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ABSTRACT

Video surveillance in public facilities, such as train and bus stations, airports, shopping malls, and sports arenas,
is very important to public safety, both for identifying threats/terrorist attacks and implementing evacuation
plans. The goal of this research is to explore the potential of using real-time computer vision and deep learning
algorithms with a Boston Dynamics robotic dog Spot for the modeling of a large public venue, and in its
collaboration and interaction with the 3D model of the large public venue, a network of surveillance cameras
monitoring the area, and humans in the environment. The first step of our work is to explore and enhance
the 3D vision navigation algorithms of the robotic dog to survey and map the area interactively, with real-time
performance and georeferenced accuracy, so that the next time Spot comes to the area, it can automatically
localize itself on the map. Then, to calibrate the network of cameras monitoring the area, no visual control
points in the environment are needed; instead, by using the walking Spot to generate known 3D calibration
target points accurate enough and widely distributed across the field of view of a camera, its intrinsic and
extrinsic parameters can be estimated. Equipped with the 3D digital map with the calibrated surveillance
cameras, the area can be automatically monitored through the collaboration of the camera network and Spot,
which can be sent over to assist in understanding the situation as soon as a need is identified, by using real-time
deep learning models such as YOLO models to detect humans in need and/or suspicious articles in the perimeter.
Our work is closely related to the DHS mission with the ever-increasing security concerns in public venues, and
has significant scientific and societal impacts, including enhancing research in digital twins, smart surveillance,
robotics, and assistive technology.
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1. INTRODUCTION

Video surveillance in public facilities, such as train and bus stations, airports, shopping malls, and sports arenas,
is very important to public safety, both for identifying threats/terrorist attacks and implementing evacuation
plans. Traditional video surveillance systems heavily rely on human operators to monitor activities, and therefore
have many limitations. Such manual surveillance requires large amounts of tedious and time-consuming work and
takes humans away from tasks that computers cannot solve. In addition, such work is prone to mistakes during
long-term monitoring. It is also very challenging to identify unusual activities in a crowd scene by monitoring a
bank of video screens.
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The DHS Center of Excellence SENTRY (Soft-target Engineering to Neutralize the Threat RealitY) addresses
the challenges of protecting soft targets and crowded places. The SENTRY vision to address threats to soft targets
and crowded spaces is a suite of systems, which will function semi-autonomously with the capability to rapidly
integrate and process data to provide real-time decision support to decision-makers (e.g., school principals) as
they interact with first responders to detect, deter and mitigate targeted violence. Aligning with SENTRY’s
vision, the CCNY DHS Summer Research Team (SRT) has worked with its host institution Rutgers, a partner in
SENTRY, to study the integration of data from stationary sensors (security and surveillance cameras) installed
in the infrastructure with mobile sensors (including cameras) on persons or robots.

Many researchers in both developing and studying surveillance systems have focused on automating video
surveillance and human and anomaly identification.!® On the other hand, studies have been performed in the
social sciences in identifying vulnerable populations such as old adults, children, and people with disabilities.*®
Recent progress in Al and robotics has enabled a lot of interesting applications with great social impact. In
particular, the integration of quadruped robots with large language models such as ChatGPT provides a lot of
potential, in guided tours,%7 clearing out explosives or inspecting radioactive environments,® brain-computer
interaction,® assisting the visually impaired.'? 1!

However, there are still a number of unmet challenges. First, the majority of the cameras in large public
facilities are not calibrated, and it would be a daunting task to manually align them with the 3D models of a
scene when hundreds of cameras are installed. Second, using mobile robots as a way to calibrate cameras as
well as assist people in need is a very interesting topic that has not been explored. Third, the integration of
technology and social science studies in identifying vulnerable populations can provide a convergence solution to
the problem that is highly relevant to the DHS mission. We envision that the research and development would
also be extended to screening of suspicious individuals and behaviors through the analysis of clothing, actions,
eye movements and interaction patterns with other people and the robot.'? 13

2. OVERVIEW OF THE WORK

The CCNY-Rutgers SRT research focused on exploration of the potentials of Boston Dynamics Robotic Dog -
Spot for the modeling of a large public venue such as a stadium and a museum, and in its collaboration and
interaction with the 3D model of the large public venue, a network of surveillance cameras monitoring the area,
and humans in the environment. The work includes three closely related and intertwined topics (Figure 1):

1. 3D mapping and digital twin creation for navigation at scale with a robotic dog as the modeling agent.
2. Calibration of a network of surveillance cameras with the robotic dog as the calibration target.

