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Abstract—This study presents a deep learning-based frame-
work for classifying variable stars using raw light curves from the
Transiting Exoplanet Survey Satellite (TESS), an MIT-led NASA
mission. As modern astronomical missions generate increasingly
complex and high-volume time-series data, there is a growing
need for scalable, automated classification systems. While prior
efforts have applied machine learning to this domain, few have
leveraged deep Convolutional Neural Networks (CNNs) directly
on unprocessed TESS light curves. Our work addresses this gap
by designing a CNN architecture capable of learning directly
from the raw light curves, avoiding biases introduced by data
transformations. The model classifies four key classes of variable
stars - Delta Scuti, RR Lyrae, rotation modulation, and eclipsing
binaries - and distinguishes them from non-variable or unknown
cases. The classifier achieves high efficiency, processing each light
curve in just tens of milliseconds on a single GPU, enabling large-
scale inference. Applied to a set of 209,658 TESS light curves,
the model identified 2,569 previously uncatalogued variable star
candidates. The results demonstrate the potential of deep learning
for accelerating discovery in astrophysical surveys and contribute
to the broader intersection of data mining and physical sciences.

Index Terms—Machine learning, Convolutional Neural Net-
works, Variable Stars, Transiting Exoplanet Survey Satellite,
Variable Star Catalog

I. INTRODUCTION

The primary objective of this study is to identify new
variable stars and generate a catalog of variable star candidates
by developing a 1D CNN that operates directly on unprocessed
light curves from TESS.

A. Variable Stars

Variable stars are stars or star systems whose brightness
changes over time. They play a crucial role in advancing our
understanding of stellar evolution, stellar composition, exo-
planet detection and habitability, intergalactic distance mea-
surements, and more [3]. As such, research on variable stars
contributes significantly to both particle physics and stellar
physics. Variable stars are categorized on the basis of their
underlying cause of variability. These stars are identified and
distinguished based on characteristics such as period, shape
and amplitude of their light curves [4]. There are mainly two
types of variable stars: extrinsic and intrinsic. The variability of
extrinsic stars is caused by changes in external properties such
as rotation, whereas that of intrinsic stars is caused by changes
in the physical properties of the star itself. In this work,

we are identifying and classifying four different classes of
variable stars - Delta Scuti, RR Lyrae, rotation modulation, and
eclipsing binaries. Delta Scuti and RR Lyrae are intrinsic and
are pulsating variables, meaning their brightness variability
is caused by the cyclical expansion and contraction of the
star. These oscillations of the star’s outer layers are caused by
the imbalances between pressure and gravity [36]. Delta Scuti
light curves show fluctuating amplitude and have periods rang-
ing from approximately 0.01 to 0.2 days. On the other hand,
RR Lyrae light curves are either sinusoidal or asymmetrical
sawtooth shaped and have a longer period range from 0.2
to 1.2 days. The rotation modulation and eclipsing binaries
variables are the extrinsic classes considered. The variability
in rotation modulation objects considered are caused by solar
like star spots or flares and their period can range from hours to
years, depending on the rotation period of the star. As its name
suggests, eclipsing binaries are binary star systems, and their
variability is caused by one star eclipsing its companion. Its
period can vary widely for each star as it depends on the orbital
period of the stars in the system. A sample training light curve
from each class is shown in Figure 1. These samples were
selected to show the distinctive variable light curve features
of each class. However, the features are often less prominent
than those shown here.

B. TESS

The vast majority of stars in the galaxy are too far away
to be spatially resolved into multiple pixels. Instead, one
method of analyzing these stars is through photometry. That
is, the brightness fluctuations of these stars are studied using
light curves, which are the recorded magnitude or brightness
of the stars over time. We are using light curves from the
Transiting Exoplanet Survey Satellite (TESS) [37], an MIT-
led NASA mission dedicated to observing millions of stars to
detect transiting exoplanets - planets outside our solar system
that periodically pass in front of their host stars, causing
measurable changes in brightness [35]. Despite the vast extent
of TESS light curves, which are well-suited for variable star
study due to their ability to capture minor fluctuations in
brightness, their use for variable star classification remains a
relatively underexplored area of research.

Launched in 2018, TESS completed its two-year primary
mission in July 2020 and is currently on its extended mission.



