPW.

Training Setting Details. During training, the input images are resized to 512 × 512.
For keeping the same aspect ratio images with a different aspect ratio are padded with
zeros. The size of the backbone feature is Hb = Wb = 128. The maximum number of
detection of persons isN = 64. The learning rate used is 5e-5. The batch size is set to 26.
We adopt the Adam optimizer [26] for training, and train the model until performance
plateaus on the validation set.
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Evaluation Benchmarks and Metrics. Our trained model is evaluated on the
Human3.6M [18], MuPoTS-3D [49] and 3DPW [47]. To evaluate the 3D pose accu-
racy, both mean per joint position error (MPJPE) [21] and Procrustes-aligned MPJPE
(PMPJPE) are employed. MPJPE measures the average Euclidean distance between the
location of real-life joints on human bodies and the locations of predicted joints on 3D
poses after translating the root joints (‘pelvises’) of estimated bodies to the ground-
truth root. Procrustes-aligned MPJPE, on the other hand, uses Procrustes’ alignment
(PA) [46] to solve for translation, scale and rotation between the estimated bodies and
the ground truth and thus mostly focuses on the pose error.

For root depth estimation, Mean root position error (MRPEz) [50] and 3D percent-
age of correct absolute keypoints (PCKabs) [50] are employed.MRPE is the mean of
the euclidean distance between the estimated coordinates of the predicted absolute root
and ground truth absolute root, and MRPEz is measure of correctness of the depth as
it only looks at the z-axis. On the other hand, PCKabs, the 3D percentage of correct
absolute keypoints, treats a joint’s absolute prediction as correct if it lies within a 15cm
from the ground truth joint location.

4.2 TransFocal

Network Architecture. The architecture has been shown in Fig. 4. Similar to [60], we
use ResNet [16] as the CNN backbone. Then learnable patch embeddings are applied to
patches extracted from the ResNet output. Each patch embedding’s kernel size is equal
to the patch size, in that the input sequence is obtained by simply flattening the spa-
tial dimensions of the ResNet features and projecting to the dimension of the Vision
Transformer.

For completion, We also show the overview of the transformer encoder architecture
in Fig. 4, to help with the explanation stated below. The input of the first Transformer
layer z0 is calculated as follow:

z0 = l1E; l2E; l3E....; lnE (15)

where z0 is mapped into a latent n-dimensional embedding space using a trainable lin-
ear projection layer andE is the patch embedding projection. These patches are then fed
into the vision transformer, specifically the VIT-B16 [10] variant. There are L Trans-
former layers which consist of multi-headed self-attention (MSA) and multi-layer per-
ceptron (MLP) blocks. At each transformer layer ℓ, the input of the self-attention block
is a triplet of Q (query), K (key), and V (value). They are computed from the output of
the previous layer by matrix multiplication with learnable parameters of weight matri-
ces. The self-attention in the attention head AH is calculated as:

AH = softmax(
Q × KT

√
d

) · V (16)

where d is the dimension of self-attention block. Multi-headed self-attention (MSA)
means the attention head will be calculated m times by independent weight matrices,
as AH1, AH2, · · · , AHm. The final MSA(zℓ−1) is defined as:

MSA(zℓ−1) = zℓ−1 + concat(AH1;AH2; ...;AHm) × Wo, (17)
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The output ofMSA is then transformed by anMLP block with residual skip connection
as the layer output as:

zl = MLP (Norm(MSA(zℓ−1))) +MSA(zℓ−1) (18)

where Norm means the layer normalization operator. Finally the MLP Head, a fully
connected layer, is used to decode the output of the vision transformer to obtain the
predicted VFOV (Fig. 4). Going off the VIT transformer architecture [10], MLP layer
is sufficient as a decoder in vision related tasks.

Training and Evaluation Datasets. For training the TransFocal model, a dataset is
created using the Pano360 dataset [30]. Pano360 consists of real panoramic images
taken from flickr [14] as well as synthetic panoramas. Due to a portion of flickr images
being inaccessible, we were unable to recreate the complete dataset. The dataset is split
for training and evaluation purposes. The code that is used for creating the dataset is
available at [29]. Note that since the image generation parameters are randomized, it is
difficult to recreate exact the same dataset.