3. Intelligent assistance of people in need with the robotic dog.

The overall idea is to use the robotic dog Spot to survey and map the area interactively, so that the next time
that Spot comes to the area, it can automatically localize itself with the map. Then to calibrate the cameras
monitoring the area, no visual control points in the environment are needed; instead, by using the walking Spot
to generate known 3D calibration target points and observe them in the field view of a camera, the camera’s
parameters can be estimated. Equipped with the digital map with known camera information, the area can be
automatically monitored through the collaboration of the camera network and Spot, and as soon as a need is
identified, Spot can be sent over to assist the situation. In this way, the video and audio feed can be processed
and coded in the frontend, and privacy issues can be lessened.

In all the three steps, we aim to achieve realtime implementation, by leveraging the available onboard compu-
tational and sensory resources of the robot dog spot for 3D mapping (Section 3), the lightweight computational
requirements of Unity3D and calibration algorithms on a laptop or desktop (Section 4), and the computing and
sensing capacity of a mobile device held by a user for the multimodal interfaces, as well as the cloud based ser-
vices of LLMs (ChatGPT) and the lightweight deep learning models such as YOLO models for object detection
and content analysis (Section 5).
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Figure 1. Three building blocks of the proposed framework: mapping of a large public venue, calibration of a camera
network, and assistance for people in need, all with a robotic dog. Bottom: a scene of the Rutgers’ SHI Stadium - fields,
stages and surveillance cameras.

3. 3D DIGITAL TWIN CREATION FOR NAVIGATION AT SCALE

A large body of literature over decades has contributed to the knowledge of 3D modeling of a large 3D space
for navigation and localization. For an indoor environment, vision-based methods are the more prominent
approaches, especially for robotic applications, Simultaneous Localization And Mapping (SLAM) is the standard
of the field. In the past, the collaborative team of CUNY and Rutgers has explored methods in using static
LiDAR to create an accurate digital twin model of an indoor environment,'* or simply a smartphone’s visual
sensors to create a lightweight 3D model,'® for assistive navigation of people who are blind or have low vision.
In this research, since we hope to unleash the potentials of the robotic dog Spot for multiple purposes as listed
above, we have explored the capacity and limitation of the mapping function provided for Spot, namely the
Autowalk,'® and identified research issues for building 3D maps for navigation at scale.

3.1 Autowalk Fundamentals

During Autowalk, Spot intelligently navigates along a preset route to capture data or perform useful actions on
a site.! To help Spot succeed, we place Spot-recognizable fiducials (printed placards similar to QR codes with
the same standard established by the APRIL Robotics Laboratory of University of Michigan'”18) around the
site and learn how to build robust, repeatable Autowalk missions. An Autowalk mission consists of two stages.
The first stage is intended to model the as-built environment (known as map recording), which is primarily done
via manual control (and via automatic exploration in our future studies). During the operation of the modeling
stage, Spot localizes itself and perceives its surroundings by integrating pictures from its onboard perspective
cameras and the 3D point cloud data live streamed by a Velodyne LiDAR sensor (which is mounted on Spot’s
“lower back” as shown in Figure 2). Maps are created with two components: a point cloud dataset for the as-
built environment and a topological graphs illustrating the locations and connections between the Spot waypoints



Figure 2. Spot on the move.

Figure 3. A map created by Spot’s Autowalk with a graph of waypoints as the map representation and attached by point
cloud data.