Fig. 1. Sample training light curves from each class are shown on the left.
The same light curves zoomed on the time axis are shown on the right to
display their characteristic shapes. The objects belong to Delta Scuti, RR
Lyrae, eclipsing binary, and rotational modulation variable classes, and non-
variable class respectively, in order from top to bottom. The TIC (TESS Input
Catalog) ID of each object is displayed in the title of its respective light curve.
Each light curve is plotted using the Barycentric TESS Julian Date (BTJD) on
the X-axis and the PDCSAP (Pre-search Data Conditioning Simple Aperture
Photometry) flux on the Y-axis.

The satellite is designed to scan the sky in 26 sectors during its
primary mission, with half covering the Southern Hemisphere
and the other half covering the Northern Hemisphere. TESS
has observed or is scheduled to observe sectors 1 to 26 during
the primary mission, sectors 27 to 55 during the first extended
mission, sectors 56 to 107 during the later missions. Each
sector covers a 96◦ x 24◦ area of the sky and TESS is
equipped with four wide-field 24◦ x 24◦ cameras, each with
four Charge-Coupled Devices (CCDs) [43] that enable high-
quality photometric observations of each sector for 27.4 days.
TESS primarily targets bright, nearby stars to facilitate the
detection of exoplanets.

This research utilizes data collected during TESS’s first
extended mission, specifically from sectors 27 to 55. During
the extended mission, brightness measurements (flux) were
recorded with a cadence of 2 minutes for target stars1 and
10 minutes for full-frame images (FFIs). FFIs are the entire
field of view of one of the four cameras and this is used
to extract the light curves for the candidates not included
in the target list [35]. The observations are captured using
CCDs, and real-time onboard image processing is performed

1Target stars are a list of stars selected for detailed observation by TESS.
This includes stars that are considered good targets for transit detection [37].

by TESS’s Data Handling Unit to produce scientifically usable
data products [15]. The data, collected as light curves in FITS
(Flexible Image Transport System) files are stellar brightness
variations or flux values recorded over time. Flux values used
are pre-search data conditioning simple aperture photometry
(PDCSAP) values and the time is measured in Barycentric
TESS Julian Date (BTJD) units. Currently deployed on its
extended mission, TESS continues to collect stellar data across
different regions of the sky, offering ongoing opportunities for
astrophysical research.

C. CNN Classifier

In order to classify the stellar light curves, one needs to in-
spect and deduce the period, amplitude and shape details of the
light curve. And for hundreds of thousands of complex light
curves, this is a tedious, repetitive, and error-prone task. We are
automating this process by using a CNN, an artificial neural
network (ANN) implemented using deep learning architecture.
Deep neural networks excel in identifying complex patterns
in complex data [10]. Among the various neural network
frameworks, CNNs are widely recognized for their success
in image classification and object detection tasks, largely due
to their ability to identify hierarchical patterns and spatial
correlations in data. While 2D CNNs are typically used for
image-based data, our research focuses on one-dimensional
sequential light curve data. Therefore, we utilize 1D CNNs
to analyze the raw input directly. 1D CNN framework excels
at efficiently extracting local patterns in 1D sequential data
and have been used extensively in the natural language pro-
cessing (NLP), diagnosis of medical sensors such as electro-
cardiograms (ECG) and electroencephalograms (EEG), audio
signal analysis and financial data analysis [8]. Compared to
Long Short-Term Memory (LSTM) networks [42], a type of
Recurrent Neural Network (RNN) known for modeling tem-
poral data, 1D CNNs offer greater computational efficiency.
Although LSTMs are powerful for sequential data analysis
and excel in modeling long-term temporal dependencies, they
process data sequentially, typically making them slower than
CNNs. In contrast, our 1D CNN classifier is highly efficient:
on a single GPU, it can process a single light curve in just a
few tens of milliseconds. Consequently, our tool enables the
effective and efficient use of TESS data, supporting researchers
in the exploration of variable star phenomena and contributing
significantly to advancements in stellar studies.

II. BACKGROUND

A. From Perceptron to CNNs: Evolution of deep learning
models

The very first Neural Network - the perceptron was in-
troduced by F Rosenblatt in 1968 [5]. This simplest Neural
Network framework was promising great results for simple
linearly separable classification tasks. Later, in 1980, Kunihiko
Fukushima proposed the first Neural Network for visual pat-
tern recognition, named neocognitron [6]. Neocognitron was
the very first predecessor for a CNN, which was inspired from
the visual nervous system of vertebrates. Out of the various



