¢ % COMPUTER SCIENCE
' Criry CoLLeGE oF NEw YORK

CSC212 -
Data Structure
- Section FG

Lectures 4 & 5
Container Classes

Instructor: Feng HU
Department of Computer Science

City College of New York

@Feng HU, 2016 L

o~

tainer Classes

L LT

Data Structures

and Other Objects

Using C++
@Feng HU, 2016

°A is a data
type that is capable of
holding a collection of items.

*|n C++, container classes can
be implemented as a class,
along with member
functions to add, remove,
and examine items.

Bags

* For the first example, think
about a bag.

@Feng HU, 2016 3

Bags

* For the first example, think
about a bag.

* Inside the bag are some
numbers.

@Feng HU, 2016 4

Initial State of a Bag

 When you first begin to use a
bag, the bag will be empty.

e We count on this to be the
of any bag that we

use.

THIS BAG

IS
EMPTY.

@Feng HU, 2016

Inserting Numbers into a Bag

* Numbers may be inserted into
a bag.

PUTTING THE
NUMBER 4
INTO THE
BAG.

@Feng HU, 2016

Inserting Numbers into a Bag

* Numbers may be inserted into
a bag.

THE 4 IS
IN THE
BAG.

@Feng HU, 2016

Inserting Numbers into a Bag

* Numbers may be inserted into
a bag.

 The bagcan hold many
numbers.

PUTTING
ANOTHER
NUMBER IN
THE BAG --

AN 8.

@Feng HU, 2016

Inserting Numbers into a Bag

* Numbers may be inserted into
a bag.

 The bagcan hold many
numbers.

THE 8 IS

ALSOIN
THE BAG.

@Feng HU, 2016

Inserting Numbers into a Bag

« Numbers may be inserted
into a bag.

 The bagcan hold many
numbers.

e \We can even insert the
same number more than
once.

PUTTING A
SECOND 4
IN THE
BAG.

@Feng HU, 2016

10

Inserting Numbers into a Bag

« Numbers may be inserted
into a bag.

 The bagcan hold many
numbers.

e We can even insert the a

same number more than)_\k

once. N

NOW THE
BAG HAS
TWO 4'S
AND AN 8..

@Feng HU, 2016

Y
25

11

Examining a Bag

 We may ask about the
contents of the bag.

HAVE
YOU GOT
ANY 4's

@Feng HU, 2016

12

Removing a Number from a Bag

 We may remove a number
from a bag.

@Feng HU, 2016

13

Removing a Number from a Bag

 We may remove a number
from a bag.

 But we remove only one
number at a time.

@Feng HU, 2016

ONE 4 IS
GONE, BUT
THE OTHER
4 REMAINS.

14

How Many Numbers

* Another operation is to
determine how many numbers
are in a bag.

@Feng HU, 2016

IN MY OPINION,
THERE ARE
TOO MANY
NUMBERS.

15

e/

Summary of the Bag Operations

QA bag can be put in its , Which is an empty bag.

@ANumbers can be into the bag.

©You may how many occurrence of a certain number are
in the bag.

ANumbers can be from the bag.

®You can check the of the bag (i.e. how many numbers are
in the bag).

@Feng HU, 2016 16

The bag Class

e C++ classes (introduced in Chapter 2)
can be used to implement a container class bag
class such as a bag.

* The class definition includes:

v The heading of the definition

@Feng HU, 2016

The bag Class

e C++ classes (introduced in Chapter 2)
can be used to implement a container class bag
class such as a bag. {

* The class definition includes: public:
bag();

v The heading of the definition
v A constructor prototype

@Feng HU, 2016

The bag Class

m C++ classes (introduced in class bag
Chapter 2) can be used to {
implement a container class public:
such as a bag. bag();
@ The class definition includes: xg:g g:,:z:((_'_'_'
v The heading of the definition ...and so on

v A constructor prototype
v Prototypes for public
member functions

@Feng HU, 2016

The bag Class

m C++ classes (introduced in

class bag
Chapter 2) can be used to {
implement a container class public:
such as a bag. bag();
™ The class definition includes: xg:g :;:::((......
v The heading of the definition ...and so on
v A constructor prototype private:

v Prototypes for public
member functions
v Private member variables

@Feng HU, 2016

The bag’s Default Constructor

* Places a bag in the initial state (an empty bag)

bag::bag()
I/l Postcondition: The bag has been initialized

/I and it is now empty.

{

@Feng HU, 2016

21

The Insert Function

* Inserts a new number in the bag

void bag::insert(const int& new_entry)

I/l Precondition: The bag is not full.