(Figure 3). The second stage, known as the navigation stage, can start at any time once a map is recorded (after
the modeling stage). During this stage, Spot can autonomously determine the most efficient route and travel
to any waypoints described by the map. There are inevitably going to be a great number of waypoints while
Spot is modeling large as-built environments, so Spot’s Autowalk controling program allows the waypoints to be
automatically generated and placed as the following:

e At 2 m intervals along straight paths;



e When either event occurs within a 0.3 m path segment or Spot turns more than 30 degrees;
e Elevation of Spot changes more than 0.3 m; and

e A user-specified Action (together with the robot location or pose) is recorded.

In practice, in the manual tablet control mode of an Autowalk mission, a user initializes the map recording
by starting Spot at a location with a fiducial in its sight and controls the robot to the next point-of-interest for
waypoint establishment. The user can name each waypoint with particular meanings, such as a room number,
a turn on the corridor, or under a staircase. While the map recording stage is about to complete, Spot does not
need to close the loop of its trajectory so that the Autowalk mission can end at an arbitrary location.

Then in the navigation stage, the user can specify a destination and Spot will plan a path with pre-selected
waypoints to the destination and automatically go to the destination following the prebuilt route map. Spot will
follow all the waypoints along its path, but it can be adaptive to small changes of the environment between two
waypoints (such as moving tables or the existence of static or dynamic obstacles) as long as a path can be found
automatically between them. During mission replay (navigation), Spot calculates its position by comparing
features in its current sensor data with the features in the data snapshots taken at each waypoint during mission
recording.

3.2 Autowalk Limitations
In our early experiments, we have found several limitations.

(1) Fiducials are specially designed images, similar to QR codes, that Spot uses to localize itself at the initial
position as well as to align its internal map with the world around it. Fiducials are generally used to mark specific
point-of-interest, for instance, docking stations, and are required at the beginning of any Autowalk mission.

(2) The original navigation algorithm needs to see all waypoints along a planned route. Spot automatically
compensates for deviations in its path and small changes in the environment, but large discrepancies may require
Operator intervention.

(3) Actions can be added to Autowalk missions during the Autowalk recording process by selecting “4+Add
Action” on the controller. Spot only supports up to 100 total Actions per mission, which are also pre-defined.

(4) For automatic mapping, fiducials need to be placed around the site for Spot to explore the area. The
models may not be metric accurate since it is a relative model.

3.3 Research Topics Identified and Tested

We proposed to integrate building information model (BIM), Static LIDAR Scan and the Spot Autowalk map
for generating and updating the digital twin of a large venue for survey, navigation and assistance. We note
that a BIM is created in the design stage. A static LIDAR model is accurate but static. Spot Autowalk gives a
reliable and updated model but the accuracy is relative for the purpose of the robotic navigation. Here are the
number of things we identified and partially tested.

(1) The accuracy of the Spot localization and the improvement for mapping in scale. We measure
Autowalk’s accuracy whenever it matches a waypoint. For this purpose, we set up multiple fiducials on the
walls that both our static LiDAR scanner and Spot can see and measure. Then by comparing the accurate
LiDAR scan and the Autowalk map for the 3D locations of the fiducials, we can obtain the accuracy of Spot
localization. Our experiment shows that in exploring an indoor area, the localization accuracy of Spot depends
on the distances it travels: for an Autowalk mission of a total traveling distance of 175 meters (574 feet), the
error in its localization from 50 meters to 175 meters (164 to 574 feet) increases from 5 cm to 40 cm (2 to 16 in)
on average (Figure 4).

Based on our past experience,'® we proposed the integration of two novel ideas. The first one is to divide the

large space into overlapping regions, and create an Autowalk mission for each region, and connect the maps of all
the missions into a large global map. In this way, the creation of digital twins can be implemented for large-scale
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Figure 4. The trajectory and localization accuracy of during the Spot Autowalk. Top: Fiducials (represented by triangles)
whose ground-truth locations are known from the accurate LiDAR scan in Figure 5), plotted on the Autowalk map with
a graph of waypoints (the robot center is represented by a black dot; red and green arrows are showing the Spot front
and left respectively). Bottom: The graph illustrates the cumulative localization error (SLAM) for the Spot Autowalk,
which is evaluated against the ground truth fiducial locations.

environments. The second idea is to use an accurate floor plan (e.g. from BIM), or the digital twin created by
the static LIDAR scan (Figure 5), allowing us to interactively or even automatically match the local Autowalk
Spot locations and its point cloud with the accurate floor plan, so that the two maps can be aligned. If Spot
walks in an outdoor environment, the GPS locations can also be used as the global 3D localization measures for
model alignment.