types of neural networks emerged, CNNs have been proved to
be exceptionally effective for computer vision tasks. CNNs
have the special capability to deduce hierarchical patterns
and spatial correlations in data using a kernel to generate
feature maps from the input data. The very first CNN frame-
work was introduced in 1989 by LeCun et al in the paper
titled “Backpropagation Applied to Handwritten Zip Code
Recognition” [9]. This paper demonstrates the effectiveness
of backpropagation-based neural networks, specifically CNNs
for the task of handwritten digit recognition on US zip codes
from the USPS dataset. Later, in 2012, Krizhevsky et. al [11]
proposed AlexNet, the first CNN that outperformed all other
existing machine learning frameworks. AlexNet was the first
CNN model to win the ImageNet challenge with an impressive
least error rate and this became a turning point for the use of
CNN frameworks for image classification and object detection
tasks.

We are using a 1D multi-layered CNN, as this architecture is
well-suited for capturing localized patterns in sequential data
and offers improved computational efficiency through parallel
data processing.

B. Related Research

Machine learning techniques were first applied to the study
and classification of variable stars in the early 2000’s. One
of the pioneering works in this area was by Debosscher et.
al [12], who proposed the use of machine learning classifiers
to analyze light curves from various astronomical missions,
including HIPPARCOS (High Precision Parallax Collecting
Satellite), OGLE (Optical Gravitational Lensing Experiment),
and MOST (Microvariability and Oscillations of STars). They
used a range of machine learning classifiers, such as a
multivariate Gaussian mixture classifier, Bayesian networks
classifier, Bayesian average of artificial neural networks and
support vector classifier as models. This work focused more
on developing a classifier optimized for speed, interpretability,
and simplicity, rather than maximizing model performance.

Another relevant work by Aguirre et. al[14] published in
November 2018, explores the classification of variable stars
using a 1D CNN. However, the input data in this study are
derived from three different surveys — OGLE-III, VISTA
(Visible and Infrared Survey Telescope for Astronomy), and
CoRoT (Convection, Rotation, and Planetary Transits) —
and transforms the input data as a 2 × N matrix, where 2
corresponds to the dimensions of time and magnitude values
and N is the number of data points used for each light curve.
Their CNN model includes only two convolutional layers,
which lacks the capacity to learn intricate patterns the way
deep learning methods do.

Later in 2020, Feinstein et. al [13] proposed a method on
classifying short-cadence TESS light curves to identify stars
with flares, analyzing flare statistics across different stellar age
and spectral groups. Although stellar flares represent a type of
stellar variability, this research emphasizes detecting localized
spikes in the light curves rather than periodic variability. Their
approach also utilizes TESS light curves and a CNN as the

classifier. However, the CNN architecture includes only two
convolutional layers and a single dense layer, which may limit
its ability to detect complex patterns in the data. In addition,
the input light curves are preprocessed to remove long-term
variability. Overall, while this study shares the use of TESS
light curves and CNNs, its goals and methodology differ from
ours.

The previous two models are both shallow networks. Deep
neural networks, such as the one presented in this work,
provide distinct benefits and challenges compared to their
shallow counterparts.

Recently, in late 2024, Akhmetali et. al [2] proposed an
approach that shares similarities with our research, as it
employs a 1D CNN with multiple convolutional layers to
classify variable stars. However, it differs significantly in
methodology: the model inputs are folded versions of raw
light curves, sourced from the OGLE dataset. They use this
classifier to categorize known variable stars, and the use of
folded light curves as input data may significantly affect the
model’s efficiency.

Many types of light curve preprocessing transform the input
data in ways that introduce biases or unwanted correlations,
potentially leading to incorrect results. In contrast, our work
distinguishes itself by using raw TESS light curves, leveraging
a deeper CNN architecture with multiple convolutional layers,
and avoiding preprocessing steps that may introduce bias.

III. DATA

A. Dataset Production

To train the CNN model, labeled light curves of known
variable stars are essential. However, due to the absence of
a comprehensive catalog of variable stars identified directly
by TESS, training labels were sourced from external datasets,
primarily from GAIA (Global Astrometric Interferometer for
Astrophysics) mission’s archival data and catalogs published
in research based on TESS observations. RR Lyrae and ro-
tational modulation objects were identified from the GAIA
archive [24], and their GAIA source IDs (unique identifiers
for objects observed by the GAIA spacecraft) were retrieved.
TIC IDs (unique identifiers for all objects considered from
the TESS mission) for these objects were then obtained from
Mikulski Archive for Space Telescopes (MAST), a NASA-
funded repository hosting data from various space missions,
by cross-matching2 their GAIA source IDs with their corre-
sponding TIC IDs using the TIC available from MAST. This
was done using the Astroquery library [26], which provides
a programmatic interface to query and access TESS data
products through MAST. The TIC IDs of Delta Scuti objects
were taken from the catalog published in a 2024 research
paper by Olmschenk et. al [20], which focuses on using