/I Postcondition: A new copy of new_entry has
I/l been added to the bag.

{

@Feng HU, 2016

22

The size Function

* Checks how many integers are in the bag.

int bag::size() const
/I Postcondition: The return value is the number

I/l of integers in the bag.
{

@Feng HU, 2016

The size Function

e Checks how many integers are in the bag.

size t bag::size() const
I/l Postcondition: The return value is the number
I/l of integers in the bag.

{

@Feng HU, 2016

The count Function

e Counts how many copies of a number occur

size _t bag::count(const int& target) const
/I Postcondition: The return value is the number

I/l of copies of target in the bag.

{

@Feng HU, 2016

The erase_one Function

 Removes (erase) one copy of a number

void bag::erase_one(const int& target)

I/l Postcondition: Iftarget was in the bag, then

I/l one copy of target has been removed from the
I/l bag; otherwise the bag is unchanged.

{

@Feng HU, 2016

26

The Header File and Implementation File

» The programmer who writes thenewbag ©2zzzaoo/////////

class must write two files:
bag’s documentation

,»/f’
é
%’
%’

1
%
_

, a header file that contains

documentation and the class definition i

bag’s class definition

\\\\\\\\\\\\\\\§\\\\\\\\\\\\\\\\\\

D
§
\
\
\
\
\
§
\
§
\
§
§

, an implementation file that
contains the implementations of the

bag’s member functions :>

N

i

Implementations of the
bag’s member functions

/
g
%’
ﬁ
%’
ﬁ
ﬁ
o

@Feng HU, 2016

Documentation for the bag Class

 The documentation gives prototypes
and specifications for the bag member
functions.

 Specifications are written as
precondition/postcondition contracts.

* Everything needed to use the bag class
is included in this comment.

@Feng HU, 2016

i,

%
g
,.é
%

Jﬁixﬂ’?ﬁ};ﬁfﬁﬁ};ﬁﬁﬁ};ﬁﬁﬁxﬁfﬁxﬂ’?ﬁﬁffﬁ;ﬁﬁ}%
.
é
%

bag’s class definition

MMIMEMETTITDNRDNKRY

A\
§
§
§

Do
i

Implementations of the
bag’s member functions

N

N

Mt

/
g
%’
ﬁ
%’
ﬁ
ﬁ
o

A\

The bag ’s Class Definition

e After the documentation, the header

file has the class definition that we’ve %/////////////////////////////////

seen before:

bag’s documentation

s

b Gz 2
class bag
foub“c; f/////////////////////////////////

bag();
void insert(...

void erase(...
...and so on
private:

mplementations of the

I
bag’s member functions

.
@Feng IS i

(

The Implementation File

* As with any class, the actual

definitions of the member functions ?/////////////////////////////////

are placed in a separate _
implementation file. bag’s documentation

* The implementations of the bag’s

member functions are in bag1.cxx.
bag’s class definition /

Ik

7
@Feng HU, 2016 I,

~r

AN

A Quiz

Suppose that a Mysterious ~ @ Yes | can.

Benefactor provides you @ No. Not unless | see the class
with the bag class, but you definition for the bag .

are only permitted to read ® No. I need to see the class

the documentation in the definition for the bag, and also
header file. You cannot see the implementation file.

read the class definition or
implementation file. Can
you write a program that
uses the bag data type ?

@Feng HU, 2016 31

A Quiz

@ Yes | can.
You know the name of the new

Suppose that a Mysterious
Benefactor provides you

with the Bag class, but you
are only permitted to read
the documentation in the
header file. You cannot
read the class definition or
implementation file. Can
you write a program that
uses the bag data type ?

@Feng HU, 2016

data type, which is enough for
you to declare bag variables. You
also know the headings and
specifications of each of the
operations.

32

Using the bag in a Program

* Here is typical code from a program that
uses the new bag class:

bag ages;

I/l Record the ages of three children:
ages.insert(4);
ages.insert(8);
ages.insert(4);

@Feng HU, 2016

33

Implementation Details

* The entries of a bag will be
stored in the front part of an
array, as shown in this example.

(0] [1] [2] [3] [4] [3]

An array of integers _V_

We don't care what's in
this part of the array. 34

@Feng HU, 2016

Implementation Details

* The entries may appear in any
order. This represents the same
bag as the previous one. ..

(0] [1] [2] [3] [4]

o |48
We don't care what's in
this part of the array. 35

@Feng HU, 2016

Implementation Details

e ...and this also represents the
same bag.