Training Setting Details. The TransFocal model is trained with images of varied res-
olutions. The learning rate used is 1e-4. The weight decay is set to 1e-2. The batch size
is set to 4. We adopt the Adam optimizer [26] for training. We train the model until
performance plateaus on validation set.

5 Experimental Results and Discussions

In this section we report some performance comparison results on multiple datasets,
and a ablation study in using the Absolute-ROMP. We also provide an analysis of the
real-time performance of all the components, including the four head networks.

5.1 Real-Time Performance Analysis

In the following, we analyze the numbers of parameters of the four heads, and their
inference times. The information shown in Table 1 is obtained on a Nvidia Tesla V100
GPU. Overall, the numbers of the parameters are around 170K, and the interference
times for HRNET-32 feature output are from 0.7 ms to 0.8 ms, which ensures a real-
time performance.

The inference times for all the components are also analyzed, as shown in Table 2.
In particular, TransFocal, which is run on a GTX 1080ti at 25 ms per image, can be
run in parallel with the Absolute ROMP network, making its inference time not affect
the total run time, since the backbone HRNet-32 dominates the computation time (at 35
ms per image), which is 50 times more than each of the four heads. Adding all together,
the inference time is still near real-time, at ∼ 23 fps on the Nvidia Tesla V100 GPU.
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Table 1. Parameters and inference time on Tesla V100 for four heads.
Head Parameters Inference Time (ms)

Body Center 167,809 0.716

Camera 167,939 0.702

SMPL 176,974 0.767

Root Depth 175,544 0.700

Table 2. Inference time on Tesla V100 for every component except TransFocal which is run in
parallel on a separate GPU(gtx1080ti).

Head Inference Time (ms)

Backbone(HRNET-32) 35

Body Center 0.716

Camera 0.702

SMPL 0.767

Root Depth 0.700

TransFocal 28(GTX 1080ti)

SMPL Wrapper 0.1

output matching 0.01

5.2 Performance Evaluation and Comparison

In the following, we evaluate the performance of Absolute-ROMP against the state-
of-the-art (SOTA) methods on the Human3.6M, MuPoTS-3D and 3DPW datasets. We
evaluate two indicators -MRPEz and PCKabs (for absolute depth estimation) on the
first two datasets and two performance indicators for joint positioning after root align-
ment - MJPJPE and PMPJPE on the 3DPW dataset. Since ROMP [55] does not
have absolute depth prediction, it is only evaluated on the 3DPW dataset. We also show
importance of absolute positioning by qualitatively comparing Absolute-ROMP and
ROMP on the MuPoTS-3D dataset.

Performance Evaluation on Absolute Depth Prediction. Table 3 shows the root joint
localization results on Human3.6M dataset. The three baselines reported in the first 3
rows all follow a two-stage approach [50], where 2D pose and 3D pose are estimated
separately, and then an optimization process is adopted to obtain the global root joint
location that minimizes the re-projection error. The baseline “w/o limb joints” refers to
optimization using only head and body trunk joints. The baseline “with RANSAC”
refers to randomly sampling the set of joints used for optimization with RANSAC. The
baseline results are taken from [50].

The Absolute-ROMP is compared with two state-of-the-art (SOTA) approaches [40,
50] as well. In [50] a multi-stage approach is used, whereas in [40] a graph convolution
network model is used. For a fair comparison, we used the baseline focal length (e.t. the
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Table 3. Comparison of MRPEz results with state-of-the-art (the lower, the better) on the
Human3.6M dataset (The results with the baseline focal length is from our conference paper [1]).
Methods Baseline Base w/o limb joints Base w RANSAC RootNet [50] HDNET [40] Ours

MRPEz ↓ with baseline focal length 261.9 220.2 207.1 108.1 69.9 68.0

MRPEz ↓ with CamCalib [30] - - - - - 84.9

Table 4. Comparison of PCKabs results with SOTA methods (the higher, the better) on the
MuPoTS-3D dataset (The results with the baseline focal length is from our conference paper [1]).