2Cross-matching refers to the process of linking objects listed in different
astronomical catalogs. In this study, GAIA source IDs were cross-matched
with TIC IDs using the Astroquery interface, which queries the GAIA
column available in the TIC. The values in GAIA column is the result of
a precomputed positional cross-match [49] between the TIC and the GAIA
catalog.



a CNN to identify short period variables from TESS data.
Eclipsing binaries object TIC IDs were obtained from the
catalog published in 2022 by Prša et. al[21], which includes
4,584 eclipsing binaries identified from TESS observations
conducted during the mission’s primary phase.

TIC IDs for the negative class — i.e., objects with unknown
variability, were obtained by excluding the TIC IDs associated
with downloaded data for variable star classes from the com-
plete list of TIC IDs available in MAST. Although this dataset
likely contains some variable star light curves, we treat it as
the negative class during training. This is justified because
variable stars are comparatively rare, and thus the vast majority
of these light curves are expected to represent non-variable
stars. Consequently, using this dataset as a proxy for the
negative class is a pragmatic and statistically sound approach
for model training. For all the classes, the TIC IDs were split as
80%:10%:10% for training, validation and testing respectively.
The total number of data for train, test and validation for each
class is shown in table I.

Later, the astroquery tool is used for the process of down-
loading light curves for these obtained TIC IDs. The Science
Processing Operations Center (SPOC) [19] at NASA Ames
Research Center develops the calibrated pixels for the 2 min
cadence data from TESS. The NASA Advanced Supercom-
puting (NAS) Division’s Pleiades supercomputer processes
these data, including the full-frame image data, which are then
archived in MAST. MAST facilitates the search and retrieval of
TESS data through a web-based Archive User Interface [25].
While several access methods are available, this study utilizes
the Astroquery.mast module [26] to retrieve the required TESS
data.

Variable star class train validation test
Delta Scuti 5781 704 659
RR Lyrae 379 54 50

Rotation modulations 2000 398 364
Eclipsing Binaries 6000 1086 1127

Unknown 99846 9999 99815
TABLE I

TABLE: COUNT OF TRAIN, VALIDATION AND TEST DATA USED FOR EACH
CLASS

B. Data Cleaning

1) Lomb-Scargle Periodogram for the folding of light
curves: The training data were manually reviewed through
visual inspection to validate the classes as well as to find any
discrepancies. Visually inspecting the period and amplitude
shape of the light curves involves zooming in on the time axis
to focus on a few cycles at a time. Given the extensive dataset,
numbering in the hundreds of thousands, manually inspecting
each light curve would be impractical and time-consuming. To
address this, we used the Lomb-Scargle periodogram from the
lightkurve package, a python library designed for analyzing
time-series data from missions like TESS [28]. This tool
automates the identification of the periods of these light curves
and then folds them based on their periods (an example is
shown in Figure 2), making the validation process easier

Fig. 2. Plot showing the raw and folded versions of light curve for an RR
Lyrae with TIC ID 34069197

[27]. This automated folding of light curves worked well
with objects with a definite period and amplitude, but failed
at correctly finding the period of and folding a majority of
objects in Delta Scuti and rotation modulation classes, as they
have variable amplitudes. Nevertheless, the automation of light
curve folding using Lomb-Scargle periodogram substantially
aided in the validation of the accuracy of the training data.

2) Removing overlaps: Since it is natural for some stars to
belong to multiple variable star classes simultaneously, overlap
between classes is possible. For example, rotational modula-
tion can occur in an eclipsing binaries system. Moreover, as
each star may be observed in several TESS sectors, this results
in multiple light curves for the same object. Consequently,
even a small number of such overlaps can negatively affect
model training. To mitigate this issue, the TIC IDs assigned
to different classes were examined for overlap and duplicates
were removed. A significant number of TIC IDs corresponding
to eclipsing binaries were found to be present in other classes
and were therefore excluded. Furthermore, before adding any
new light curve to the training set, a check was performed to
ensure that it was not part of the unknown dataset.

3) Label cleaning: Initially, this research considered six
different classes of variable stars. In addition to the four pri-
mary classes mentioned earlier, Cepheids and short-timescale
variables were also included. These objects were obtained by
first collecting their source IDs from GAIA, as described in
Section III-A. However, both classes were later removed due
to issues related to data quality and the potential for overlap
with other classes.