(2) Using Spot for surveying accessible features. Thanks to Spot’s capability to walk in all-terrain in 3D
spaces, the localization and mapping information can provide rich information to identify ramps, stairs, elevators



Figure 5. Alignment of Spot’s Autowalk map with the static LIDAR scanned model. The texture-mapped point cloud,
known as the world point cloud or ground truth point cloud, is collected by our high-definition static laser scanner. Red
dots denote the Spot positions recorded (by the robot) during the Autowalk mission. The point cloud data captured by
two separate systems - the static LIDAR system and the Spot sensor system - are aligned based on the fiducials.

of a site, using both its 3D model and its images. We proposed to expand the Spot action set by automatically
adding new actions related to our task, namely accessibility for people in need, including those who have visual,
hearing, mobility and mental challenges by detecting important landmarks in the scene using deep learning
models.

(3) Reducing or even removing the use of fiducials. The current support of the Spot Autowalk needs
to place a fiducial to start a mission. And every time a playback is implemented, Spot has to stay close to
the fiducial. We would like to first remove the need of Spot going back to any fiducial to start a playback, by
enabling Spot to recognize a waypoint and localize itself and be able to go to any predefined destination that
is created during the mapping stage. Then we hoped to prepare Spot for the spatial knowledge generated from
our accurate static LIDAR model so that Spot can not only rapidly localize itself at the start of its mapping
mission, but also maintain a high self-localization accuracy by aligning its local Autowalk model with the static
LiDAR model during the mission.

4. CALIBRATION OF A NETWORK OF SURVEILLANCE CAMERAS WITH SPOT
4.1 Calibration Basics

Detecting static or moving objects (humans, vehicles, suspicious articles) in a public venue with the views of
surveillance cameras does not need camera calibration if only a detection or recognition is needed. However, a
calibration is necessary if we want to get more accurate information of the detected target, such as its location,
its distance and its size in 3D space. Given a set of known 3D-2D matches, both the intrinsic parameters (the
focal length, the center of the image, the aspect ratio, etc.) and the extrinsic parameters (i.e. the pose including
position and orientation, represented by a rotation matrix and a translation vector) of a camera can be estimated.

4.2 Current Limitations

Camera calibration has well-developed algorithms in many computer vision packages, such as OpenCV and
Matlab. However, there are three practical issues in using them in a large venue such as a stadium with many
cameras. First, an algorithm typically needs a well-designed calibration target such as a checkerboard to provide
known 3D control points (Figure 6) presented in the view of the camera. This also means that human operators



have to go to the field to set up the calibration target. Second, the calibration thus done can only provide
the estimation of the intrinsic parameters of the camera, such as the center of the images, the focal length,
and the aspect ratio. The camera pose estimation with extrinsic parameters - the 6 degrees of freedom (DOF)
rotation and translation parameters - will be relative to the checkerboard and it is another challenge to relate
the checkerboard with a global coordinate system. Finally, it would be best that the control points for camera
calibration cover the field of view (FOV) so the camera parameters would be useful for measurements of locations
and sizes in the camera’s view. However, making a checkerboard with a large size and from a large distance to
the camera is impractical.

Figure 6. A checkerboard carried by Spot for camera calibration.