(0] [1] [2] [3] [4] [3]

An array of integers ¥_V_

We don't care what's in
this part of the array. 36

@Feng HU, 2016

Implementation Details

* We also need to keep track of how many numbers
are in the bag.

- An integer to keep
track of the bag's size
(0] [(2] [3] [4] [5]

An array of integers ¥_V_

We don't care what's in
this part of the array. 37

@Feng HU, 2016

An Exercise

Use these ideas to write a
list of private member
variables could implement
the bag class. You should
have two member
variables. Make the bag
capable of holding up to
20 integers.

You have 60 seconds

to write the declaration.

@Feng HU, 2016 38

An Exercise

One solution:

class bag

{
public:

private:
int data[20];
size_t used;

};

@Feng HU, 2016

An Exercise

A more flexible solution:

class bag

{
public:

static const size t CAPACITY = 20;

private:
int data[CAPACITY];
size t used;

&

@Feng HU, 2016

40

The Invariant of a Class

* Two rules for our bag implementation

* The number of items in the bag is stored in the member
variable used;

* For an empty bag, we don’t care what is stored in any of
data; for a non-empty bag, the items are stored in data[0]
through dataJused-1], and we don’t care what are stored
in the rest of data.

* The rules that dictate how the member variables of
a (bag) class are used to represent a value (such as a
bag of items) are called the invariant of the class

@Feng HU, 2016 41

The Invariant of a Class

* The invariant of the class is essential to the correct
implementation of the class’s functions

* |n some sense,

* the invariant of a classis a condition that is an implicit part of every
function’s postcondition

* And (except for the constructors) it is also an implicit part of every function’s
precondition.

@Feng HU, 2016

42

The Invariant of a Class

* Precondition and Postcondition
e contract for each function, for use of the function
 document pre- and post- in the header file

* The invariant of the class

e implicit part of pre- and post- so is not usually written
as an explicit part of pre- and post-

* about the private member variables, thus for
implementation, but not for how to use them

 documentedin the implementationfile

e Value Semantics
* both for implementation and for use
e documentedin the header file

@Feng HU, 2016 43

An Example of Calling insert

void bag::insert(const int& new_entry)

Before calling insert, we
might have this bag b:

(0] [1] [2]

b.data -n-l

@Feng HU, 2016

44

An Example of Calling insert

void bag::insert(const int& new_ent

ry)

We make a function call

b.insert(17)
(0] [1] [2]

b.data -n-l

@Feng HU, 2016

What values will be in
b.data and b.count
after the member
function finishes ?

45

An Example of Calling insert

void bag::insert(const int& new_entry)

After calling b.insert(17),
we will have this bag b:

(0] [1] [2 ... (0] [[2].

b.data nn-. -n-l

@Feng HU, 2016

46

Pseudocode for bag::insert

O assert(size() < CAPACITY);

@A Place new_entryin the appropriate location of the data
array.

©® Add one to the member variable cOUNt.

What is the “appropriate
location” of the data array ?

@Feng HU, 2016 4

Pseudocode for bag::insert

O assert(size() < CAPACITY);

@A Place new_entryin the appropriate location of the data
array.

©® Add one to the member variable cOUNt.

datajused] = new_entry;

used++;

@Feng HU, 2016

48

Pseudocode for bag::insert

O assert(size() < CAPACITY);

@A Place new_entryin the appropriate location of the data
array.

©® Add one to the member variable cOUNt.

data] used++] = new_entry;

@Feng HU, 2016

49

ogmmary

* A container class is a class that can hold a collection
of items.

e Container classes can be implemented with a C++
class.

* The class is implemented with

3 header file (containingdocumentation and the class
definition)bagl.h and

* an implementationfile (containingthe implementations
of the member functions) bagl.cxx.

* Other details are given in Section 3.1, which you
should read, especially the real bag code

@Feng HU, 2016 50

Outline for Lecture 5

* Bag class definition/implementation details

* Inline functions
* constructor, size

e Other basic functions
* insert, erase_one, erase, count

* More advanced functions
e operators+, +=, -

* Time Analysis
* Big-O
* Introduction to sequence

@Feng HU, 2016

51

The Other bag Operations

* Read Section 3.1 for the implementations of the
other bag member functions

 such as operators append (+=) and union (+)

* Remember: If you are just using the bag class

* then youdon’t need to know how the operations are
implemented.

 Later we will reimplement the bag using more
efficient techniques.

* We'll also have a few other operations to
manipulate bags.