Upon reviewing the training light curves, it was found that a
significant portion of the Cepheid data were corrupted, as illus-
trated in Figure 3. Specifically, the light curves showed trends
that deviated significantly from the characteristic variability
patterns of Cepheid stars. Even light curves from different
sectors for the same object displayed inconsistent behavior,
likely due to errors in data processing or issues during data
collection in certain sectors. Alternatively, the inconsistencies
may be due to potential issues with the GAIA labels.

Furthermore, while inspecting the dataset for overlapping
and duplicate TIC IDs across different classes, a considerable
number of shared objects were found between the short-
timescale and eclipsing binaries classes. As the short-timescale



Fig. 3. Sample Cepheid light curves with discrepancies are shown, along with
one without discrepancies for comparison. TIC IDs 100406081 and 30526897
represent objects with discrepant light curves, while TIC ID 80688900
corresponds to a Cepheid variable exhibiting a normal periodic trend.

class includes all variable stars with short periods, it is
naturally more prone to overlap with classes such as Delta
Scuti and short-period eclipsing binaries. Even in cases where
TIC IDs did not directly overlap, the training light curves
from the short-timescale class often exhibited trends similar
to those found in other short-period variable classes. This
similarity could lead to misclassifications during CNN training
and negatively affect classification performance. Consequently,
the short-timescale class was excluded from the final training
set.

IV. METHODOLOGY

A. Convolutional Neural Network Architecture

Our neural network (NN) model, shown in Figure 4, is
implemented using PyTorch’s [50] 1D CNN framework. Our
model has eight convolutional layers and two dense (fully
connected) layers and is based on the NN framework available
at https://github.com/golmschenk/ramjet [39]. The architecture
dynamically adapts to varying input lengths by computing
appropriate pooling sizes and dense layer dimensions. By
default, it expects an input length of 3500; longer light
curves are truncated, while shorter ones are repeated to ensure
a uniform input length across all samples. It comprises a
sequence of convolutional and dense blocks and an end module
tailored for multi-class classification. Each convolutional block
comprises of a 1D convolutional layer followed by activa-
tion, pooling, and dropout layers. The size of the network
increases progressively through the layers to the deeper layers
to enhance network’s capacity to learn hierarchical features.
That is, the number of neurons increases from 8 to 64 and
then decreases as the network progresses towards the final
dense layers, where the number of neurons is reduced to 20.
Leaky Rectified Linear Unit (ReLU) [29] is the activation
function used in all convolutional layers. Spatial dropout [30]
regularization is implemented in the later layers to randomly
drop a subset of feature maps during each training iteration.

Fig. 4. NN architecture diagram illustrating the structure consisting of eight
convolutional blocks followed by two dense or fully connected blocks. Each
layer is annotated with a pair of values indicating the input and output
dimensionality.

Data augmentation is implemented by creating new, synthetic
training examples through injection and by applying a random
roll, which creates a larger and more varied dataset. Together,
these processes significantly mitigate the risk of overfitting.
Overfitting refers to the tendency of an NN to fit the training
data too closely, which impairs its ability to generalize and
make accurate predictions on unseen data.

A pooling layer is applied after spatial dropout to reduce the
spatial dimensionality of the feature maps [31]. Specifically,
max pooling is used, which select the maximum value within a
sliding window on the input. This operation reduces the input
size while retaining the most significant features, effectively
preserving essential information in the data. Finally, the output
from all these layers is fed into the end module, which
produces an unbounded score for each input. Although no
activation function is applied within the end module itself,
a softmax function is subsequently used during evaluation
to convert these scores into class probabilities. The model
is trained to classify inputs into one of five classes: four
corresponding to types of variable stars, and one negative
class representing objects not belonging to the other four. To
address class imbalance—specifically, the under-representation
of variable stars relative to non-variable stars—the training
data was shuffled and resampled across multiple epochs. These
combined strategies make our CNN framework well-suited
for the efficient and accurate classification of one-dimensional
temporal flux data from TESS.

V. EXPERIMENTAL EVALUATION

A. Training and Validation

The training pipeline is built on top of the qusi framework
(https://github.com/golmschenk/qusi). The model and train-
ing code used is available at https://github.com/Abhinagit24/



variable star classification CNN.git. Out of the total data
prepared in section III for each class, 80% is designated for
training and 10% for validation. The model’s parameters are
optimized during training using the Adam optimizer [40], with
cross-entropy serving as the loss function.