4.3 Research Topics Identified and Tested

We proposed to use the robotic dog Spot as the calibration target. Imagine that an operator sitting in front of
a bank of screens for the surveillance cameras can remotely send the robot to the field, and under the FOV of
each camera. Then the robot can either autonomously walk around the area without human intervention or be
interactively controlled to send it to ensure its locations are distributed across the FOV of the camera. Whenever
spot is automatically detected in an image of the camera, its 3D location can be obtained from the Autowalk
system, which is also in the global world coordinate system. Then a set of 2D-3D matches are automatically
obtained, and with more than 6 pairs of matches, the full set of the camera intrinsic and extrinsic parameters
can be estimated.

For achieving this goal, we identify the following research tasks.

(1). Realistic simulation in Unity3D. For developing and evaluating the accuracy and robustness of camera
calibration using a walking Spot as the calibration target, we first developed a Unity3D virtual environment with
realistic scenes,'® the robot dog, and virtual surveillance camera. In order to streamline the pipeline from virtual



to real, we have proposed to develop digital twins of real environments such as a stadium, museum and a research
facility. Figure 7 shows a virtualized environment (aka digital twin) of the Rutgers Sustainable Infrastructure
Laboratory where experiments of mobile robots (drones and walking robots) are carried out. In the environment,
the virtual space includes a 3D virtual environment matching the real measurement and setups of the lab, the
robot dog Spot, and three virtual surveillance cameras (Figure 8).

Figure 7. A virtualized environment of an infrastructure lab.

(2). Camera calibration in the virtualized environment. Camera calibration in this work is to find the
relations of the three coordinate systems: the world, the robot and each of the surveillance camera, as well as
each camera’s specification including its focal length (one parameter), the center of the image (two parameters),
and its aspect ratio (one parameter). While the relation between the world coordinate system and the robot
coordinate system has been pre-calibrated when the robot Spot mapping the environment (Figure 9), we only
need to find the relation between the camera coordinate system and the world coordinate system, represented
by a 3x3 rotation matrix and a 3-dimensional translational vector.

We look into three calibration approaches and evaluate their performance in various situations: Spot with a
calibration checkerboard, Spot as one point in motion, Spot with multiple key points. We evaluated what are
the limitations of each approach, in terms of the field of view (FOV), 3D and 2D measurement errors, and the
requirements in feature extraction of the calibration targets in images.

A. Spot with a calibration checkerboard. When the robot Spot carries a planar checkerboard (Figure 6) with
known relations of the co-planar 3D points on the checkerboard in the robot coordinate system since they can be
estimated accurately using the static Lidar scanning, we can use the robust algorithm initially developed by.2"
This only requires more than two images be taken when the checkerboard is with different orientations. This
can be achieved when Spot walks around within the FOV of a surveillance camera, by intentionally changing
its orientations of the planar checkerboard, whose parameters can be estimated by Spot’s Autowalk related to
the world coordinate system. Then the calibration algorithm will provide both the intrinsic parameters and the
extrinsic parameters of each planar checkerboard’s orientation. Hence, the camera’s extrinsic parameters with
respect to the world coordinate system can be calculated with the known orientations of the moving checkerboard
in the world. This will be an especially effective method when the robot can be close to the camera.
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Figure 8. Spot walking in the VE with surveillance camera views. Top: the developer’s view of the space. Bottom: a
view from a camera on top of the robot Spot which includes the front part of the robot (yellow), and a surveillance camera
represented by a red dot on the back wall. Three insets show three views of the scene from three surveillance cameras,
and the robot dog is in the view of the first camera (left).

B. Spot as one point in motion. if the FOV of the camera is large, and the robot is far away from the
camera, for example in the stadium (Figure 1), the robot as seen in each image might be very small, and either
a checkerboard or the feature points on Spot may not be very distinguishable from a far distance. In this case,
we proposed to detect Spot as a whole (for example with color segmentation since the body of the robot is
yellow), and use the centroid of the detection as a feature point. When it moves in a large field of view like
the SHI Stadium, due to its walking and stair-climbing capacity, the robot can generate 3D feature points in
the three-dimensional space, on the field and on stages, so a general calibration algorithm as in OpenCV can be
used.?!