@Feng HU, 2016

52

Append Operator +=

void operator+=(bagé addend)
/[Precondition: size() + addend.size() <= CAPACITY.
/[Postcondition: Each item in addend has been added to this bag.

{
size ti;
(size() + addend.size() <= CAPACITY);

}

/[calling program:a +=Db; (OKAY)
/] : What will happen if you call: b += b;

@Feng HU, 2016

Append Operator +=

void operator+=(bagé addend)

/[Precondition: size() + addend.size() <= CAPACITY.

/[Postcondition: Each item in addend has been added to this bag.
/l Library facilities used: algorithm, cassert

{
(size() + addend.size() <= CAPACITY);

(addend.data, addend.data + addend.used, data + used);
used += addend.used;

}

// copy (<beginning location>, ending location>, <destination>);
/] : Can you fix the bug in the previous slide without using copy ?

@Feng HU, 2016

Union Operator +

/I NONMEMBER FUNCTION for the bag class:

bag operator+(const bag& b1, const bag& b2)

/[Precondition: b1.size() + b2.size() <= bag::CAPACITY.

/I Postcondition: The bag returned is the union of b1 and b2.
/[Library facilities used: cassert

{
bag answer;
assert(b1.size() + b2.size() <= bag::CAPACITY);
answer b1;
answer b2;
return answer;
}
/[calling program: c =a+Db;

/l : what happens if you call ?

Subtract Operator -

// Prototype: NONMEMBER FUNCTION for the bag class:
/] operator-(bagd: b1, bagé: b2);
/I Postcondition: For two bags b1 and b2, the bag x-y contains all the

items of x, with any items fromy removed
/]

/[HINTS:

// 1. Afriend function can access private member variables of a bag
I/l 2. You cannot change constant reference parameters

// 3. You may use any member functions of the bag class such as
/] b1.count(target); // how many target is in bag b1?

/] b1.erase_one(target); // target is an integer item

/] b2.size(); // size of the bag b2;

/] bag b3(b2); // automatic copy constructor

/]

Subtract Operator -

/I NONMEMBER FUNCTION for the bag class:
operator-(bag® b1, bag® b2)
/I Postcondition: For two bags b1 and b2, the bag x-y contains all the
items of x, with any items fromy removed
{
size t index;
bag answer(b1); //
size t size2 = b2.size(); // use member function
for (index = 0; index < size2; ++index)

{
int target = b2.data[index]; // use
if (answer.count(target))// use function
answer.erase_one(target); // use function
}
return answer;
}

Other Kinds of Bags

* In this example, we have implemented a bag containing integers.

* But we could have had a bag of float numbers, a bag of characters, a
bag of strings . . .

Suppose you wanted one of these other
bags. How much would you need to change
in the implementation ?

Section 3.1 gives a simple solution using

the C++ typedef statement.
@Feng HU, 2016

58

Time Analysis of the Bag Class

e count — the number of occurrence

* erase_one —remove one from the bag
e erase —remove all

e += - append

* b1+b2 - union

* insert —add one item

* size —number of items in the bag

@Feng HU, 2016

59

What's the most important, then?

* the bag class is not particularly important

e Other kinds of container classes

e sequence — similar to a bag, both containa bunch of
items. But unlike a bag, the items in a sequence is
arranged in order.

* will be the topic of our second assignment— paying
attention to the differences
* index— have current, next, last, etc
* member functions and theirimplementation (e.g. insert, attach)
e timeanalysis (insert)

@Feng HU, 2016

60

After Class...

* Assignment 2
* Due Wednesday, Sept 28
* Reading: Chapter 3, Section 3.2-3.3
» especially the sequence code

e Self-Test Exercises
 1,3,5,10,11,14,18-24

* Reading for next lecture
e Chapter 4, Section 4.1-4.2

@Feng HU, 2016

61

ogmmary

* A container class is a class that can hold a collection
of items.

e Container classes can be implemented with a C++
class.

* The class is implemented with

3 header file (containingdocumentation and the class
definition)bagl.h and

* an implementationfile (containingthe implementations
of the member functions) bagl.cxx.

* Other details are given in Section 3.1, which you
should read, especially the real bag code

@Feng HU, 2016 62

This lecture was modified from the authors’ presentation, with new
conventions provided in the second edition (2001) of the textbook and
other minor changes -- Feng HU, 2016, CCNY

Presentation cop '

as! IOFCG

opyright
cs In.
0 Usi ++ are
vgr they see fit, so Iong S CO notice

THE END

"'i§""b?ésentat|on ho

S intact.

@Feng HU, 2016 63