Model training was carried out over multiple epochs, each
consisting of training and validation steps with a batch size of
1000. About 100 training and evaluation runs were performed
and for a single run, it took about 29 hours to complete 535
epochs. All experiments were conducted on a Linux-based
workstation equipped with a 13th Gen Intel Core i9-13900KF
processor (32 threads, 24 cores), 32 GB of RAM, and an
NVIDIA GPU with CUDA support. The system was accessed
remotely via SSH. The software environment consisted of
Python 3.10, TensorFlow 2.12, and standard scientific libraries
such as NumPy and Pandas. Training and inference tasks
were executed locally without cloud-based resources or HPC
clusters.

The learning rate was varied and evaluated across different
training sessions. A higher learning rate of 0.01 led to unstable
training behavior, characterized by sudden spikes and drops
in accuracy. This instability is attributed to the large updates
made to the model weights, which can overshoot optimal
solutions and hinder convergence. Therefore, the learning rate
was reduced to 0.001, which resulted in more stable training
dynamics and improved learning, without such fluctuations.

In addition to tuning the learning rate, other hyper-
parameters were also adjusted to optimize model performance.
These included the dropout rate, the size (number of neurons),
and the depth (number of layers) of the neural network. The
network size was varied by experimenting with different con-
figurations, such as doubling or halving the number of neurons
across layers. It was observed that reducing the number of
neurons in the deeper layers led to improved accuracy.

The dropout rate was also tested across various values. A
rate of 0.1 consistently produced the best results, effectively
reducing overfitting while preserving model capacity. This
dropout setting provided a good balance between regular-
ization and learning ability. Beyond hyperparameter tuning,
data quality and quantity were found to have a significant
impact on performance. Removing corrupted and overlapping
samples along with increasing the amount of training data, led
to more substantial performance gains than hyperparameter
adjustments alone.

The performance of the model was analyzed and com-
pared using multiclass accuracy and multiclass area under the
receiver operating characteristic curve (AUROC) metrics. A
detailed explanation of these metrics is given in the following
section. Our model achieved a training accuracy of 88.3%
and a validation accuracy of 85.1%. Our network structure
is shown in Figure 4.

1) Performance metrics: Even though our primary goal is
to identify new variable stars and produce the catalog, a set
of metrics was used to assess the model’s performance and
is primarily implemented through the PyTorch library. Since
the data used is imbalanced, macro-averaging is applied, in

which each metric is computed separately for each class and
then averaged. This approach helps ensure that all classes are
weighted equally [46]. The metrics used to evaluate the model
include cross-entropy loss, multiclass accuracy, and AUROC.
These metrics are well suited for multi-class classification and
allow evaluation of both the model’s accuracy and its ability
to distinguish between classes.

As this is a multi-class classification task, the loss function
used is the categorical cross-entropy loss [1]. Its formula is
given in equation 1.

L(ŷ, y) = −
C∑
i=1

yilog(ŷi) (1)

where L(ŷ, y) is the categorical cross-entropy loss, yi is the
true label, ŷi is the predicted probability and C is the number
of classes. The cross-entropy loss function focuses on the
correct class predictions and maximizes the margin between
correct class and remaining class predictions [45].

The model’s performance on both the training and validation
sets is evaluated using multi-class accuracy. Accuracy is the
fraction value of correctly classified predictions over the total
predictions [48]. It is represented by equation 2.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

For a classifier, the true positive rate (TPR) is the ratio of
true positives to the total number of actual positives, while
the false positive rate (FPR) is the ratio of false positives to
the total number of actual negatives. The receiver operating
characteristic (ROC) curve is generated by plotting the TPR
against the FPR at various decision thresholds applied to
the classifier [47]. In general, classifiers can be evaluated by
comparing their ROC curves, with better-performing classifiers
having curves that are higher and to the left in the ROC space
[47]. The area under the ROC curve provides a single scalar
value to assess classifier performance. It is particularly useful
for comparing classifiers, as it offers a more reliable evaluation
metric than accuracy, especially when dealing with imbalanced
datasets, where accuracy may be misleading.