C. Spot with multiple key points or different height configurations. When Spot is walking in close range of
the camera to be calibrated, it can be seen as a 3D moving object, even though it moves on a 2D surface. As an
example, we can use the features of the robot dog, both on the top of the body, and the legs touching the floor
(Figure 9). In this way, the calibration method eliminates the need of any unnatural calibration target except
the robot dog itself. As another example, since SPOT can change its postures with different heights linearly, we
can generate 3D points that are not one a single plane even though it walks on a flat surface. Figure 10 shows
the results of a simulation where Spot can generate 3D-2D matches when walking in 3D space, even when a
single key point is extracted from every SPOT posture/location.
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Figure 9. The robot and world coordinate systems in (a) and the key points of the robot Spot in (b), as measured (in
meters) in the world coordinate system established by a fiducial on the wall.

(3). Camera Calibration in the Real World. The final step is to apply the calibration algorithms for the
surveillance cameras in a real-world environment. For facilitating the data collection and interactive calibration
process, we would like to visualize the real robot dog Spot and the camera feeds of the surveillance system in
the digital twin of the real environment of interest. Since the robot’s pose can be estimated automatically, we
know exactly when it is in it’s walking mode, and when it comes in the FOV of a surveillance camera. Then
the operator can remotely control the robot to walk in a desired pattern, while the 2D images of the robot are
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Figure 10. Camera calibration using the walking Spot changing its heights when walking on a flat surface. Left: the 3D
control points collected when the virtual SPOT is walking on the floor but changing its heights. Right: the corresponding
2D points as seen in the images of a size of 1024 x 1024 pixels.

being detected on the images of the surveillance camera. After obtaining 3D-2D matches of Spot in motion, the
camera parameters can be estimated via calibration and the video feed can be better projected in the virtual
3D space, the same as the case in our full VE simulation (Figure 8). This will be future work on our follow-on
project.

5. INTERACTION OF ROBOT SPOT WITH PEOPLE AND ENVIRONMENTS
5.1 Research Topics in Interactive Interaction

With the technical preparation of mapping and calibration as two key milestones, the intelligent interaction of
the robot dog with people and the environment can be achieved. This includes three major components:

(1) Detect and localize humans from surveillance cameras. Since the environment has been modeled
as a 3D digital twin with its surveillance cameras calibrated, detected humans and any unusual activities can
be localized and tracked across multiple cameras, using deep learning models such as YOLO for detection. We
proposed to develop algorithms to identify and re-identify people in need or in suspicion and share the information
with operators to take action.?? 24

(2) Send Spot over for assistance. The operators might send Spot over for assistance in a situation. Given
the position of the event, Spot can automatically navigate itself to the destination without human intervention,
and with the cooperation of the surveillance cameras, which also monitor the robot, Spot can find the individual
who needs help and intervention.

(3) Interaction of Spot and Human via speech and with ChatGPT. The final step is the interaction
between Spot and the individual who needs assistance. We are developing a speech interface for the robot to
talk via speech-to-speech service with the individual, allowing for a conversational approach to the interaction.
This interaction will be made possible by feeding user queries to ChatGPT?*2? for relevant and human-like



responses, such as how to navigate a stadium or information on an art piece in a museum. This consists of
the following three tasks (detailed below): (T.1) The system allows a user to interact with the Spot robot with
multimodal channels via an iPhone or Android mobile device (Figure 11). (T.2) We customize ChatGPT for
specific purposes by fine-tuning the text-generation model in a particular environment. (T.3) The system allows
for the input of images, audio, and text as prompts using the GPT 4 model in collaboration with how Spot could
respond to its surroundings and vocalize it.

User
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Figure 11. Multimodal interface for the robot Spot and the large language model ChatGPT.