Methods RootNet [50] HDNET [40] SMAP [62] Ours

PCKabs ↑ with baseline focal length 31.9 35.2 35.4 35.3

PCKabs ↑ with CamCalib [30] - - - 30.9

Table 5. Comparisons to the state-of-the-art methods (the lower, the better) on 3DPW (from our
conference paper [1]).

Methods YOLO + VIBE [27] ROMP(HRNET-32) [55] Absolute-ROMP(HRNET-32)

MPJPE↓ 82.9 76.7 84.0

PMPJPE ↓ 51.9 47.3 50.5

ground truth) when generating our Absolute-ROMP results, in the same way as in the
SOTA approaches. Our model is able to outperform these two SOTA approaches while
maintaining a real-time inference. As we described before, our system runs at ∼ 23 fps
on a Nvidia Tesla V100 GPU. Our root joint localization head achieves a 68.0mm accu-
racy with the baseline focal length information. Our end to end architecture is able to
look at the big picture, picking up distance cues in the background. While this gives
us an upper bound for the Absolute-ROMP accuracy (since the focal length is accu-
rate), we also test the Absolute-ROMP with a state-of-the-art (SOTA) approach Cam-
Calib [30] for estimating the focal length, which gives us a lower bound of the accuracy
using Absolute-ROMP. Due to the limitation of our computational facilities, we have
not put Absolute-ROMP and TransFocal together into one system. Nevertheless, in the
next experiment on TransFocal testing, we can see that Transfocal outperforms Cam-
Calib [30] so we can expect a performance improvement when using the TransFocal for
focal length estimation.

We showcase the 3D PCKabs performance of Absolute-ROMP on the MuPoTS-
3D dataset in Table 4. Our model has comparable performance to the SOTA methods
including RootNet [50], HDNET [40] and SMAP [62], in terms of the 3D percentage
of correct absolute keypoints, all using the baseline focal length information. The rea-
son for slightly better performance of SMAP [62] than ours is because an additional
network called RefineNet is employed in SMAP to further refine the output from the
initial network, thus filling in missing body parts and improving the visible ones. How-
ever, this technique works on a 3D prior and might not function well if test scenario
is very different from the training data. Again, using the focal length estimated with
a SOTA approach CamCalib [30] hurts the performance due to missing information of
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the ground truth focal length but this allows us to use the model when the focal length
is unavailable as is the case in most images available online.

Performance Evaluation Against Methods Without Absolute Depth Prediction.
We also compare MJPJPE and PMPJPE performance on the 3DPW dataset in Table 5
with SOTA methods (YOLO + VIBE [27] and ROMP(HRNET-32) [55]), which do not
predict absolute depth, as MJPJPE and PMPJPE are evaluated right after root alignment.
Even with added depth map prediction in our Absolute-ROMP, we are able to maintain
comparable performance with the SOTA. Note that in order to obtain abosulte depth
information, the backbone in our approach has to compensate for the additional predic-
tion of the root depth with a slightly higher joint error. This issue might be resolved by
using a larger backbone (such as HRNET-48) even though that would inevitably slow
down inference times. Nevertheless, a qualitative comparison of Absolute-ROMP with
ROMP on theMuPoTS-3D dataset in Fig. 1 highlights the importance of absolute global
coordinates. Thanks to absolute depth information while positioning the meshes, we
improve the location accuracy therefore correctly placing people hugging each other.

Performance Evaluation of TransFocal. Finally, we present the results of our
proposed focal length estimation method, TransFocal, and compare its performance
against a state-of-the-art (SOTA) approach CamCalib [30]. We have conducted an eval-
uation, the findings of which are summarized in Table 6.