B. Test

Following the training and validation stages, a testing phase
is conducted to assess the generalization performance of the
classifier. The remaining 10% of the downloaded data was
reserved for this purpose. The model’s trained parameters were
loaded from a previously saved checkpoint file in the form
of a PyTorch tensor. The model is evaluated using the three
primary metrics mentioned in section V-A1: cross-entropy
loss, multiclass accuracy, and multiclass AUROC. During test
phase, the model obtained a cross-entropy loss of 0.516, an
accuracy of 85.9%, and an AUROC of 0.934. These results
confirm that the trained CNN model generalizes effectively to
new, unseen data.



Fig. 5. Normalized confusion matrix

To evaluate the classification performance of the model
by comparing actual versus predicted values, a confusion
matrix was generated, with each row (representing the true
label) normalized by the total number of samples in that
row, as shown in Figure 5. A confusion matrix is a square
matrix in which the rows represent the actual class labels
and the columns represent the predicted class labels [46]. The
diagonal elements represent correct classifications, while off-
diagonal elements indicate misclassifications. The confusion
matrix indicates that 39% of rotation modulation objects were
misclassified as negatives, and 16% of unknown objects were
misclassified as rotation modulations. These misclassifications
are expected and likely stem from the presence of variable
stars within the unknown class, which includes all objects with
unconfirmed variability. Given that many stars exhibit flares
or star spots, it is plausible that several rotation modulation
sources were included in the unknown class, contributing to
the observed misclassifications.

VI. CATALOG

A. Inference

After training and testing the CNN model, we performed
inference to evaluate its performance and to identify new
variable stars within a dataset of 209,658 light curves. These
light curves, drawn from the entire ”negative” class dataset,
comprising the training, validation, and test splits—correspond
to stars whose variability status has not been previously
confirmed (see section III-A).

Testing the model on this mostly non-variable dataset is a
strong way to measure how well it generalizes. If the model
can correctly identify variable stars in data labeled as non-
variable, it shows that the classifier is effective at finding new
variable sources, even in uncertain or mislabeled data. During
inference, the CNN model generated a confidence score for
each light curve, from which the class with the highest score
was assigned as the predicted label. Light curves with a
confidence score greater than or equal to 0.95 were considered
high-confidence predictions and selected for further analysis
and inclusion in the final catalog (Table III).

To validate the model’s predictions, 100 random samples
from each predicted class were manually vetted by visual
inspection. Of these samples, 98% of the Delta Scuti can-
didates, 96% of the RR Lyrae candidates, 98% of the rotation
modulation candidates, and 99% of the eclipsing binaries
candidates displayed light curve features consistent with their
assigned classes, indicating strong reliability in the model’s
classification.

B. Catalog

The catalog of the newly found variables is given in the
table III. It consists of newly found variable star objects with
their TIC IDs, sectors, predicted class and confidence values.
Objects with a confidence value of 0.95 or higher from the
inference result are selected for the catalog. The classifier
identified 4267 light curves, which belong to 2569 new objects,
where 66 are RR Lyrae, 97 are rotation modulations, 820 are
Delta Scutis and 1,586 are eclipsing binaries. This is listed in
table II. As same objects were observed in different sectors,
some TIC IDs are repeated across the catalog. Unique light
curves can be identified by tracking TIC ID - sector pairs. The
entire catalog is available at [51]

Variable star class Number of objects found
Delta Scuti 820
RR Lyrae 64

Rotation modulation 97
Eclipsing Binaries 1586

Total 2569
TABLE II

TABLE: COUNT OF UNIQUE OBJECTS FOUND IN EACH VARIABLE STAR
CLASS.

Some of the characteristic plots of the newly found objects
are shown below. All the figures are colored by class such that,
delta scuti, rr lyrae, eclipsing binaries and rotation modulation
are colored as blue, orange, green and red respectively. Since
eclipsing binaries typically consist of two stars, photometric
measurements such as apparent magnitude and effective tem-
perature represent the combined contributions of both com-
ponents. As a result, the derived magnitude for an individual
star is generally higher than that reported for the system as a
whole, and the estimated temperatures may be less accurate
due to the blending of the stellar fluxes. The normalized kernel
density plot of TESS magnitude of each class of newly found
objects were plotted and is shown in the Figure 6. The figure
shows delta scuti stars as a slightly brighter class of objects,
whereas rotation modulations appear as slightly dimmer ones.
The normalized count plot of the log period values of newly
found objects colored by class is shown in the figure 7. This
plot is consistent with the known period distribution of the
variable star classes considered, thereby validating the inferred
classifications.

VII. CONCLUSIONS

Our classifier is both efficient and effective, successfully
identifying new variable star candidates while processing each
light curve in approximately 43 milliseconds on a GPU. It



Fig. 6. Plot showing normalized kernel density plots for magnitude of objects
in each class.