5.2 Research Tasks in ChatGPT Interaction

Task T.1. User multimodal interface.  The goal of Task T.1 is to allow a user to interact with the Spot
robot with multimodal input (text, speech, or image) through a mobile device such as an iPhone or Android device
(Figure 11). This will be accomplished by two interfaces. (i) Using the Python and JavaScript programming
languages we will create a web interface to communicate with the OpenAI API. (ii) The user will be able to
simulate interactions with the quadruped robot via a mobile device interface where multimodal input will be
processed through the text-to-speech pipeline and vocalized via a speaker—or mobile device-mounted on the Spot
robot, similar to the dual iPhone interface in.? (iii) The API that will be employed to achieve these tasks is the
ChatGPT 4 model for text generation®> given text and/or image input, speech recognition Whisper model,?%
and text-to-voice model.2” All of these will be provided by the OpenAl platform, streamlining and facilitating
compatibility across the various models being used.

Task T.2. Customization of ChatGPT for tasks and users. In order to customize ChatGPT for specific
tasks such as security alerts, assistance during an evacuation, or for user(s) with vulnerabilities, we would like to
fine-tune the ChatGPT model for the tasks and users in their respective environments (museum, transportation
center, stadium, etc.). This will require that we investigate data collection, data labeling, and model training for
the customized ChatGPT.?® For example, suppose an individual who is blind or has low vision (BLV) visits a
museum. In that case, the information from the articles as well as the models of the museum will be fed into the
ChatGPT model so that the robotic dog Spot can answer specific questions about the exhibit articles or security
information for the user regarding accessibility zones, safety exits, etc. In addition, it will be able to tailor the
answer in an appropriate format, style, and language for the BLV user, such as voice feedback and vibration
reminders. The system will also allow the user to replay the answer in a user-friendly manner.

Task T.3 Read images as input prompts. In the Follow-Up work we plan to do, we envision that the
system will allow for the input of images as prompts, e.g. using the GPT 4 model in collaboration with the
results of image analysis for Spot to respond to its surroundings and vocalize it using the same pipeline as Task
T.1. While image input for GPT 4 is new and not as sophisticated in its responses as text inputs,?® it will still
be worthwhile to explore how GPT 4 could process and make sense of the images captured by Spot to assist in
threat detection or aiding vulnerable populations.



5.3 Real-time Object Detection with YOLO

Here we show some results in detecting and localizing humans and navigation signages in public venues from
surveillance cameras and/or the onboard cameras of the robotic dog SPOT. Since each scene has been modeled
as a 3D digital twin with its surveillance cameras and SPOT’s onboard cameras are calibrated, detected humans
and objects and any unusual activities can be localized and tracked across multiple cameras. Figure 12 shows a
few examples of real-time detection of people, obstacles such as chairs, suspicious items such as a suitcase, and
other objects, using a deep learning model YOLO v11.%0 In this figure, we show detection results from both the
left and right cameras of SPOT. In the left-camera image, a chair (with its boundary and label in purple) and
a person (with the boundary and label in blue) are detected and extracted from the image. In the right camera
image, a suitcase (with its boundary and label in green) is detected. The speed of the detection is from 110 ms
to 190 ms per frame when executed on a computer with a 13-th gen Intel(R) Core(TM) i7-1360P processor.

Figure 12. Real-time object detection on images from SPOT’s left and right cameras using a YOLO v11 model (image
from the left camera, detection results for the left camera image, image from the right camera and the detection results).

6. CONCLUDING REMARKS

The goal of this research is to explore the potential of the Boston Dynamics robotic dog called Spot for the
modeling of a large public venue such as a stadium and a museum, and in its collaboration and interaction with
the 3D model of the large public venue, a network of surveillance cameras monitoring the area, and humans in
the environment. The overall idea is to use the robotic dog Spot to survey and map the area interactively, so
that the next time Spot comes to the area, it can automatically localize itself with the map. Then to calibrate
the cameras monitoring the area, no visual control points in the environment are needed; instead, by using the
walking Spot to generate known 3D calibration target points and observe them in the view of a camera, the
camera’s parameters can be estimated. Equipped with the digital map with the calibrated network of surveillance
cameras, the area can be automatically monitored through the collaboration of the camera network and Spot,
and the results of the monitoring can be sent over to assist in understanding the situation as soon as a need is
identified. The research can support the protection of soft targets and crowded places with aerial/ground agents.
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