Note that our TransFocal model has been trained on a carefully curated dataset
composed of partially available images from the Pano360 dataset. This dataset was
constructed to include a diverse range of camera viewpoints from panoramic scenes. In
contrast, the CamCalib model provided by the author [30] was pretrained on a dataset
created from the complete Pano360 dataset. To ensure a fair and unbiased comparison,
we evaluate both TransFocal and CamCalib on a subset of the dataset that was unseen
by our model during the training phase. This approach allows us to assess the gen-
eralization and robustness of our method in handling new, unseen panoramic images.
The results obtained from our experiments demonstrate the superiority of the Trans-
Focal model over CamCalib. In fact, TransFocal consistently outperforms CamCalib
by up to an impressive 40%. These findings highlight the effectiveness of our proposed
approach and its ability to accurately calibrate the camera parameters. These results val-
idate the efficacy of our method in solving the challenging task of camera calibration,
even with limited data availability.

Table 6. vfov error results comparison with state-of-the-art on dataset created from Pano360
dataset (from our conference paper [1]).

Methods CamCalib [30] TransFocal

vfov diff(degrees) 26.35 15.59
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Table 7. vfov error comparison after 1 epoch with different losses for supervision (from our
conference paper [1]).

Methods softargmax-biased-L2 softargmax-biased-L2+cross entropy

vfov diff 15.8 15.6

Table 8.MRPE comparison after 1k iterations with different bin resolutions.
Methods MRPEz(mm)

60 248

120 239

240 225

Table 9. MRPE comparison after 1k iterations binning vs numerical output.
Methods MRPEz(mm)

binning(120) 239

numerical 276

5.3 Ablation Study

Here we show the improvement in performance when we use a combination loss instead
of just employing the Softargmax-biased-L2 loss when training TransFocal. We report
mean error after training for 1 epoch while using Softargmax-biased-L2 loss alone
and with cross entropy loss in Table 7. This indicates that the cross entropy loss acts
as a guide for the gradient descent direction when the model is starting out, thus adding
to the speed of convergence of the model.

We also examine how different binning resolution effects output, as shown in
Table 8. When it comes to bin size it seems the highest resolution should be chosen
that would result in reasonable memory usage and inference times. However a larger
bin size, i.e. higher bin resolution, is preferred to account for a larger interval. Typically,
in our testing a factor of 10 i.e. ten times the interval of the focal length that is to be esti-
mated, is optimal for balancing inference time and memory usage when compared with
the distance in meters. The reason for this is that the gap between different bin sizes (as
we go higher than factor of 10) becomes almost negligible as we keep training further.
In our case, we chose a bin resolution of 120 as our prediction interval was 12m.

Furthermore, we compare how numerical output compares to softmax binning, as
shown in Table 9. The results confirm superiority of soft max binning when compared to
unbounded numeric input.

6 Conclusion and Future Work

In conclusion, our Absolute-ROMP is built upon an end to end one-stage network
ROMP for monocular multi-person 3D mesh regression from a single RGB image, by
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adding in absolute distance prediction. To achieve this, we introduce absolute root joint
localization in the camera coordinate frame, which enables the estimation of 3D mesh
coordinates of all persons in the image and their root joint locations normalized by
the focal length. Further, for eliminating the need for known intrinsic parameters of
the camera, we design and train a focal length prediction network called TransFocal,
which is a CNN + Transformer hybrid model. We evaluate Absolute-ROMP on the
root joint localization and root-relative 3D pose estimation tasks on publicly available
multi-person 3D pose datasets. We also evaluate TransFocal on a dataset created from
the Pano360 dataset. Quantitative and qualitative results show that our approach out-
performs or has competitive performance to the state-of-the-art approaches on multi-
ple benchmark datasets, under various evaluation metrics. Additionally, our method is
applicable to in-the-wild images and videos due to its real-time performance.

Future work include the following several directions. First, for the core algorithms,
incorporating the absolute camera parameters would eliminate the need for predicting
the depth separately. This would require the use of accurate absolute multi-person 3D
datasets in a variety of scenarios, such as the synthetic dataset AGORA [51]. Second,
real-time clothes and texture prediction on top of the multi-person 3D mesh regres-
sion would be especially beneficial for both virtual reality and augmented reality appli-
cations with realistic 3D rendering. Finally, incorporating labels for children would
improve the absolute location prediction for all, as children possess different body pro-
portions when compared with adults on average.
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