Fig. 7. Plot showing normalized count of period of newly found objects,
colored by class.

detected 2,569 new variable star candidates among 209,658
light curves whose variability status was previously unknown.
This result was generated by applying a confidence thresh-
old of 0.95 to the inference results; only stars assigned a
confidence of 0.95 or higher for a specific variable star
class were included in the catalog under that class label. To
assess classification quality, hundreds of these newly identified
objects were randomly selected and visually inspected for
periodic trends that were consistent with their assigned classes.
The inspection showed that at least 96% appeared to belong
to the correct predicted class.

The classifier achieved a training accuracy of 88.3%, a
validation accuracy of 85.1%, and a test accuracy of 85.9%. On
the test set, it also obtained a cross-entropy loss of 0.516 and
an AUROC score of 0.934. The classifier efficiently generated
a catalog of high-confidence, accurately predicted candidates
using only unprocessed light curves, thereby fulfilling the
primary objective of our study. In addition, this tool is designed
to efficiently process large-scale time-series data, enabling
automated classification and supporting further scientific in-
vestigation into stellar variability and its implications for
stellar and particle physics.
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VIII. APPENDIX

TABLE III: The catalog lists newly identified objects in each class,
including their TIC ID, class, confidence, period, effective temperature,
luminosity, TESS sector, GAIA G magnitude and TESS magnitude
values. Only 25 of the objects are shown here.

TIC ID Class Confidence Period Teff Lum Sector GAIAmag Tmag

301289516 Eclipsing Binaries 0.97060847 0.2419 4199.0 0.112636611 42 9.83773 9.0684
371811873 Eclipsing Binaries 0.98248738 10.0 6882.0 24.6082745 38 11.8799 11.5162
157118534 Delta Scuti 0.98031288 0.0601 7168.0 9.355461 36 10.6272 10.3603
142197564 Eclipsing Binaries 0.96845698 0.7248 5089.0 0.263513 34 11.6913 11.1337

3664782 Delta Scuti 0.96001387 0.0365 7788.0 16.1757317 47 12.1194 11.9512
54039889 Eclipsing Binaries 0.98953724 2.3894 5782.0 3.41316223 36 12.0479 11.5745
386154220 Delta Scuti 0.98080027 0.0271 7738.86 9.774514 44 9.3648 9.21387

8007106 Delta Scuti 0.95857447 0.0592 7481.0 21.87407 38 10.6564 10.4367
58947120 RR Lyrae 0.98170853 0.3462 7669.74 13.5172729 45 10.1613 9.9777
235396448 Delta Scuti 0.95415151 0.0348 7370.0 8.871043 33 8.01348 7.81036
376860605 Delta Scuti 0.99166042 0.0696 7967.0 9.052658 55 11.0057 10.8573
428860793 Delta Scuti 0.991175771 0.0645 7466.0 9.866676 53 9.67501 9.42366
158960327 Delta Scuti 0.97960448 0.1245 6351.0 28.9438629 33 12.3316 11.4971
27846290 Delta Scuti 0.97552061 0.0556 7451.66 8.404558 41 11.5117 11.3027
219346938 Eclipsing Binaries 0.9821927 2.0204 6107.0 4.878466 33 11.4903 11.1046

3664782 Delta Scuti 0.98887604 0.0365 7788.0 16.1757317 44 12.1194 11.9512
19028616 Delta Scuti 0.96403229 0.0268 46 15.5152 15.3693
53997666 Delta Scuti 0.98366022 0.0453 8119.0 26.8373241 36 9.58683 9.4489
354407978 Eclipsing Binaries 0.96420991 0.2216 6763.0 5.18094349 55 10.8272 10.5257
318305863 Eclipsing Binaries 0.98239422 0.6417 6444.0 3.68667912 55 11.0239 10.68
148968781 Eclipsing Binaries 0.96718228 1.6973 5845.0 3.34725761 41 12.2393 11.8107
83461344 Delta Scuti 0.989631 0.0464 7527.99 16.9506035 44 9.83554 9.63025
373110694 Eclipsing Binaries 0.96580774 1.2144 6593.16 3.20259571 32 11.6798 11.2685
285149078 Delta Scuti 0.97452152 0.0524 9049.0 14.1966829 35 10.4757 10.3266
14879070 Eclipsing Binaries 0.96156067 0.1516 5284.47 0.852088153 47 13.1823 12.6389


